1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024; 124:11962-12005. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
3
|
Shulgina Y, Eddy SR. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 2021; 10:71402. [PMID: 34751130 PMCID: PMC8629427 DOI: 10.7554/elife.71402] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic code has been proposed to be a ‘frozen accident,’ but the discovery of alternative genetic codes over the past four decades has shown that it can evolve to some degree. Since most examples were found anecdotally, it is difficult to draw general conclusions about the evolutionary trajectories of codon reassignment and why some codons are affected more frequently. To fill in the diversity of genetic codes, we developed Codetta, a computational method to predict the amino acid decoding of each codon from nucleotide sequence data. We surveyed the genetic code usage of over 250,000 bacterial and archaeal genome sequences in GenBank and discovered five new reassignments of arginine codons (AGG, CGA, and CGG), representing the first sense codon changes in bacteria. In a clade of uncultivated Bacilli, the reassignment of AGG to become the dominant methionine codon likely evolved by a change in the amino acid charging of an arginine tRNA. The reassignments of CGA and/or CGG were found in genomes with low GC content, an evolutionary force that likely helped drive these codons to low frequency and enable their reassignment. All life forms rely on a ‘code’ to translate their genetic information into proteins. This code relies on limited permutations of three nucleotides – the building blocks that form DNA and other types of genetic information. Each ‘triplet’ of nucleotides – or codon – encodes a specific amino acid, the basic component of proteins. Reading the sequence of codons in the right order will let the cell know which amino acid to assemble next on a growing protein. For instance, the codon CGG – formed of the nucleotides guanine (G) and cytosine (C) – codes for the amino acid arginine. From bacteria to humans, most life forms rely on the same genetic code. Yet certain organisms have evolved to use slightly different codes, where one or several codons have an altered meaning. To better understand how alternative genetic codes have evolved, Shulgina and Eddy set out to find more organisms featuring these altered codons, creating a new software called Codetta that can analyze the genome of a microorganism and predict the genetic code it uses. Codetta was then used to sift through the genetic information of 250,000 microorganisms. This was made possible by the sequencing, in recent years, of the genomes of hundreds of thousands of bacteria and other microorganisms – including many never studied before. These analyses revealed five groups of bacteria with alternative genetic codes, all of which had changes in the codons that code for arginine. Amongst these, four had genomes with a low proportion of guanine and cytosine nucleotides. This may have made some guanine and cytosine-rich arginine codons very rare in these organisms and, therefore, easier to be reassigned to encode another amino acid. The work by Shulgina and Eddy demonstrates that Codetta is a new, useful tool that scientists can use to understand how genetic codes evolve. In addition, it can also help to ensure the accuracy of widely used protein databases, which assume which genetic code organisms use to predict protein sequences from their genomes.
Collapse
Affiliation(s)
| | - Sean R Eddy
- Molecular & Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
4
|
Yan TM, Pan Y, Yu ML, Hu K, Cao KY, Jiang ZH. Full-Range Profiling of tRNA Modifications Using LC-MS/MS at Single-Base Resolution through a Site-Specific Cleavage Strategy. Anal Chem 2021; 93:1423-1432. [PMID: 33382261 DOI: 10.1021/acs.analchem.0c03307] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transfer RNAs (tRNAs) are the most heavily modified RNA species. Liquid chromatography coupled with mass spectrometry (LC-MS/MS) is a powerful tool for characterizing tRNA modifications, which involves pretreating tRNAs with base-specific ribonucleases to produce smaller oligonucleotides amenable to MS. However, the quality and quantity of products from base-specific digestions are severely impacted by the base composition of tRNAs. This often leads to a loss of sequence information. Here, we report a method for the full-range profiling of tRNA modifications at single-base resolution by combining site-specific RNase H digestion with the LC-MS/MS and RNA-seq techniques. The key steps were designed to generate high-quality products of optimal lengths and ionization properties. A linear correlation between collision energies and the m/z of oligonucleotides significantly improved the information content of collision-induced dissociation (CID) spectra. False positives were eliminated by up to 95% using novel inclusion criteria for collecting a census of modifications. This method is illustrated by the mapping of mouse mitochondrial tRNAHis(GUG) and tRNAVal(UAC), which were hitherto not investigated. The identities and locations of the five species of modifications on these tRNAs were fully characterized. This approach is universally applicable to any tRNA species and provides an experimentally realizable pathway to the de novo sequencing of post-transcriptionally modified tRNAs with high sequence coverage.
Collapse
Affiliation(s)
- Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Meng-Lan Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Kua Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
The chemical diversity of RNA modifications. Biochem J 2019; 476:1227-1245. [PMID: 31028151 DOI: 10.1042/bcj20180445] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid modifications in DNA and RNA ubiquitously exist among all the three kingdoms of life. This trait significantly broadens the genome diversity and works as an important means of gene transcription regulation. Although mammalian systems have limited types of DNA modifications, over 150 different RNA modification types have been identified, with a wide variety of chemical diversities. Most modifications occur on transfer RNA and ribosomal RNA, however many of the modifications also occur on other types of RNA species including mammalian mRNA and small nuclear RNA, where they are essential for many biological roles, including developmental processes and stem cell differentiation. These post-transcriptional modifications are enzymatically installed and removed in a site-specific manner by writer and eraser proteins respectively, while reader proteins can interpret modifications and transduce the signal for downstream functions. Dysregulation of mRNA modifications manifests as disease states, including multiple types of human cancer. In this review, we will introduce the chemical features and biological functions of these modifications in the coding and non-coding RNA species.
