1
|
Moon DO. Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications. Cancers (Basel) 2024; 16:1674. [PMID: 38730626 PMCID: PMC11083344 DOI: 10.3390/cancers16091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Bartoloni S, Pescatori S, Bianchi F, Cipolletti M, Acconcia F. Selective impact of ALK and MELK inhibition on ERα stability and cell proliferation in cell lines representing distinct molecular phenotypes of breast cancer. Sci Rep 2024; 14:8200. [PMID: 38589728 PMCID: PMC11001865 DOI: 10.1038/s41598-024-59001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
Breast cancer (BC) is a leading cause of global cancer-related mortality in women, necessitating accurate tumor classification for timely intervention. Molecular and histological factors, including PAM50 classification, estrogen receptor α (ERα), breast cancer type 1 susceptibility protein (BRCA1), progesterone receptor (PR), and HER2 expression, contribute to intricate BC subtyping. In this work, through a combination of bioinformatic and wet lab screenings, followed by classical signal transduction and cell proliferation methods, and employing multiple BC cell lines, we identified enhanced sensitivity of ERα-positive BC cell lines to ALK and MELK inhibitors, inducing ERα degradation and diminishing proliferation in specific BC subtypes. MELK inhibition attenuated ERα transcriptional activity, impeding E2-induced gene expression, and hampering proliferation in MCF-7 cells. Synergies between MELK inhibition with 4OH-tamoxifen (Tam) and ALK inhibition with HER2 inhibitors revealed potential therapeutic avenues for ERα-positive/PR-positive/HER2-negative and ERα-positive/PR-negative/HER2-positive tumors, respectively. Our findings propose MELK as a promising target for ERα-positive/PR-positive/HER2-negative BC and highlight ALK as a potential focus for ERα-positive/PR-negative/HER2-positive BC. The synergistic anti-proliferative effects of MELK with Tam and ALK with HER2 inhibitors underscore kinase inhibitors' potential for selective treatment in diverse BC subtypes, paving the way for personalized and effective therapeutic strategies in BC management.
Collapse
Affiliation(s)
- Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Sara Pescatori
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS Casa Sollievo Della Sofferenza, Cancer Biomarkers Unit, 71013, San Giovanni Rotondo (FG), Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, 00146, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, 00146, Rome, Italy.
| |
Collapse
|
3
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
4
|
Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT. AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1250218. [PMID: 37711895 PMCID: PMC10498919 DOI: 10.3389/fendo.2023.1250218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Ghada M. Sharif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
5
|
Horkeby K, Farman HH, Movérare-Skrtic S, Lionikaite V, Wu J, Henning P, Windahl S, Sjögren K, Ohlsson C, Lagerquist MK. Phosphorylation of S122 in ERα is important for the skeletal response to estrogen treatment in male mice. Sci Rep 2022; 12:22449. [PMID: 36575297 PMCID: PMC9794719 DOI: 10.1038/s41598-022-26939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor alpha (ERα) signaling has beneficial skeletal effects in males. ERα signaling also affects other tissues, and to find bone-specific treatments, more knowledge regarding tissue-specific ERα signaling is needed. ERα is subjected to posttranslational modifications, including phosphorylation, which can influence ERα function in a tissue-specific manner. To determine the importance of phosphorylation site S122 (corresponding to human ERα site S118) for the skeleton and other tissues, male mice with a S122A mutation were used. Total areal bone mineral density was similar between gonadal intact S122A and WT littermates followed up to 12 months of age, and weights of estrogen-responsive organs normalized for body weight were unchanged between S122A and WT males at both 3 and 12 months of age. Interestingly, 12-month-old S122A males had decreased body weight compared to WT. To investigate if site S122 affects the estrogen response in bone and other tissues, 12-week-old S122A and WT males were orchidectomized (orx) and treated with estradiol (E2) or placebo pellets for four weeks. E2 increased cortical thickness in tibia in both orx WT (+ 60%, p < 0.001) and S122A (+ 45%, p < 0.001) males. However, the E2 effect on cortical thickness was significantly decreased in orx S122A compared to WT mice (- 24%, p < 0.05). In contrast, E2 affected trabecular bone and organ weights similarly in orx S122A and WT males. Thus, ERα phosphorylation site S122 is required for a normal E2 response specifically in cortical bone in male mice, a finding that may have implications for development of future treatments against male osteoporosis.
