1
|
Kumar BKP, Beaubiat S, Yadav CB, Eshed R, Arazi T, Sherman A, Bouché N. Genome wide inherited modifications of the tomato epigenome by trans-activated bacterial CG methyltransferase. Cell Mol Life Sci 2024; 81:222. [PMID: 38767725 PMCID: PMC11106227 DOI: 10.1007/s00018-024-05255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.
Collapse
Affiliation(s)
- Bapatla Kesava Pavan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Molecular Biology, Acrannolife Genomics Private Limited, Chennai, Tamilnadu, 600035, India
| | - Sébastien Beaubiat
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Chandra Bhan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
- Department of Genetics, Genomics, and Breeding, NIAB-EMR, East Malling, East Malling, ME19 6BJ, UK
| | - Ravit Eshed
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel
| | - Amir Sherman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Derech Hamacabim 68, Rishon Lezion, Israel.
| | - Nicolas Bouché
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
2
|
Wen X, Yuan J, Bozorov TA, Waheed A, Kahar G, Haxim Y, Liu X, Huang L, Zhang D. An efficient screening system of disease-resistant genes from wild apple, Malus sieversii in response to Valsa mali pathogenic fungus. PLANT METHODS 2023; 19:138. [PMID: 38042829 PMCID: PMC10693133 DOI: 10.1186/s13007-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the present study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resistant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal biomass), physiological (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resistance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes and exploring their immune regulatory networks.
Collapse
Affiliation(s)
- Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- National Positioning Observation and Research Station of Forest Ecosystem in Yili (XinJiang), Academy of Forestry in Yili, Yili, 835100, China
| | - Jiangxue Yuan
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
3
|
Yang L, Liu L, Cheng J, Wu Z, Bao W, Wu S. Association analysis of DNA methylation and the tissue/developmental expression of the FUT3 gene in Meishan pigs. Gene 2022; 851:147016. [DOI: 10.1016/j.gene.2022.147016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
4
|
Yamagishi K, Kikuta Y. Nucleoside derivatives of 5-methylcytosine suppress 5-azacytidine-induced reactivation of a silent transgene in suspension-cultured tobacco cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:173-178. [PMID: 34177339 PMCID: PMC8215451 DOI: 10.5511/plantbiotechnology.20.1126b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/26/2020] [Indexed: 06/13/2023]
Abstract
Epigenetic modifications, including DNA methylation, are involved in the regulatory mechanisms of gene expression in animals and plants. In this study, we investigated whether the action of 5-azacytidine (5-aza-Cd), which is a well-known DNA methylation inhibitor, in suspension-cultured tobacco cells is affected by treatment with nucleoside derivatives of 5-methylcytosine (5-mCs), namely 5-methylcytidine (5-mCd) and 5-methyl-2'-deoxycytidine (5-mdCd). In a tobacco cell line, 5-aza-Cd treatment reactivated an epigenetically silenced transgene containing the cauliflower mosaic virus 35S promoter fused to the β-glucuronidase coding region and the nopaline synthase polyadenylation signal. The reactivation was evident on the fifth day of treatment and was augmented during culture with application of 5-aza-Cd at every subcultivation. This treatment, provided only once in the initial culture, resulted in transient transgene reactivation, followed by attenuation of its activity. The reactivation induced by 5-aza-Cd was suppressed by concomitant treatment with either 5-mCd or 5-mdCd. These results suggest that the 5-mCs derivatives inhibit and/or reverse 5-aza-Cd-induced reactivation of a silent transgene in tobacco cells.
Collapse
Affiliation(s)
- Kazutoshi Yamagishi
- Laboratory of Crop Physiology, Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
- Department of Food and Nutrition, Koen Gakuen Women’s Junior College, 3-1-1 Makomanai-kamimachi, Minami-ku, Sapporo, Hokkaido 005-0012, Japan
| | - Yoshio Kikuta
- Laboratory of Crop Physiology, Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
5
|
Boonjing P, Masuta Y, Nozawa K, Kato A, Ito H. The effect of zebularine on the heat-activated retrotransposon ONSEN in Arabidopsis thaliana and Vigna angularis. Genes Genet Syst 2020; 95:165-172. [PMID: 32741853 DOI: 10.1266/ggs.19-00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Ty1/copia-like retrotransposon ONSEN is conserved among Brassica species, as well as in beans, including adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi), which is one of the economically important crops in Japan. ONSEN has acquired a heat-responsive element that is recognized by plant heat stress defense factors, resulting in its transcription and the production of full-length extrachromosomal DNA under conditions with elevated temperatures. DNA methylation plays an important role in regulating the activation of this transposon in plants. Therefore, chemical inhibition of DNA methyltransferases has been utilized to study the effect of DNA methylation on transposon activation. To understand the effect of DNA methylation on ONSEN activation, Arabidopsis thaliana and adzuki bean seedlings were treated with zebularine, which is known to be an effective chemical demethylation agent. The results showed that ONSEN transcription levels were upregulated in zebularine-treated plants. Extrachromosomal DNA of ONSEN also accumulated in the treated plants.