Collapse
|
6
|
Sakamoto K, Hayashi A. Synthetic Tyrosine tRNA Molecules with Noncanonical Secondary Structures. Int J Mol Sci 2018; 20:ijms20010092. [PMID: 30587834 PMCID: PMC6337575 DOI: 10.3390/ijms20010092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
The L-shape form of tRNA is maintained by tertiary interactions occurring in the core. Base changes in this domain can cause structural defects and impair tRNA activity. Here, we report on a method to safely engineer structural variations in this domain utilizing the noncanonical scaffold of tRNAPyl. First, we constructed a naïve hybrid between archaeal tRNAPyl and tRNATyr, which consisted of the acceptor and T stems of tRNATyr and the other parts of tRNAPyl. This hybrid tRNA efficiently translated the UAG codon to 3-iodotyrosine in Escherichia coli cells, when paired with a variant of the archaeal tyrosyl-tRNA synthetase. The amber suppression efficiency was slightly lower than that of the “bench-mark” archaeal tRNATyr suppressor assuming the canonical structure. After a series of modifications to this hybrid tRNA, we obtained two artificial types of tRNATyr: ZtRNA had an augmented D (auD) helix in a noncanonical form and the D and T loops bound by the standard tertiary base pairs, and YtRNA had a canonical auD helix and non-standard interloop interactions. It was then suggested that the ZtRNA scaffold could also support the glycylation and glutaminylation of tRNA. The synthetic diversity of tRNA would help create new tRNA–aminoacyl-tRNA synthetase pairs for reprogramming the genetic code.
Collapse
Affiliation(s)
- Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | - Akiko Hayashi
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
7
|
Väre VYP, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules 2017; 7:E29. [PMID: 28300792 PMCID: PMC5372741 DOI: 10.3390/biom7010029] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.
Collapse
Affiliation(s)
- Ville Y P Väre
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Emily R Eruysal
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Amithi Narendran
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Kathryn L Sarachan
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | - Paul F Agris
- The RNA Institute, Departments of Biological Sciences and Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
8
|
Hadd A, Perona JJ. Coevolution of specificity determinants in eukaryotic glutamyl- and glutaminyl-tRNA synthetases. J Mol Biol 2014; 426:3619-33. [PMID: 25149203 DOI: 10.1016/j.jmb.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNA(Gln) for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNA(Gln) and tRNA(Glu) with glutamate. This ancient GluRS also separately differentiated to exclude tRNA(Gln) as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNA(Gln) and tRNA(Glu) recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.
Collapse
Affiliation(s)
- Andrew Hadd
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - John J Perona
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA; Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, USA.
| |
Collapse
|
9
|
Kemp AJ, Betney R, Ciandrini L, Schwenger ACM, Romano MC, Stansfield I. A yeast tRNA mutant that causes pseudohyphal growth exhibits reduced rates of CAG codon translation. Mol Microbiol 2012; 87:284-300. [PMID: 23146061 PMCID: PMC3664417 DOI: 10.1111/mmi.12096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/27/2022]
Abstract
In Saccharomyces cerevisiae, the SUP70 gene encodes the CAG-decoding tRNA(Gln)(CUG). A mutant allele, sup70-65, induces pseudohyphal growth on rich medium, an inappropriate nitrogen starvation response. This mutant tRNA is also a UAG nonsense suppressor via first base wobble. To investigate the basis of the pseudohyphal phenotype, 10 novel sup70 UAG suppressor alleles were identified, defining positions in the tRNA(Gln)(CUG) anticodon stem that restrict first base wobble. However, none conferred pseudohyphal growth, showing altered CUG anticodon presentation cannot itself induce pseudohyphal growth. Northern blot analysis revealed the sup70-65 tRNA(Gln)(CUG) is unstable, inefficiently charged, and 80% reduced in its effective concentration. A stochastic model simulation of translation predicted compromised expression of CAG-rich ORFs in the tRNA(Gln)(CUG)-depleted sup70-65 mutant. This prediction was validated by demonstrating that luciferase expression in the mutant was 60% reduced by introducing multiple tandem CAG (but not CAA) codons into this ORF. In addition, the sup70-65 pseudohyphal phenotype was partly complemented by overexpressing CAA-decoding tRNA(Gln)(UUG), an inefficient wobble-decoder of CAG. We thus show that introducing codons decoded by a rare tRNA near the 5' end of an ORF can reduce eukaryote translational expression, and that the mutant tRNA(CUG)(Gln) constitutive pseudohyphal differentiation phenotype correlates strongly with reduced CAG decoding efficiency.
Collapse
Affiliation(s)
- Alain J Kemp
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | |
Collapse
|
10
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
11
|
Aldinger CA, Leisinger AK, Igloi GL. The influence of identity elements on the aminoacylation of tRNA(Arg) by plant and Escherichia coli arginyl-tRNA synthetases. FEBS J 2012; 279:3622-3638. [PMID: 22831759 DOI: 10.1111/j.1742-4658.2012.08722.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Identity elements determine the accurate recognition between tRNAs and aminoacyl-tRNA synthetases. The arginine system from yeast and Escherichia coli has been studied extensively in the past. However, information about the enzymes from higher eukaryotes is limited and plant aminoacyl-tRNA synthetases have been largely ignored in this respect. We have designed in vitro tRNA transcripts, based on the soybean tRNA(Arg) primary structure, aiming to investigate its specific aminoacylation by two recombinant plant arginyl-tRNA synthetases and to compare this with the enzyme from E. coli. Identity elements at positions 20 and 35 in plants parallel those previously established for bacteria. Cryptic identity elements in the plant system that are not revealed within a tRNA(Arg) consensus sequence compiled from isodecoders corresponding to nine distinct cytoplasmic, mitochondrial and plastid isoaccepting sequences are located in the acceptor stem. Additionally, it has been shown that U20a and A38 are essential for a fully efficient cognate E. coli arginylation, whereas, for the plant arginyl-tRNA synthetases, these bases can be replaced by G20a and C38 with full retention of activity. G10, a constituent of the 10:25:45 tertiary interaction, is essential for both plant and E. coli activity. Amino acid recognition in terms of discriminating between arginine and canavanine by the arginyl-tRNA synthetase from both kingdoms may be manipulated by changes at different sites within the tRNA structure.