Collapse
Affiliation(s)
- Karin Horkeby
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Helen H. Farman
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Sofia Movérare-Skrtic
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Vikte Lionikaite
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Jianyao Wu
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Petra Henning
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Sara Windahl
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden ,grid.4714.60000 0004 1937 0626Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Klara Sjögren
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| | - Claes Ohlsson
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden ,grid.1649.a000000009445082XDepartment of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Marie K. Lagerquist
- grid.8761.80000 0000 9919 9582Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Klinfarmlab, Vita Stråket 11, 413 45 Göteborg, Sweden
| |
Collapse
|
6
|
Negi A, Kesari KK, Voisin-Chiret AS. Estrogen Receptor-α Targeting: PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharmaceutics 2022; 14:pharmaceutics14112523. [PMID: 36432713 PMCID: PMC9699327 DOI: 10.3390/pharmaceutics14112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Targeting selective estrogen subtype receptors through typical medicinal chemistry approaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules are developed in order to inhibit the protein of interest (POI), and their popularity is based on their virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar range binding affinity and continuous dosage after a time interval for sustained inhibition of POI. These shortcomings were addressed by event-driven pharmacology-based approaches, which degrade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras), which has become one of the highly successful strategies of event-driven pharmacology (pharmacology that does the degradation of POI and diminishes its functions). The selective targeting of estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists. Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance commonly developed against these therapies, which led to selective estrogen receptor degrader (SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on the mechanism of degradation of ER-α, various types of strategies of developed.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University UNICAEN, 14000 Caen, France
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| |
Collapse
|
7
|
GRHL2 Enhances Phosphorylated Estrogen Receptor (ER) Chromatin Binding and Regulates ER-Mediated Transcriptional Activation and Repression. Mol Cell Biol 2022; 42:e0019122. [PMID: 36036613 PMCID: PMC9584124 DOI: 10.1128/mcb.00191-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) is induced by estrogen and is the most abundant posttranslational mark associated with a transcriptionally active receptor. Cistromic analysis of pS118-ER from our group revealed enrichment of the GRHL2 motif near pS118-ER binding sites. In this study, we used cistromic and transcriptomic analyses to interrogate the relationship between GRHL2 and pS118-ER. We found that GRHL2 is bound to chromatin at pS118-ER/GRHL2 co-occupancy sites prior to ligand treatment, and GRHL2 binding is required for maximal pS118-ER recruitment. pS118-ER/GRHL2 co-occupancy sites were enriched at active enhancers marked by H3K27ac and H3K4me1, along with FOXA1 and p300, compared to sites where each factor binds independently. Transcriptomic analysis yielded four subsets of ER/GRHL2-coregulated genes revealing that GRHL2 can both enhance and antagonize E2-mediated ER transcriptional activity. Gene ontology analysis indicated that coregulated genes are involved in cell migration. Accordingly, knockdown of GRHL2, combined with estrogen treatment, resulted in increased cell migration but no change in proliferation. These results support a model in which GRHL2 binds to selected enhancers and facilitates pS118-ER recruitment to chromatin, which then results in differential activation and repression of genes that control estrogen-regulated ER-positive breast cancer cell migration.
Collapse
|
8
|
Teo T, Kasirzadeh S, Albrecht H, Sykes MJ, Yang Y, Wang S. An Overview of CDK3 in Cancer: Clinical Significance and Pharmacological Implications. Pharmacol Res 2022; 180:106249. [DOI: 10.1016/j.phrs.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
|
9
|
Pescatori S, Leone S, Cipolletti M, Bartoloni S, di Masi A, Acconcia F. Clinically relevant CHK1 inhibitors abrogate wild-type and Y537S mutant ERα expression and proliferation in luminal primary and metastatic breast cancer cells. J Exp Clin Cancer Res 2022; 41:141. [PMID: 35418303 PMCID: PMC9006609 DOI: 10.1186/s13046-022-02360-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Challenges exist in the clinical treatment of luminal estrogen receptor α (ERα)-positive breast cancers (BCs) both to prevent resistance to endocrine therapy (ET) and to treat ET-resistant metastatic BCs (MBC). Therefore, we evaluated if kinases could be new targets for the treatment of luminal primary and MBCs. METHODS ~ 170 kinase inhibitors were applied to MCF-7 cells either with adaptative or genetic resistance to ET drugs and both ERα levels and cell proliferation were measured. Robust-Z-score calculation identified AZD7762 (CHK1/CHK2 inhibitor) as a positive hit. Subsequently, Kaplan-Meier