Collapse
Affiliation(s)
| | | | - Kosuke Nozawa
- Graduate School of Life Science, Hokkaido University
| | | | | |
Collapse
|
6
|
An Improved Syringe Agroinfiltration Protocol to Enhance Transformation Efficiency by Combinative Use of 5-Azacytidine, Ascorbate Acid and Tween-20. PLANTS 2017; 6:plants6010009. [PMID: 28216553 PMCID: PMC5371768 DOI: 10.3390/plants6010009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase (GUS) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 μM AzaC, 0.56 mM ASC and 0.03% (v/v) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. Furthermore, a combined supplement of 20 μM AzaC, 0.56 mM ASC and 0.03% Tween-20 improves the expression of transgene better than any one factor alone, increasing the transgene expression by more than 6-fold. Thus, an optimized syringe agroinfiltration was developed here, which might be a powerful method in transient transformation analysis.
Collapse
|
7
|
Grafi G, Ohad N. Plant Epigenetics: A Historical Perspective. EPIGENETIC MEMORY AND CONTROL IN PLANTS 2013. [DOI: 10.1007/978-3-642-35227-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Eun CH, Takagi K, Park KI, Maekawa M, Iida S, Tsugane K. Activation and epigenetic regulation of DNA transposon nDart1 in rice. PLANT & CELL PHYSIOLOGY 2012; 53:857-868. [PMID: 22514089 DOI: 10.1093/pcp/pcs060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A large part of the rice genome is composed of transposons. Since active excision/reintegration of these mobile elements may result in harmful genetic changes, many transposons are maintained in a genetically or epigenetically inactivated state. However, some non-autonomous DNA transposons of the nDart1-3 subgroup, including nDart1-0, actively transpose in specific rice lines, such as pyl-v which carries an active autonomous element, aDart1-27, on chromosome 6. Although nDart1-3 subgroup elements show considerable sequence identity, they display different excision frequencies. The most active element, nDart1-0, had a low cytosine methylation status. The aDart1-27 sequence showed conservation between pyl-stb (pyl-v derivative line) and Nipponbare, which both lack autonomous activity for transposition of nDart1-3 subgroup elements. In pyl-v plants, the promoter region of the aDart1-27 transposase gene was more hypomethylated than in other rice lines. Treatment with the methylation inhibitor 5-azacytidine (5-azaC) induced transposition of nDart1-3 subgroup elements in both pyl-stb and Nipponbare plants; the new insertion sites were frequently located in genic regions. 5-AzaC treatment principally induced expression of Dart1-34 transposase rather than the other 38 aDart1-related elements in both pyl-stb and Nipponbare treatment groups. Our observations show that transposition of nDart1-3 subgroup elements in the nDart1/aDart1 tagging system is correlated with the level of DNA methylation. Our system does not cause somaclonal variation due to an absence of transformed plants, offers the possibility of large-scale screening in the field and can identify dominant mutants. We therefore propose that this tagging system provides a valuable addition to the tools available for rice functional genomics.
Collapse
Affiliation(s)
- Chang-Ho Eun
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N. Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 2011; 6:e24627. [PMID: 21931783 PMCID: PMC3170401 DOI: 10.1371/journal.pone.0024627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/16/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Sunita Patro
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Rajiv Ranjan
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Dipak K. Sahoo
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Indu B. Maiti
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| |
Collapse
|
10
|
Gase K, Weinhold A, Bozorov T, Schuck S, Baldwin IT. Efficient screening of transgenic plant lines for ecological research. Mol Ecol Resour 2011; 11:890-902. [PMID: 21518300 DOI: 10.1111/j.1755-0998.2011.03017.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants stably transformed to manipulate the expression of genes mediating ecological performance have profoundly altered research in plant ecology. Agrobacterium-mediated transformation remains the most effective method of creating plants harbouring a limited number of transgene integrations of low complexity. For ecological/physiological research, the following requirements must be met: (i) the regenerated plants should have the same ploidy level as the corresponding wild-type plant and (ii) contain a single transgene copy in a homozygous state; (iii) the T-DNA must be completely inserted without vector backbone sequence and all its elements functional; and (iv) the integration should not change the phenotype of the plant by interrupting chromosomal genes or by mutations occurring during the regeneration procedure. The screening process to obtain transformed plants that meet the above criteria is costly and time-consuming, and an optimized screening procedure is presented. We developed a flow chart that optimizes the screening process to efficiently select transformed plants for ecological research. It consists of segregational analyses, which select transgenic T₁ and T₂ generation plants with single T-DNA copies that are homozygous. Indispensable molecular genetic tests (flow cytometry, diagnostic PCRs and Southern blotting) are performed at the earliest and most effective times in the screening process. qPCR to quantify changes in transcript accumulation to confirm gene silencing or overexpression is the last step in the selection process. Because we routinely transform the wild tobacco, Nicotiana attenuata, with constructs that silence or ectopically overexpress ecologically relevant genes, the proposed protocol is supported by examples from this system.