Collapse
Affiliation(s)
| | | | - Gabor L Igloi
- Institut für Biologie III, Universität Freiburg, Germany
| |
Collapse
|
12
|
Liao CC, Lin CH, Chen SJ, Wang CC. Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 2012; 40:9171-81. [PMID: 22821561 PMCID: PMC3467082 DOI: 10.1093/nar/gks689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminoacylation of transfer RNAGln (tRNAGln) is performed by distinct mechanisms in different kingdoms and represents the most diverged route of aminoacyl-tRNA synthesis found in nature. In Saccharomyces cerevisiae, cytosolic Gln-tRNAGln is generated by direct glutaminylation of tRNAGln by glutaminyl-tRNA synthetase (GlnRS), whereas mitochondrial Gln-tRNAGln is formed by an indirect pathway involving charging by a non-discriminating glutamyl-tRNA synthetase and the subsequent transamidation by a specific Glu-tRNAGln amidotransferase. Previous studies showed that fusion of a yeast non-specific tRNA-binding cofactor, Arc1p, to Escherichia coli GlnRS enables the bacterial enzyme to substitute for its yeast homologue in vivo. We report herein that the same fusion enzyme, upon being imported into mitochondria, substituted the indirect pathway for Gln-tRNAGln synthesis as well, despite significant differences in the identity determinants of E. coli and yeast cytosolic and mitochondrial tRNAGln isoacceptors. Fusion of Arc1p to the bacterial enzyme significantly enhanced its aminoacylation activity towards yeast tRNAGln isoacceptors in vitro. Our study provides a mechanism by which trans-kingdom rescue of distinct pathways of Gln-tRNAGln synthesis can be conferred by a single enzyme.
Collapse
Affiliation(s)
- Chih-Chi Liao
- Department of Life Sciences, National Central University, Jung-li 32001, Taiwan, Republic of China
| | | | | | | |
Collapse
|
13
|
Chang KM, Hendrickson TL. Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase. Nucleic Acids Res 2009; 37:6942-9. [PMID: 19755501 PMCID: PMC2777447 DOI: 10.1093/nar/gkp754] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accurate aminoacylation of tRNAs by the aminoacyl-tRNA synthetases (aaRSs) plays a critical role in protein translation. However, some of the aaRSs are missing in many microorganisms. Helicobacter pylori does not have a glutaminyl-tRNA synthetase (GlnRS) but has two divergent glutamyl-tRNA synthetases: GluRS1 and GluRS2. Like a canonical GluRS, GluRS1 aminoacylates tRNAGlu1 and tRNAGlu2. In contrast, GluRS2 only misacylates tRNAGln to form Glu-tRNAGln. It is not clear how GluRS2 achieves specific recognition of tRNAGln while rejecting the two H. pylori tRNAGlu isoacceptors. Here, we show that GluRS2 recognizes major identity elements clustered in the tRNAGln acceptor stem. Mutations in the tRNA anticodon or at the discriminator base had little to no impact on enzyme specificity and activity.
Collapse
Affiliation(s)
- Keng-Ming Chang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
14
|
Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G. The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination. FEBS Lett 2009; 583:2114-20. [PMID: 19481543 DOI: 10.1016/j.febslet.2009.05.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
Abstract
Discrimination of tRNA(Gln) is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNA(Gln) and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNA(Gln). Our results demonstrate that in addition to the anticodon-binding domain, tRNA(Gln) discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.
Collapse
Affiliation(s)
- Saumya Dasgupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K(M) of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA(Gln) by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA(Gln) by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA(Gln) complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.
Collapse
|
16
|
Yamasaki S, Nakamura S, Terada T, Shimizu K. Mechanism of the difference in the binding affinity of E. coli tRNAGln to glutaminyl-tRNA synthetase caused by noninterface nucleotides in variable loop. Biophys J 2006; 92:192-200. [PMID: 17028132 PMCID: PMC1697856 DOI: 10.1529/biophysj.106.093351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) distinguish their cognate tRNAs from many other kinds of tRNAs, despite the very similar tertiary structures of tRNAs. Many researchers have supported the view that this recognition is achieved by intermolecular interactions between tRNA and ARS. However, one of the aptamers of Escherichia coli glutamine specific tRNA, var-AGGU, has a higher affinity to ARS than the wild-type, although the sequence difference only lies in the variable loop located on the opposite side of the binding interface with ARS. To understand the reason for the difference in affinity, we did molecular dynamics simulations on tRNAs and their complexes with ARS. We calculated the enthalpic and entropic contributions to the binding free energy with the molecular mechanics-Poisson-Boltzmann/surface area method and found that the entropic difference plays an important role in the difference in binding free energies. During the molecular dynamics simulations, dynamic rearrangements of hydrogen bonds occurred in the tertiary core region of the wild-type tRNA, whereas they were not observed in the free var-AGGU simulation. Since the internal mobility was suppressed upon complex formation with ARS, the entropy loss in the wild-type was larger than that of the aptamer. We therefore concluded that the sequence difference in the variable loop caused the difference in the internal mobility of the tertiary core region tRNAs and led to the difference in the affinity to ARS through the entropy term.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
17
|
Ambrogelly A, Frugier M, Ibba M, Söll D, Giegé R. Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi. FEBS Lett 2005; 579:2629-34. [PMID: 15862301 DOI: 10.1016/j.febslet.2005.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/30/2005] [Accepted: 04/02/2005] [Indexed: 10/25/2022]
Abstract
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
18
|
Lee J, Hendrickson TL. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases. J Mol Biol 2005; 344:1167-74. [PMID: 15561136 PMCID: PMC2897014 DOI: 10.1016/j.jmb.2004.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 09/30/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
The pathogenic bacterium Helicobacter pylori utilizes two essential glutamyl-tRNA synthetases (GluRS1 and GluRS2). These two enzymes are closely related in evolution and yet they aminoacylate contrasting tRNAs. GluRS1 is a canonical discriminating GluRS (D-GluRS) that biosynthesizes Glu-tRNA(Glu) and cannot make Glu-tRNA(Gln). In contrast, GluRS2 is non-canonical as it is only essential for the production of misacylated Glu-tRNA(Gln). The co-existence and evident divergence of these two enzymes was capitalized upon to directly examine how GluRS2 acquired tRNA(Gln) specificity. One key feature that distinguishes tRNA(Glu) from tRNA(Gln) is the third position in the anticodon of each tRNA (C36 versus G36, respectively). By comparing sequence alignments of different GluRSs, including GluRS1s and GluRS2s, to the crystal structure of the Thermus thermophilus D-GluRS:tRNA(Glu) complex, a divergent pattern of conservation in enzymes that aminoacylate tRNA(Glu)versus those specific for tRNA(Gln) emerged and was experimentally validated. In particular, when an arginine conserved in discriminating GluRSs and GluRS1s was inserted into Hp GluRS2 (Glu334Arg GluRS2), the catalytic efficiency of the mutant enzyme (k(cat)/K(Mapp)) was reduced by approximately one order of magnitude towards tRNA(Gln). However, this mutation did not introduce activity towards tRNA(Glu). In contrast, disruption of a glycine that is conserved in all GluRS2s but not in other GluRSs (Gly417Thr GluRS2) generated a mutant GluRS2 with weak activity towards tRNA(Glu1). Synergy between these two mutations was observed in the double mutant (Glu334Arg/Gly417Thr GluRS2), which specifically and more robustly aminoacylates tRNA(Glu1) instead of tRNA(Gln). As GluRS1 and GluRS2 are related by an apparent gene duplication event, these results demonstrate that we can experimentally map critical evolutionary events in the emergence of new tRNA specificities.