Collapse
Affiliation(s)
- Klaus Gase
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | | | | | | | | |
Collapse
|
11
|
Kole C, Michler CH, Abbott AG, Hall TC. Levels and Stability of Expression of Transgenes. TRANSGENIC CROP PLANTS 2010. [PMCID: PMC7122870 DOI: 10.1007/978-3-642-04809-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that in a given cell, at a particular time, only a fraction of the entire genome is expressed. Expression of a gene, nuclear, or organellar starts with the onset of transcription and ends in the synthesis of the functional protein. The regulation of gene expression is a complex process that requires the coordinated activity of different proteins and nucleic acids that ultimately determine whether a gene is transcribed, and if transcribed, whether it results in the production of a protein that develops a phenotype. The same also holds true for transgenic crops, which lie at the very core of insert design. There are multiple checkpoints at which the expression of a gene can be regulated and controlled. Much of the emphasis of studies related to gene expression has been on regulation of gene transcription, and a number of methods are used to effect the control of gene expression. Controlling transgene expression for a commercially valuable trait is necessary to capture its value. Many gene functions are either lethal or produce severe deformity (resulting in loss of value) if over-expressed. Thus, expression of a transgene at a particular site or in response to a particular elicitor is always desirable.
Collapse
Affiliation(s)
- Chittaranjan Kole
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Charles H. Michler
- NSF I/UCRC Center for Tree Genetics, Hardwood Tree Improvement and Regeneration Center at Purdue University, West Lafayette, IN 47907 USA
| | - Albert G. Abbott
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634 USA
| | - Timothy C. Hall
- Institute of Developmental & Molecular Biology Department of Biology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
12
|
Abstract
Epigenetic regulation of transcriptional silencing is essential for normal development. Despite its importance, in vivo systems for examining gene silencing at cellular resolution have been lacking in developing vertebrates. We describe a transgenic approach that allows monitoring of an epigenetically regulated fluorescent reporter in developing zebrafish and their progeny. Using a self-reporting Gal4-VP16 gene/enhancer trap vector, we isolated tissue-specific drivers that regulate expression of the green fluorescent protein (GFP) gene through a multicopy, upstream activator sequence (UAS). Transgenic larvae initially exhibit robust fluorescence (GFP(high)); however, in subsequent generations, gfp expression is mosaic (GFP(low)) or entirely absent (GFP(off)), despite continued Gal4-VP16 activity. We find that transcriptional repression is heritable and correlated with methylation of the multicopy UAS. Silenced transgenes can be reactivated by increasing Gal4-VP16 levels or in DNA methyltransferase-1 (dnmt1) mutants. Strikingly, in dnmt1 homozygous mutants, reactivation of gfp expression occurs in a reproducible subset of cells, raising the possibility of different sensitivities or alternative silencing mechanisms in discrete cell populations. The results demonstrate the power of the zebrafish system for in vivo monitoring of epigenetic processes using a genetic approach.
Collapse
|
13
|
Baubec T, Pecinka A, Rozhon W, Mittelsten Scheid O. Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:542-54. [PMID: 18826433 PMCID: PMC2667684 DOI: 10.1111/j.1365-313x.2008.03699.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/09/2008] [Accepted: 09/18/2008] [Indexed: 05/21/2023]
Abstract
Covalent modification by methylation of cytosine residues represents an important epigenetic hallmark. While sequence analysis after bisulphite conversion allows correlative analyses with single-base resolution, functional analysis by interference with DNA methylation is less precise, due to the complexity of methylation enzymes and their targets. A cytidine analogue, 5-azacytidine, is frequently used as an inhibitor of DNA methyltransferases, but its rapid degradation in aqueous solution is problematic for culture periods of longer than a few hours. Application of zebularine, a more stable cytidine analogue with a similar mode of action that is successfully used as a methylation inhibitor in Neurospora and mammalian tumour cell lines, can significantly reduce DNA methylation in plants in a dose-dependent and transient manner independent of sequence context. Demethylation is connected with transcriptional reactivation and partial decondensation of heterochromatin. Zebularine represents a promising new and versatile tool for investigating the role of DNA methylation in plants with regard to transcriptional control, maintenance and formation of (hetero-) chromatin.
Collapse
|
14
|
Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M. Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. PLANT CELL REPORTS 2005; 24:655-62. [PMID: 16240119 DOI: 10.1007/s00299-005-0006-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/09/2005] [Accepted: 03/12/2005] [Indexed: 05/04/2023]
Abstract
The Grapevine FanLeaf Virus-Coat Protein (GFLV CP) gene was inserted through Agrobacterium-mediated transformation in Vitis vinifera "Nebbiolo", "Lumassina" and "Blaufränkisch". Two plasmids were used: pGA-CP+ (full-length GFLV CP gene with an introduced start codon) and pGA-AS (same gene in antisense orientation). Forty-three transgenic lines were regenerated. As several lines in Southern blots share same hybridization patterns, eight independent line groups resulted for "Nebbiolo", one for "Lumassina", and two for "Blaufränkisch". Inserted T-DNA copies ranged from one to three; one line probably contains an incomplete copy of T-DNA. Except for one "Nebbiolo" line, no evidence for methylation of the transgene at cytosine residues was found by Southern analyses. Specific mRNA was present at variable expression levels; some lines accumulated the coat protein while in others the protein was not detectable by ELISA.
Collapse
Affiliation(s)
- Giorgio Gambino
- Istituto Virologia Vegetale C.N.R.-Unità staccata Viticoltura-Grugliasco, Via Leonardo da Vinci 44, I-10095 Grugliasco (Turin), Italy
| | | | | | | | | |
Collapse
|
15
|
Improvements of the Molecular Toolbox for Cell Cycle Studies in Tobacco BY-2 Cells. TOBACCO BY-2 CELLS 2004. [DOI: 10.1007/978-3-662-10572-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Rombauts S, Florquin K, Lescot M, Marchal K, Rouzé P, van de Peer Y. Computational approaches to identify promoters and cis-regulatory elements in plant genomes. PLANT PHYSIOLOGY 2003; 132:1162-76. [PMID: 12857799 PMCID: PMC167057 DOI: 10.1104/pp.102.017715] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 01/10/2003] [Accepted: 03/17/2003] [Indexed: 05/19/2023]
Abstract
The identification of promoters and their regulatory elements is one of the major challenges in bioinformatics and integrates comparative, structural, and functional genomics. Many different approaches have been developed to detect conserved motifs in a set of genes that are either coregulated or orthologous. However, although recent approaches seem promising, in general, unambiguous identification of regulatory elements is not straightforward. The delineation of promoters is even harder, due to its complex nature, and in silico promoter prediction is still in its infancy. Here, we review the different approaches that have been developed for identifying promoters and their regulatory elements. We discuss the detection of cis-acting regulatory elements using word-counting or probabilistic methods (so-called "search by signal" methods) and the delineation of promoters by considering both sequence content and structural features ("search by content" methods). As an example of search by content, we explored in greater detail the association of promoters with CpG islands. However, due to differences in sequence content, the parameters used to detect CpG islands in humans and other vertebrates cannot be used for plants. Therefore, a preliminary attempt was made to define parameters that could possibly define CpG and CpNpG islands in Arabidopsis, by exploring the compositional landscape around the transcriptional start site. To this end, a data set of more than 5,000 gene sequences was built, including the promoter region, the 5'-untranslated region, and the first introns and coding exons. Preliminary analysis shows that promoter location based on the detection of potential CpG/CpNpG islands in the Arabidopsis genome is not straightforward. Nevertheless, because the landscape of CpG/CpNpG islands differs considerably between promoters and introns on the one side and exons (whether coding or not) on the other, more sophisticated approaches can probably be developed for the successful detection of "putative" CpG and CpNpG islands in plants.
Collapse
Affiliation(s)
- Stephane Rombauts
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Gälweiler L, Conlan RS, Mader P, Palme K, Moore I. Technical advance: the DNA-binding activity of gal4 is inhibited by methylation of the gal4 binding site in plant chromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:143-157. [PMID: 10929109 DOI: 10.1046/j.1365-313x.2000.00805.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Derivatives of the Saccharomyces cerevisiae transcription factor Gal4 which act as effective transcription activators in yeast, Drosophila, mammalian cells and plant protoplasts are shown to direct expression from a GUS reporter construct when expressed in transgenic tobacco. However, in comparison to 35S-GUS controls, Gal4-mediated expression of the reporter gene was relatively weak and extremely variable. GUS expression was lost as plants matured and it was almost undetectable in most of their progeny. Gal4-mediated gene expression could be restored by treating tissues with 5-aza-cytidine, implicating cytosine methylation in the loss of Gal4-mediated expression. Restoration of reporter expression was not accompanied by an increase in steady-state levels of the activator transcript. We propose that the DNA-binding activity of Gal4 is sensitive to methylation of its binding site in plant chromatin. The Gal4-DNA co-crystal predicts that 5-methylcytosine at either of the outer two positions of the binding site will effectively prevent Gal4 binding. We show that these positions become extensively methylated in transgenic plants and that methylation of Gal4-binding sites interferes with Gal4 binding in vitro. These observations suggest that the Gal4 DNA-binding domain is intrinsically sensitive to cytosine methylation and that, despite the success of Gal4-based expression systems in yeast and Drosophila, Gal4 is not ideal for use in plant gene expression technology.