Collapse
Affiliation(s)
- Joohee Lee
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
19
|
Nissan TA, Perona JJ. Alternative designs for construction of the class II transfer RNA tertiary core. RNA (NEW YORK, N.Y.) 2000; 6:1585-1596. [PMID: 11105758 PMCID: PMC1370028 DOI: 10.1017/s1355838200001126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The structural requirements for assembly of functional class II transfer RNA core regions have been examined by sequence analysis and tested by reconstruction of alternative folds into the tertiary domain of Escherichia coli tRNA(2)Gln. At least four distinct designs have been identified that permit stable folding and efficient synthetase recognition, as assessed by thermal melting profiles and glutaminylation kinetics. Although most large variable-arm tRNAs found in nature possess an enlarged D-loop, lack of this feature can be compensated for by insertion of nucleotides either 3' to the variable loop or within the short acceptor/D-stem connector region. Rare pyrimidines at nt 9 in the core region can be accommodated in the class II framework, but only if specific nucleotides are present either in the D-loop or 3' to the variable arm. Glutaminyl-tRNA synthetase requires one or two unpaired uridines 3' to the variable arm to efficiently aminoacylate several of the class II frameworks. Because there are no specific enzyme contacts in the tRNAGln core region, these data suggest that tRNA discrimination by GlnRS depends in part on indirect readout of RNA sequence information.
Collapse
Affiliation(s)
- T A Nissan
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, 93106-9510, USA
| | | |
Collapse
|
20
|
Tumbula DL, Becker HD, Chang WZ, Söll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000; 407:106-10. [PMID: 10993083 DOI: 10.1038/35024120] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.
Collapse
Affiliation(s)
- D L Tumbula
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
21
|
Pleiss JA, Wolfson AD, Uhlenbeck OC. Mapping contacts between Escherichia coli alanyl tRNA synthetase and 2' hydroxyls using a complete tRNA molecule. Biochemistry 2000; 39:8250-8. [PMID: 10889033 DOI: 10.1021/bi0001022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dual-specific derivative of yeast tRNA(Phe) is described whose features facilitate structure-function studies of tRNAs. This tRNA has been made in three different bimolecular forms that allow modifications to be easily introduced into any position within the molecule. A set of deoxynucleotide substituted versions of this tRNA has been created and used to examine contacts between tRNA and Escherichia coli alanyl-tRNA synthetase, an enzyme previously shown to interact with 2'-hydroxyls in the acceptor stem of the tRNA. Because the present experiments used a full-length tRNA, several contacts were identified that had not been previously found using microhelix substrates. Contacts at similar sites in the T-loop are seen in the cocrystal structure of tRNA(Ser) and Thermus thermophilus seryl-tRNA synthetase.
Collapse
Affiliation(s)
- J A Pleiss
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
22
|
Abstract
The x-ray structure of the glutamine aminoacyl tRNA synthetase bound to its cognate tRNA(Gln) and ATP was reported by Steitz and co-workers in 1989, providing the first high resolution structure of a protein-RNA complex. Since then, high resolution structures have been reported for RNA complexes with five other tRNA synthetases, the elongation factor Tu, the bacteriophage MS2 coat protein, the human spliceosomal U1A and U2B"-U1A' proteins, and the HIV-1 nucleocapsid protein. Although the number of high resolution structures of protein-RNA complexes are rather small, some general themes have begun to emerge regarding the nature and mechanisms of protein-RNA recognition.
Collapse
Affiliation(s)
- R N De Guzman
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Maryland, Baltimore 21250, USA
| | | | | |
Collapse
|
23
|
Sherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. J Mol Biol 2000; 299:431-46. [PMID: 10860750 DOI: 10.1006/jmbi.2000.3749] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The position of the tertiary Levitt pair between nucleotides 15 and 48 in the transfer RNA core region suggests a key role in stabilizing the joining of the two helical domains, and in maintaining the relative orientations of the D and variable loops. E. coli tRNA(Gln) possesses the canonical Pu15-Py48 trans pairing at this position (G15-C48), while the tRNA(Cys) species from this organism instead features an unusual G15-G48 pair. To explore the structural context dependence of a G15-G48 Levitt pair, a number of tRNA(Gln) species containing G15-G48 were constructed and evaluated as substrates for glutaminyl and cysteinyl-tRNA synthetases. The glutaminylation efficiencies of these mutant tRNAs are reduced by two to tenfold compared with native tRNA(Gln), consistent with previous findings that the tertiary core of this tRNA plays a role in GlnRS recognition. Introduction of tRNA(Cys) identity nucleotides at the acceptor and anticodon ends of tRNA(Gln) produced a tRNA substrate which was efficiently aminoacylated by CysRS, even though the tertiary core region of this species contains the tRNA(Gln) G15-C48 pair. Surprisingly, introduction of G15-G48 into the non-cognate tRNA(Gln) tertiary core then significantly impairs CysRS recognition. By contrast, previous work has shown that CysRS aminoacylates tRNA(Cys) core regions containing G15-G48 with much better efficiency than those with G15-C48. Therefore, tertiary nucleotides surrounding the Levitt pair must significantly modulate the efficiency of aminoacylation by CysRS. To explore the detailed nature of the structural interdependence, crystal structures of two tRNA(Gln) mutants containing G15-G48 were determined bound to GlnRS. These structures show that the larger purine ring of G48 is accommodated by rotation into the syn position, with the N7 nitrogen serving as hydrogen bond acceptor from several groups of G15. The G15-G48 conformations differ significantly compared to that observed in the native tRNA(Cys) structure bound to EF-Tu, further implicating an important role for surrounding nucleotides in maintaining the integrity of the tertiary core and its consequent ability to present crucial recognition determinants to aminoacyl-tRNA synthetases.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/metabolism
- Base Pairing/genetics
- Base Sequence
- Binding Sites
- Catalysis
- Crystallization
- Crystallography, X-Ray
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Hydrogen Bonding
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/genetics
- RNA, Transfer, Cys/metabolism
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Substrate Specificity
Collapse
Affiliation(s)
- L D Sherlin
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara, CA, 93106-9510, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Conserved Sequence/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Suppressor/genetics
- Genetic Engineering
- Glutamine/metabolism
- Kinetics
- Leucine/metabolism
- Mutation/genetics
- Nucleic Acid Conformation
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/classification
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/classification
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/metabolism
- Structure-Activity Relationship
- Substrate Specificity
Collapse
|
25
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
26
|
Helm M, Giegé R, Florentz C. A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 1999; 38:13338-46. [PMID: 10529209 DOI: 10.1021/bi991061g] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown by chemical and enzymatic structure probing that, opposite to the native human mitochondrial tRNA(Lys), the corresponding in vitro transcript does not fold into the expected tRNA-specific cloverleaf structure. This RNA folds into a bulged hairpin, including an extended amino acid acceptor stem, an extra large loop instead of the T-stem and loop, and an anticodon-like domain. Hence, one or several of the six modified nucleotides present in the native tRNA are required and responsible for its cloverleaf structure. Phylogenetic comparisons as well as structural analysis of variant transcripts had pointed to m(1)A9 as the most likely important modified nucleotide in the folding process. Here we describe the synthesis of a chimeric tRNA(Lys) with m(1)A9 as the sole modified base and its structural analysis by chemical and enzymatic probing. Comparison of this structure to that of the unmodified RNA, the fully modified native tRNA, and a variant designed to mimic the effect of m(1)A9 demonstrates that the chimeric RNA folds indeed into a cloverleaf structure that resembles that of the native tRNA. Thus, due to Watson-Crick base-pair disruption, a single methyl group is sufficient to induce the cloverleaf folding of this unusual tRNA. This is the first direct evidence of the role of a modified nucleotide in RNA folding.
Collapse
Affiliation(s)
- M Helm
- Unité Propre de Recherche 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | |
Collapse
|
27
|
Nissan TA, Oliphant B, Perona JJ. An engineered class I transfer RNA with a class II tertiary fold. RNA (NEW YORK, N.Y.) 1999; 5:434-445. [PMID: 10094311 PMCID: PMC1369771 DOI: 10.1017/s1355838299981827] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Structure-based engineering of the tertiary fold of Escherichia coli tRNA(Gln)2 has enabled conversion of this transfer RNA to a class II structure while retaining recognition properties of a class I glutamine tRNA. The new tRNA possesses the 20-nt variable stem-loop of Thermus thermophilus tRNA(Ser). Enlargement of the D-loop appears essential to maintaining a stable tertiary structure in this species, while rearrangement of a base triple in the augmented D-stem is critical for efficient glutaminylation. These data provide new insight into structural determinants distinguishing the class I and class II tRNA folds, and demonstrate a marked sensitivity of glutaminyl-tRNA synthetase to alteration of tRNA tertiary structure.
Collapse
Affiliation(s)
- T A Nissan
- Department of Chemistry, University of California at Santa Barbara 93106-9510, USA
| | | | | |
Collapse
|
28
|
Tsai F, Curran JF. tRNA(2Gln) mutants that translate the CGA arginine codon as glutamine in Escherichia coli. RNA (NEW YORK, N.Y.) 1998; 4:1514-1522. [PMID: 9848650 PMCID: PMC1369722 DOI: 10.1017/s1355838298981274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a novel missense suppression system for the selection of tRNA(2GIn) mutants that can efficiently translate the CGA (arginine) codon as glutamine. tRNA(2Gln) mutants were cloned from a partially randomized synthetic gene pool using a plasmid vector that simultaneously expresses the tRNA gene and, to ensure efficient aminoacylation, the glutamine aminoacyl-tRNA synthetase gene (glnS). tRNA mutants that insert glutamine at CGA were selected as missense suppressors of a lacZ mutant (lacZ625(CGA)) that contains CGA substituted for an essential glutamine codon. Preliminary characterizations of four suppressors is presented. All of them contain two anticodon mutations: C-->U at position 34 and U-->C at position 35, which allow for cognate translation of CGA. U35 was previously shown to be an important determinant for glutaminylation of tRNA(2Gln) in vitro; suppression in vivo requires overexpression of the glutaminyl-tRNA synthetase gene (glnS). One tRNA variant contains no further mutations and has the highest missense suppression activity (8%). Three other isolates each contain an additional point mutation that alters suppression efficiency. This system will be useful for further studies of tRNA structure and function. In addition, because relatively efficient translation of the rare CGA codon as glutamine is not toxic for Escherichia coli, it may be possible to translate this sense codon with other alternate meanings, a property which could greatly facilitate protein engineering.
Collapse
Affiliation(s)
- F Tsai
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | |
Collapse
|
29
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 626] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
30
|
|
31
|
Gruić-Sovulj I, Lüdemann HC, Hillenkamp F, Peter-Katalinić J. Detection of noncovalent tRNA.aminoacyl-tRNA synthetase complexes by matrix-assisted laser desorption/ionization mass spectrometry. J Biol Chem 1997; 272:32084-91. [PMID: 9405405 DOI: 10.1074/jbc.272.51.32084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) was used for the study of complexes formed by yeast seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) with tRNASer and tRNATyr. Cognate and noncognate complexes were easily distinguished due to a large mass difference between the two tRNAs. Both homodimeric synthetases gave MS spectra indicating intact desorption of dimers. The spectra of synthetase-cognate tRNA mixtures showed peaks of free components and peaks assigned to complexes. Noncognate complexes were also detected. In competition experiments, where both tRNA species were mixed with each enzyme only cognate alpha2.tRNA complexes were observed. Only cognate alpha2.tRNA2 complexes were detected with each enzyme. These results demonstrate that MALDI-MS can be used successfully for accurate mass and, thus, stoichiometry determination of specific high molecular weight noncovalent protein-nucleic acid complexes.