Collapse
Affiliation(s)
- L Gälweiler
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | |
Collapse
|
18
|
Abstract
Methylation of cytosine residues in DNA provides a mechanism of gene control. There are two classes of methyltransferase in Arabidopsis; one has a carboxy-terminal methyltransferase domain fused to an amino-terminal regulatory domain and is similar to mammalian methyltransferases. The second class apparently lacks an amino-terminal domain and is less well conserved. Methylcytosine can occur at any cytosine residue, but it is likely that clonal transmission of methylation patterns only occurs for cytosines in strand-symmetrical sequences CpG and CpNpG. In plants, as in mammals, DNA methylation has dual roles in defense against invading DNA and transposable elements and in gene regulation. Although originally reported as having no phenotypic consequence, reduced DNA methylation disrupts normal plant development.
Collapse
Affiliation(s)
- E. J. Finnegan
- 1Commonwealth Scientific and Industrial Research Organization, Plant Industry, P.O. Box 1600, Canberra, ACT 2601, Australia, Cooperative Research Centre for Plant Science, P.O. Box 475, Canberra, ACT 2601, Australia; e-mail: , 2Division of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
19
|
Jeddeloh JA, Bender J, Richards EJ. The DNA methylation locus DDM1 is required for maintenance of gene silencing in Arabidopsis. Genes Dev 1998; 12:1714-25. [PMID: 9620857 PMCID: PMC316876 DOI: 10.1101/gad.12.11.1714] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To investigate the relationship between cytosine methylation and gene silencing in Arabidopsis, we constructed strains containing the ddm1 hypomethylation mutation and a methylated and silenced PAI2 tryptophan biosynthetic gene (MePAI2) that results in a blue fluorescent plant phenotype. The ddm1 mutation had both an immediate and a progressive effect on PAI gene silencing. In the first generation, homozygous ddm1 MePAI2 plants displayed a weakly fluorescent phenotype, in contrast to the strongly fluorescent phenotype of the DDM1 MePAI2 parent. After two generations of inbreeding by self-pollination, the ddm1/ddm1 lines became nonfluorescent. The progressive loss of fluorescence correlated with a progressive loss of methylation from the PAI2 gene. These results indicate that methylation is necessary for maintenance of PAI gene silencing and that intermediate levels of DNA methylation are associated with intermediate gene silencing. The results also support our earlier hypothesis that ddm1 homozygotes act as "epigenetic mutators" by accumulating heritable changes in DNA methylation that can lead to changes in gene expression.
Collapse
Affiliation(s)
- J A Jeddeloh
- Washington University, Department of Biology, St. Louis, Missouri 63130 USA
| | | | | |
Collapse
|
20
|
Sijen T, Wellink J, Hiriart JB, Van Kammen A. RNA-Mediated Virus Resistance: Role of Repeated Transgenes and Delineation of Targeted Regions. THE PLANT CELL 1996; 8:2277-2294. [PMID: 12239378 PMCID: PMC161352 DOI: 10.1105/tpc.8.12.2277] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistance to cowpea mosaic virus (CPMV) in transgenic Nicotiana benthamiana plants is RNA mediated. In resistant CPMV movement protein (MP) gene-transformed lines, transgene steady state mRNA levels were low, whereas nuclear transcription rates were high, implying that a post-transcriptional gene-silencing mechanism is at the base of the resistance. The silencing mechanism can also affect potato virus X (PVX) RNAs when they contain CPMV MP gene sequences. In particular, sequences situated in the 3[prime] part of the transcribed region of the MP transgene direct elimination of recombinant PVX genomes. Remarkably, successive portions of this 3[prime] part, which can be as small as 60 nucleotides, all tag PVX genomes for degradation. These observations suggest that the entire 3[prime] part of the MP transgene mRNA is the initial target of the silencing mechanism. The arrangement of transgenes in the plant genome plays an important role in establishing resistance because the frequency of resistant lines increased from 20 to 60% when transformed with a transgene containing a direct repeat of MP sequences rather than a single MP transgene. Interestingly, we detected strong methylation in all of the plants containing directly repeated MP sequences. In sensitive lines, only the promoter region was found to be heavily methylated, whereas in resistant lines, only the transcribed region was strongly methylated.