Collapse
Affiliation(s)
- I Gruić-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- U L RajBhandary
- Department of Biology, 68-671A, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Liu DR, Magliery TJ, Pastrnak M, Schultz PG. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A 1997; 94:10092-7. [PMID: 9294168 PMCID: PMC23315 DOI: 10.1073/pnas.94.19.10092] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/1997] [Indexed: 02/05/2023] Open
Abstract
In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an "orthogonal" suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)-tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase-tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein-tRNA interface and at sites further away, is discussed.
Collapse
Affiliation(s)
- D R Liu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
34
|
Beuning PJ, Gulotta M, Musier-Forsyth K. Atomic Group “Mutagenesis” Reveals Major Groove Fine Interactions of a tRNA Synthetase with an RNA Helix. J Am Chem Soc 1997. [DOI: 10.1021/ja971020c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Penny J. Beuning
- Contribution from the University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455
| | - Miriam Gulotta
- Contribution from the University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455
| | - Karin Musier-Forsyth
- Contribution from the University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455
| |
Collapse
|
35
|
Liu DR, Magliery TJ, Schultz PG. Characterization of an 'orthogonal' suppressor tRNA derived from E. coli tRNA2(Gln). CHEMISTRY & BIOLOGY 1997; 4:685-91. [PMID: 9331409 DOI: 10.1016/s1074-5521(97)90224-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In an effort to expand further our ability to manipulate protein structure, we have completed the first step towards a general method that allows the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the construction of an 'orthogonal' suppressor tRNA that is uniquely acylated in vivo, by an engineered aminoacyl-tRNA synthetase, with the desired unnatural amino acid. The Escherichia coli tRNA2(Gln)-glutaminyl-tRNA synthetase (GlnRS) pair provides a biochemically and structurally well-characterized starting point for developing this methodology. To generate the orthogonal tRNA, mutations were introduced into the acceptor stem, D-loop/stem, and anticodon loop of tRNA2(Gln). We report here the characterization of the properties of the resulting tRNAs and their suitability to severe as an orthogonal suppressor. Our efforts to generate an engineered synthetase are described elsewhere. RESULTS Mutant tRNAs were generated by runoff transcription and assayed for their ability to be aminoacylated by purified E. coli GlnRS and to suppress an amber codon in an in vitro transcription/translation reaction. One tRNA bearing eight mutations satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase, including GlnRS, yet functions efficiently during protein translation. Mutations in the acceptor stem and D-loop/stem, when introduced in combination, had very different effects on the properties of the resulting tRNAs compared with the effects of the individual mutations. CONCLUSIONS Mutations at sites within tRNA2(Gln) separated by 23-31 A interact strongly with each other, often in a nonadditive fashion, to modulate both aminoacylation activities and translational efficiencies. The observed correlation between the effects of mutations at very distinct regions of the GlnRS-tRNA and possibly the ribosomal/tRNA complexes may contribute in part to the fidelity of protein biosynthesis.
Collapse
Affiliation(s)
- D R Liu
- Howard Hughes Medical Institute, Department of Chemistry, University of California, Berkeley 94720, USA.
| | | | | |
Collapse
|
36
|
Arnez JG, Steitz TA. Crystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP. Biochemistry 1996; 35:14725-33. [PMID: 8942633 DOI: 10.1021/bi961532o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three previously described mutant Escherichia coli glutaminyl-tRNA synthetase (GlnRS) proteins that incorrectly aminoacylate the amber suppressor derived from tRNATyr (supF) with glutamine were cocrystallized with wild-type tRNAGln and their structures determined. In two of the mutant enzymes studied, Asp235, which contacts base pair G3-C70 in the acceptor stem, has been changed to asparagine in GlnRS7 and to glycine in GlnRS10. These mutations result in changed interactions between Asn235 of GlnRS7 and G3-C70 of the tRNA and an altered water structure between Gly235 of GlnRS10 and base pair G3-C70. These structures suggest how the mutant enzymes can show only small changes in their ability to aminoacylate wild-type cognate tRNA on the one hand and yet show a lack of discrimination against a noncognate U3-A70 base pair on the other. In contrast, the change of Ile129 to Thr in GlnRS15 causes virtually no change in the structure of the complex, and the explanation for its ability to misacylate supF is unclear.
Collapse
Affiliation(s)
- J G Arnez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
37
|
Kitabatake M, Ibba M, Hong KW, Söll D, Inokuchi H. Genetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:717-22. [PMID: 8917315 DOI: 10.1007/bf02173978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has previously been shown that the single mutation E222K in glutaminyl-tRNA synthetase (GlnRS) confers a temperature-sensitive phenotype on Escherichia coli. Here we report the isolation of a pseudorevertant of this mutation, E222K/C171G, which was subsequently employed to investigate the role of these residues in substrate discrimination. The three-dimensional structure of the tRNA(Gln): GlnRS: ATP ternary complex revealed that both E222 and C171 are close to regions of the protein involved in interactions with both the acceptor stem and the 3' end of tRNA(Gln). The potential involvement of E222 and C171 in these interactions was confirmed by the observation that GlnRS-E222K was able to mischarge supF tRNA(Tyr) considerably more efficiently than the wild-type enzyme, whereas GlnRS-E222K/C171G could not. These differences in substrate specificity also extended to anticodon recognition, with the double mutant able to distinguish supE tRNA(CUA)(Gln) from tRNA2(Gln) considerably more efficiently than GlnRS E222K. Furthermore, GlnRS-E222K was found to have a 15-fold higher K(m) for glutamine than the wild-type enzyme, whereas the double mutant only showed a 7-fold increase. These results indicate that the C171G mutation improves both substrate discrimination and recognition at three domains in GlnRS-E222K, confirming recent proposals that there are extensive interactions between the active site and regions of the enzyme involved in tRNA binding.
Collapse
Affiliation(s)
- M Kitabatake
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
38
|
Saks ME, Sampson JR, Nowak MW, Kearney PC, Du F, Abelson JN, Lester HA, Dougherty DA. An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression. J Biol Chem 1996; 271:23169-75. [PMID: 8798511 DOI: 10.1074/jbc.271.38.23169] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNAGln(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies of mutations at several sites of the nicotinic acetylcholine receptor, it is established that THG73 represents a major improvement over previous nonsense suppressors both in terms of efficiency and fidelity of unnatural amino acid incorporation. Compared with a previous tRNA used for in vivo suppression, THG73 is as much as 100-fold less likely to be acylated by endogenous synthetases of the Xenopus oocyte. This effectively eliminates a major concern of the in vivo suppression methodology, the undesirable incorporation of natural amino acids at the suppression site. In addition, THG73 is 4-10-fold more efficient at incorporating unnatural amino acids in the oocyte system. Taken together, these two advances should greatly expand the range of applicability of the in vivo nonsense suppression methodology.
Collapse
Affiliation(s)
- M E Saks
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Saks ME, Sampson JR. Variant minihelix RNAs reveal sequence-specific recognition of the helical tRNA(Ser) acceptor stem by E.coli seryl-tRNA synthetase. EMBO J 1996; 15:2843-9. [PMID: 8654382 PMCID: PMC450222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aminoacylation rate determinations for a series of variant RNA minihelix substrates revealed that Escherichia coli seryl-tRNA synthetase (SerRS) recognizes the 1--72 through 5--68 base pairs of the E.coli tRNA(Ser) acceptor stem with the major recognition elements clustered between positions 2--71 and 4--69. The rank order of effects of canonical base pair substitutions at each position on kcat/Km was used to assess the involvement of major groove functional groups in recognition. Conclusions based on the biochemical data are largely consistent with the interactions revealed by the refined structure of the homologous Thermus thermophilus tRNA(Ser)-SerRS complex that Cusack and colleagues report in the accompanying paper. Disruption of an end-on hydrophobic interaction between the major groove C5(H) of pyrimidine 69 and an aromatic side chain of SerRS is shown to significantly decrease kcat/Km of a minihelix substrate. This type of interaction provides a means by which proteins can recognize the binary information of 'degenerate' sequences, such as the purine-pyrimidine base pairs of tRNA(Ser). The 3--70 base pair is shown to contribute to recognition by SerRS even though it is not contacted specifically by the protein. The latter effect derives from the organization of the specific contacts that SerRS makes with the neighboring 2--71 and 4--69 acceptor stem base pairs.
Collapse
Affiliation(s)
- M E Saks
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
40
|
Breitschopf K, Gross HJ. The discriminator bases G73 in human tRNA(Ser) and A73 in tRNA(Leu) have significantly different roles in the recognition of aminoacyl-tRNA synthetases. Nucleic Acids Res 1996; 24:405-10. [PMID: 8602350 PMCID: PMC145663 DOI: 10.1093/nar/24.3.405] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The recognition of human tRNA(Leu) or tRNA(Ser) by cognate aminoacyl- tRNA synthetases has distinct requirements. Only one base change (A73-->G) in tRNA(Leu) is required to generate an efficient serine acceptor in vitro, whereas several changes in three structural domains (the acceptor stem, DHU loop and long extra arm) of tRNA(Ser) are necessary in order to produce a leucine acceptor. Hence, the molecular basis for the discrimination between human tRNA(Ser) and tRNA(Leu) by the seryl-tRNA synthetase depends almost exclusively on a highly specific recognition of the discriminator base G73. In order to elucidate the specific role of the functional groups of this base in discrimination, tRNA(Ser) constructs were made which contain the artificial base analogues 2-aminopurine riboside or inosine at the discriminator position 73. Aminoacylation of these constructs by a HeLa S100 extract showed that molecules with 2-aminopurine riboside, but not with inosine, in position 73 could be serylated at low efficiency. However, the 2-aminopurine riboside and the inosine derivatives of tRNA(Ser) were equally efficient competitive inhibitors of serylation, whereas tRNAs(Ser) with any other natural base at position 73 did not competitively inhibit serylation of tRNA(Ser). This was in contrast to leucylation of tRNA(Leu), where tRNA(Leu) transcripts with any other nucleotide in the discriminator position acted as strong competitive inhibitors. These results suggest that the discriminator bases in human tRNA(Ser) and tRNA(Leu) play completely different roles in recognition of the tRNAs by their cognate aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- K Breitschopf
- Institut für Biochemie, Bayerische Julius- Maximillians-Universität, D-97074 Würzburg, Germany
| | | |
Collapse
|
41
|
Merante F, Myint T, Tein I, Benson L, Robinson BH. An additional mitochondrial tRNA(Ile) point mutation (A-to-G at nucleotide 4295) causing hypertrophic cardiomyopathy. Hum Mutat 1996; 8:216-22. [PMID: 8889580 DOI: 10.1002/(sici)1098-1004(1996)8:3<216::aid-humu4>3.0.co;2-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A third point mutation in the mitochondrial tRNA(Ile) gene associated with hypertrophic cardiomyopathy and respiratory chain dysfunction in heart is reported. An A-to-G transition at nucleotide position 4295 was shown to be highly evolutionarily conserved, never present in control individuals, and to segregate with the disease. A PCR-based diagnostic test and endomyocardial biopsies were used to detect both the biochemical deficiency and the level of heteroplasmy in heart. The implications of this new mitochondrial DNA point mutation are discussed.