Collapse
Affiliation(s)
- T. Sijen
- Department of Molecular Biology, Wageningen Agricultural University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Kuai B, Morris P. Screening for stable transformants and stability of β-glucuronidase gene expression in suspension cultured cells of tall fescue (Festuca arundinacea). PLANT CELL REPORTS 1996; 15:804-808. [PMID: 24178212 DOI: 10.1007/bf00233144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/1995] [Revised: 01/05/1996] [Indexed: 06/02/2023]
Abstract
By screening cell colonies derived from protoplasts of tall fescue (Festuca arundinacea), transformed with a rice actin-1-promoter-ß-glucuronidase gene construct, several ß-glucuronidase positive callus clones were obtained. Two callus clones with different GUS expression were derived from these. One was light blue after X-gluc staining, and expression of the ß-glucuronidase gene was stable over repeated subculture, while another stained intensely blue, and expression of the ß-glucuronidase gene was unstable. Southern blot analysis showed that only one copy of the ß-glucuronidase gene was integrated into the genome, and that these two clones appeared to have the same integration pattern. Treatment with 5-azacytidine maintained GUS expression in the unstable line but had no effect on reactivating expression of the GUS gene after expression had been lost. Following the screening procedure the callus clones would only regenerate albino plants.
Collapse
Affiliation(s)
- B Kuai
- Cell Manipulation Group, Institute of Grassland and Environmental Research, Plas Gogerddan, SY23 3EB, Aberystwyth, Dyfed, UK
| | | |
Collapse
|
22
|
Ulian EC, Magill JM, Magill CW, Smith RH. DNA methylation and expression of NPT II in transgenic petunias and progeny. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1996; 92:976-981. [PMID: 24166624 DOI: 10.1007/bf00224037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/1995] [Accepted: 10/13/1995] [Indexed: 06/02/2023]
Abstract
The expression and inheritance of the NPT II (neomycin phosphotransferase II) gene was studied in four transgenic petunia (Petunia hybrida Vilm.) plants and their progeny. The four transgenic plants, each of which had more than one site of insertion, were different from each other in the level of foreign gene expression. Transmission of one or more NPT II alleles to progeny as deteceted by DNA hybridization did not lead to consistant or predictable patterns of NPT II expression. All transgenic plants and their progeny displaying NPT II enzyme activity contained unmethylated SstII (methylation-sensitive restriction enzyme) sites in the nopaline synthase (NOS) promoter (controlling NPT II gene transcription); whereas, 13 of 17 plants which contained the NPT II gene and which showed no NPT II activity had methylated SstII sites. Two progeny of 1 transgenic plant appeared to have some unmethylated SstII sites, but no NPT II enzyme activity was found in leaf tissue samples. DNA methylation of the SstII site in the NOS promoter is strongly correlated with a decrease in NPT II gene expression in transgenic petunia plants and their progeny. However, DNA methylation alone could not account for the variability seen in NPT II gene expression.
Collapse
Affiliation(s)
- E C Ulian
- Centro de Tecnologia Copersucar, 1340 Piracicaba, Caixa Postal 162, SP, Brazil
| | | | | | | |
Collapse
|
23
|
Sørensen MB, Müller M, Skerritt J, Simpson D. Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:750-60. [PMID: 8628236 DOI: 10.1007/bf02172987] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
B- and C-hordein gene transcription is severely reduced in the endosperm of the regulatory barley mutant lys3a, and this is correlated with persistent hypermethylation of the promoters. In contrast, D-hordein is expressed at normal levels in the mutant. To confirm the connection between methylation and transcriptional activity, a genomic D-hordein clone was isolated and sequenced. The nucleotide composition of the promoter region revealed a CpG island and methylation analysis, using bisulphite treatment of genomic DNA, confirmed that the D-hordein promoter is unmethylated in endosperm and leaf tissue. Immunocytochemical studies localized D-hordein to the reticular component of protein bodies in both the wild-type Bomi and lys3a. Transient expression of GUS reporter gene constructs in barley endosperm, following transfection by particle bombardment revealed the D-hordein promotors. Comparison of transient expression in Bomi and lys3a endosperm demonstrated that the activities of the unmethylated D-hordein and the Hor1-14 C-hordein promoters were equivalent, while the activities in the mutant of the Horl-17 C-hordein and the Hor2-4 B-hordein promoters were reduced two- and tenfold, respectively. Methylation of plasmids in vitro prior to expression severely inhibited B- and D-hordein promoter activities. Based on these observations two categories of promoters for endosperm-specific expression of storage proteins are recognized and a model involving methylation and modulation of chromatin structure in the regulation by the Lys3 gene is presented.