Collapse
Affiliation(s)
- F Merante
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Mechulam Y, Meinnel T, Blanquet S. A family of RNA-binding enzymes. the aminoacyl-tRNA synthetases. Subcell Biochem 1995; 24:323-376. [PMID: 7900181 DOI: 10.1007/978-1-4899-1727-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- Y Mechulam
- Laboratoire de Biochimie, CNRS n. 240, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
43
|
Rogers KC, Crescenzo AT, Söll D. Aminoacylation of transfer RNAs with 2-thiouridine derivatives in the wobble position of the anticodon. Biochimie 1995; 77:66-74. [PMID: 7541255 DOI: 10.1016/0300-9084(96)88106-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The first position or 'wobble base' in the anticodon of tRNAs is frequently the site of post-transcriptional modification. In Escherichia coli, glutamine, glutamate, and lysine tRNAs contain 2-thiouridine derivatives in this position, and the significance of these modifications has been under investigation since their discovery. Here we describe the investigations to link 2-thiouridine derivatives to aminoacylation of these tRNAs. The implications of these findings on the evolution of specificity of aminoacyl-tRNA synthetases and on translational regulation are also discussed.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon
- Base Sequence
- Biological Evolution
- Escherichia coli/chemistry
- Molecular Sequence Data
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Gln/metabolism
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Lys/metabolism
- Substrate Specificity
- Thiouridine/analogs & derivatives
- Thiouridine/metabolism
Collapse
Affiliation(s)
- K C Rogers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
44
|
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994; 33:9912-21. [PMID: 8060999 DOI: 10.1021/bi00199a013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-resolution X-ray structures for the tRNA/aminoacyl-tRNA synthetase complexes between Escherichia coli tRNAGln/GlnRS and yeast tRNAAsp/AspRS have been determined. Positive identity nucleotides that direct aminoacylation specificity have been defined in both cases; E. coli tRNAGln identity is governed by 10 elements scattered in the tRNA structure, while specific aminoacylation of yeast tRNAAsp is dependent on 5 positions. Both identity sets are partially overlapping and share 3 nucleotides. Interestingly, the two enzymes belong to two different classes described for aminoacyl-tRNA synthetases. The class I glutaminyl-tRNA synthetase and the class II aspartyl-tRNA synthetase recognize their cognate tRNA from opposite sides. Mutants derived from glutamine and aspartate tRNAs have been created by progressively introducing identity elements from one tRNA into the other one. Glutaminylation and aspartylation assays of the transplanted tRNAs show that identity nucleotides from a tRNA originally aminoacylated by a synthetase from one class are still recognized if they are presented to the enzyme in a structural framework corresponding to a tRNA aminoacylated by a synthetase belonging to the other class. The simple transplantation of the glutamine identity set into tRNAAsp is sufficient to obtain glutaminylatable tRNA, but additional subtle features seem to be important for the complete conversion of tRNAGln in an aspartylatable substrate. This study defines C38 in yeast tRNAAsp as a new identity nucleotide for aspartylation. We show also in this paper that, during the complex formation, aminoacyl-tRNA synthetases are at least partially responsible for conformational changes which involve structural constraints in tRNA molecules.
Collapse
Affiliation(s)
- M Frugier
- Unité Propre de Recherche Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
45
|
Niimi T, Nureki O, Yokogawa T, Hayashi N, Nishikawa K, Watanabe K, Yokoyama S. Recognition of the Anticodon Loop of tRNAIle1by Isoleucyl-tRNA Synthetase fromEscherichia coli. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/15257779408012147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Conley J, Sherman J, Thomann HU, Söill D. Domains ofE. ColiGlutaminyl-tRNA Synthetase Disordered in the Crystal Structure Are Essential for Function or Stability. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/15257779408012173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Abstract
Correct recognition of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases is central to the maintenance of translational fidelity. The hypothesis that synthetases recognize anticodon nucleotides was proposed in 1964 and had considerable experimental support by the mid-1970s. Nevertheless, the idea was not widely accepted until relatively recently in part because the methodologies initially available for examining tRNA recognition proved hampering for adequately testing alternative hypotheses. Implementation of new technologies has led to a reasonably complete picture of how tRNAs are recognized. The anticodon is indeed important for 17 of the 20 Escherichia coli isoaccepting groups. For many of the isoaccepting groups, the acceptor stem or position 73 (or both) is important as well.
Collapse
Affiliation(s)
- M E Saks
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
48
|
Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. J Bacteriol 1994; 176:232-9. [PMID: 8282701 PMCID: PMC205035 DOI: 10.1128/jb.176.1.232-239.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In order to gain insight into the conservation of determinants for tRNA identity between organisms, Schizosaccharomyces pombe and human amber suppressor serine tRNA genes have been examined for functional expression in Escherichia coli. The primary transcripts, which originated from E. coli plasmid promoters, were processed into mature tRNAs, but they were poorly aminoacylated in E. coli and thus were nonfunctional as suppressors in vivo. However, coexpression of cloned Saccharomyces cerevisiae seryl-tRNA synthetase led to efficient suppression in E. coli. This shows that some, but not all, determinants specifying the tRNASer identity are conserved in evolution.
Collapse
MESH Headings
- Acylation
- Base Sequence
- DNA, Recombinant
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Eukaryotic Cells
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Transfer, Amino Acyl/biosynthesis
- RNA, Transfer, Amino Acyl/isolation & purification
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Schizosaccharomyces/genetics
- Serine-tRNA Ligase/genetics
- Serine-tRNA Ligase/metabolism
- Species Specificity
- Suppression, Genetic
Collapse
Affiliation(s)
- I Weygand-Durasević
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
49
|
Wower J, Rosen KV, Hixson SS, Zimmermann RA. Recombinant photoreactive tRNA molecules as probes for cross-linking studies. Biochimie 1994; 76:1235-46. [PMID: 7538327 DOI: 10.1016/0300-9084(94)90054-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoreactive tRNA derivatives have been used extensively for investigating the interaction of tRNA molecules with their ligands and substrates. Recombinant RNA technology facilitates the construction of such tRNA probes through site-specific incorporation of photoreactive nucleosides. The general strategy involves preparation of suitable tRNA fragments and their ligation either to a photoreactive nucleotide or to each other. tRNA fragments can be prepared by site-specific cleavage of native tRNAs, or synthesized by enzymatic and chemical means. A number of photoreactive nucleosides suitable for incorporation into tRNA are presently available. Joining of tRNA fragments is accomplished either by RNA ligase or by DNA ligase in the presence of a DNA splint. The application of this methodology to the study of tRNA binding sites on the ribosome is discussed, and a model of the tRNA-ribosome complex is presented.
Collapse
Affiliation(s)
- J Wower
- Department of Biochemistry, University of Massachusetts, Amherst 01003, USA
| | | | | | | |
Collapse
|
50
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|