Collapse
Affiliation(s)
- M B Sørensen
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | | | |
Collapse
|
24
|
Agrobacterium rhizogenes-mediated induction of adventitious rooting fromPinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity. Transgenic Res 1996. [DOI: 10.1007/bf01969425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Graham MW, Larkin PJ. Adenine methylation at dam sites increases transient gene expression in plant cells. Transgenic Res 1995; 4:324-31. [PMID: 8589735 DOI: 10.1007/bf01972529] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Escherichia coli encodes two major DNA methylation systems: dam, which produces 6-methyladenine; and dcm, which produces 5-methylcytosine. About 1-2% of adenine and cytosine residues in plasmid DNAs prepared in E. coli are methylated by these systems. Since DNA methylation profoundly influences gene expression in eukaryotes, we were interested in determining whether these bacterially encoded modifications might also effect plant gene expression in experimental systems. We therefore examined the influence of dam and dcm methylation on gene expression from four GUS fusion constructs in transient assays in protoplasts and microprojectile-bombarded whole tissues. In these constructs, GUS expression was driven by promoter regions derived from the Arabidopsis alcohol dehydrogenase (Adh1), maize ubiquitin (Ubi1), rice actin (Act1) and CaMV 35S genes. We show that methyladenine produced by dam methylation increased gene expression from constructs based on the Adh1, Ubi1 and Act1 genes. The increase in gene expression ranged from three-fold for Ubi1 and Adh1 in protoplasts to 50-fold for Act1 in bombarded wheat tissues. Expression of a 35S.GUS construct was, however, insensitive to dam methylation. dcm methylation had little if any effect on transient gene expression for any of these constructs. We provide indirect evidence that the critical sites of adenine methylation lie within sequences from the promoter regions, suggesting that dam methylation increases transcription rate. These results have important experimental implications and also raise the intriguing possibility that methyladenine might play a role in the regulation of gene expression in vivo.
Collapse
Affiliation(s)
- M W Graham
- CSIRO Division of Plant Industry, Canberra, Australia
| | | |
Collapse
|
26
|
|
27
|
Palmgren G, Mattson O, Okkels FT. Treatment of Agrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. PLANT MOLECULAR BIOLOGY 1993; 21:429-35. [PMID: 7680239 DOI: 10.1007/bf00028801] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have studied the effect of the demethylating agent azacytidine (azaC) on expression of a beta-glucuronidase (GUS) gene transferred to tobacco leaf disks by Agrobacterium-mediated transformation. In a system where no selection was performed, where shoot formation was partially repressed, and where Agrobacterium does not express the GUS gene, we were able to follow the early events of transient and stable expression. Two days after inoculation, 8% of the cells expressed GUS but this proportion rapidly decreased to near zero in the following week. Treatment of leaf disks with azaC just after transformation retarded this inactivation to some extent, while treatment of Agrobacterium prior to transformation increased the frequency of transient expression. Three weeks after inoculation the number of GUS-expressing cells increased 4- to 6-fold in the leaf disks treated with azaC and in the leaf disks transformed with azaC-treated bacteria, while the control remained low. These data suggest that DNA methylation is involved in transgene inactivation and that a large number of silent but potentially active transgenes become integrated.
Collapse
Affiliation(s)
- G Palmgren
- Institute of Plant Physiology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Kilby NJ, Leyser HM, Furner IJ. Promoter methylation and progressive transgene inactivation in Arabidopsis. PLANT MOLECULAR BIOLOGY 1992; 20:103-112. [PMID: 1325204 DOI: 10.1007/bf00029153] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Agrobacterium-transformed Arabidopsis plants were generated and the stability of their T-DNA-encoded resistance to kanamycin was examined. Of seven families, each homozygous for a single insertion event, two showed progressive inactivation of resistance over four generations of inbreeding. Loss of resistance was associated with methylation of an Sst II site in the nos promoter of the kanamycin resistance gene. Treatment of plant roots from inactive lines with the demethylating agent 5-azacytidine restored the ability of such lines to form callus on kanamycin-containing media. These observations are consistent with the view that methylation is a factor in the progressive inactivation of transgenes in Arabidopsis.
Collapse
Affiliation(s)
- N J Kilby
- Department of Genetics, University of Cambridge, UK
| | | | | |
Collapse
|
29
|
Walbot V. Reactivation of Mutator transposable elements of maize by ultraviolet light. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:353-60. [PMID: 1328840 DOI: 10.1007/bf00538694] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
After epigenetic loss of Mutator activity, the family of Mu elements in Zea mays becomes immobile and highly methylated; in addition, Mu9, the presumptive autonomous regulatory element, is transcriptionally silent and its copy number decreases in successive crosses to non-Mutator lines. Spontaneous reactivation, scored as restoration of somatic instability of potentially mutable alleles of Bronze-2, of such cryptic Mutator lines is rare, occurring with a frequency of about 10(-4). Irradiation of pollen with 254 nm ultraviolet light increases reactivation rate in the progeny kernels by up to 40-fold. Accompanying reactivation, the copy number of Mu9 elements increased, two-fold in one line and 20 to 40-fold in a second line. Reactivation may involve direct DNA damage or immediate physiological stress in the treated pollen.
Collapse
Affiliation(s)
- V Walbot
- Department of Biological Sciences, Stanford University, CA 94305-5020
| |
Collapse
|
30
|
Bochardt A, Hodal L, Palmgren G, Mattsson O, Okkels FT. DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene. PLANT PHYSIOLOGY 1992; 99:409-14. [PMID: 16668899 PMCID: PMC1080476 DOI: 10.1104/pp.99.2.409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In one of 30 transgenic tobacco (Nicotiana tabacum) plants, the expression of an introduced beta-glucuronidase (GUS) gene driven by the cauliflower mosaic virus 35S promoter, was found to be repressed as the plant matured, whereas the endogenous GUS activity was unaffected. Plants grown from seeds or regenerated from leaf discs derived from this plant showed a similar temporal pattern of expression. Suspension-cultured cells established from nonexpressing leaves did not express the introduced gene. In these cells, the silent gene could be reactivated by treatment for 5 or 10 days with 5-azacytidine. Overall, demethylation of the genome preceded recovery of the enzyme activity. The increase in the fraction of reactivated cells progressed in two phases. Up to 8 weeks after starting the 5-azacytidine treatment, approximately 2 to 4% of the cells were expressing GUS, followed by a dramatic increase of GUS-expressing cells. Thirteen weeks after starting the 5-azacytidine treatment, the fraction of GUS-expressing cells amounted to 80%. At this time, the original overall level of DNA methylation was reestablished. The degree of DNA demethylation, as well as the magnitude of reactivation, was dependent on the duration of the 5-azacytidine treatment. These results demonstrate that DNA methylation appears to be involved in the regulation of the introduced GUS gene and that this development-dependent pattern of expression can be inherited.
Collapse
Affiliation(s)
- A Bochardt
- Institute of Plant Physiology, University of Copenhagen, 2A Øster Farimagsgade, DK-1353 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
31
|
Renckens S, De Greve H, Van Montagu M, Hernalsteens JP. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:53-64. [PMID: 1376407 DOI: 10.1007/bf00587561] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transgenic Petunia hybrida clones harbouring the T-DNA gene 2 of Agrobacterium tumefaciens were used to test a strategy for the trapping of plant transposable elements. In the Petunia line used, floral variegation is due to the presence of the non-autonomous transposable element dTph1 at the An1 locus. The gene 2 product converts the auxin precursor indole-3-acetamide and its analogue 1-naphthalene acetamide into the active auxins indole-3-acetic acid and 1-naphthalene acetic acid. Plant cells that express gene 2 can use a low concentration of the precursors as auxins and become sensitive to the toxicity of high concentrations of these compounds. By selecting protoplast-derived microcalli or seedlings able to grow on medium with high precursor concentrations, variant plants were obtained in which gene 2 was no longer expressed. Southern analysis, using gene 2-specific probes, revealed that in one variant the T-DNA was deleted. For 30 other variants no alteration in gene 2 structure was observed, indicating that transposable element insertion was not responsible for the inactivation of gene 2. Analysis with restriction enzymes allowing discrimination between methylated or non-methylated DNA sequences showed that the inactivated gene 2 sequences were methylated. Addition of the in vivo methylation inhibitor 5-azacytidine to the medium led to reactivation of gene 2 expression in some of the variants. These observations demonstrated that reversible DNA methylation was the main cause of silencing of gene 2 in this system.
Collapse
Affiliation(s)
- S Renckens
- Laboratorium voor Genetische Virologie, Vrije Universiteit Brussel, St-Genesius-Rode, Belgium
| | | | | | | |
Collapse
|
32
|
Hohn T, Fütterer J. Transcriptional and translational control of gene expression in cauliflower mosaic virus. Curr Opin Genet Dev 1992; 2:90-6. [PMID: 1633431 DOI: 10.1016/s0959-437x(05)80328-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cauliflower mosaic virus sequences have developed as a powerful tool for the study of various aspects of gene expression in plants. Analysis of the promoter/enhancer region has led to the discovery of several transcription factors and factor-binding sites. Studies on RNA processing and polyadenylation reveal a viral strategy to obtain terminal redundancy of retrovirus pregenomic RNA. Striking differences between plant and vertebrate polyadenylation signals have been disclosed. The mechanisms for translation of the polycistronic 35S RNA are novel in the eukaryotic field and may give new insight to translational control in general.
Collapse
Affiliation(s)
- T Hohn
- Friedrich-Miescher-Institute, Basel, Switzerland
| | | |
Collapse
|
33
|
Abstract
Cytosine methylation is associated with gene-silencing mechanisms in a number of eukaryotic organisms. Recent studies directed at the involvement of methylation in promoter inactivation, X-chromosome and duplicate sequence inactivation and in chromatin structure changes, are presented.
Collapse
Affiliation(s)
- P S Chomet
- Plant Biology Department, University of California Berkeley 94720
| |
Collapse
|