analyses of CHK1 and CHK2 impact on ERα-positive BC patients relapse-free-survival (RFS), bioinformatic evaluations of CHK1 and CHK2 expression and activation status as a function of ERα activation status as well as drug sensitivity studies in ERα-positive BC cell lines, validation of the impact of the ATR:CHK1 and ATM:CHK2 pathways on the control of ERα stability and BC cell proliferation via inhibitor- and siRNA-based approaches, identification of the molecular mechanism required for inhibitor-dependent ERα degradation in BC and the impact of CHK1 and CHK2 inhibition on the 17β-estradiol (E2):ERα signaling, synergy proliferation studies between ET-drugs and clinically relevant CHK1 inhibitors in different luminal BC cell lines, were performed. RESULTS A reduced CHK1 expression correlates with a longer RFS in women with ERα-positive BCs. Interestingly, women carrying luminal A BC display an extended RFS when expressing low CHK1 levels. Accordingly, CHK1 and ERα activations are correlated in ERα-positive BC cell lines, and the ATR:CHK1 pathway controls ERα stability and cell proliferation in luminal A BC cells. Mechanistically, the generation of DNA replication stress rather than DNA damage induced by ATR:CHK1 pathway inhibition is a prerequisite for ERα degradation. Furthermore, CHK1 inhibition interferes with E2:ERα signaling to cell proliferation, and drugs approved for clinical treatment of primary and MBC (4OH-tamoxifen and the CDK4/CDK6 inhibitors abemaciclib and palbociclib) exert synergic effects with the CHK1 inhibitors in clinical trials for the treatment of solid tumors (AZD7762, MK8776, prexasertib) in preventing the proliferation of cells modeling primary and MBC. CONCLUSIONS CHK1 could be considered as an appealing novel pharmacological target for the treatment of luminal primary and MBCs.
Collapse
Affiliation(s)
- Sara Pescatori
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Alessandra di Masi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
10
|
Vafeiadou V, Hany D, Picard D. Hyperactivation of MAPK Induces Tamoxifen Resistance in SPRED2-Deficient ERα-Positive Breast Cancer. Cancers (Basel) 2022; 14:954. [PMID: 35205702 PMCID: PMC8870665 DOI: 10.3390/cancers14040954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.
Collapse
Affiliation(s)
- Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| |
Collapse
|
11
|
Cairns J, Ingle JN, Kalari KR, Goetz MP, Weinshilboum RM, Gao H, Li H, Bari MG, Wang L. Anastrozole Regulates Fatty Acid Synthase in Breast Cancer. Mol Cancer Ther 2022; 21:206-216. [PMID: 34667110 PMCID: PMC8742770 DOI: 10.1158/1535-7163.mct-21-0509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/27/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Our previous matched case-control study of postmenopausal women with resected early-stage breast cancer revealed that only anastrozole, but not exemestane or letrozole, showed a significant association between the 6-month estrogen concentrations and risk of breast cancer. Anastrozole, but not exemestane or letrozole, is a ligand for estrogen receptor α. The mechanisms of endocrine resistance are heterogenous and with the new mechanism of anastrozole, we have found that treatment of anastrozole maintains fatty acid synthase (FASN) protein level by limiting the ubiquitin-mediated FASN degradation, leading to increased breast cancer cell growth. Mechanistically, anastrozole decreases the guided entry of tail-anchored proteins factor 4 (GET4) expression, resulting in decreased BCL2-associated athanogene cochaperone 6 (BAG6) complex activity, which in turn, prevents RNF126-mediated degradation of FASN. Increased FASN protein level can induce a negative feedback loop mediated by the MAPK pathway. High levels of FASN are associated with poor outcome only in patients with anastrozole-treated breast cancer, but not in patients treated with exemestane or letrozole. Repressing FASN causes regression of breast cancer cell growth. The anastrozole-FASN signaling pathway is eminently targetable in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N. Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P. Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mehrab Ghanat Bari
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author: Liewei Wang, Gonda 19-460, 200 1 Street SW, Rochester MN USA 55905. Phone: +1 507 284-5264; Fax: +1 507-284-4455;
| |
Collapse
|
12
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
13
|
Vydra N, Janus P, Kuś P, Stokowy T, Mrowiec K, Toma-Jonik A, Krzywon A, Cortez AJ, Wojtaś B, Gielniewski B, Jaksik R, Kimmel M, Widlak W. Heat Shock Factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells. eLife 2021; 10:69843. [PMID: 34783649 PMCID: PMC8709578 DOI: 10.7554/elife.69843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers an elevated HSF1 level is associated with metastatic disease. About 70% of breast cancers rely on supplies of a hormone called estrogen – which is the main hormone responsible for female physical characteristics – to grow. Breast cancer cells that are sensitive to estrogen possess proteins known as estrogen receptors and are classified as estrogen-receptor positive. When estrogen interacts with its receptor in a cancer cell, it stimulates the cell to grow and migrate to other parts of the body. Therefore, therapies that decrease the amount of estrogen the body produces, or inhibit the receptor itself, are widely used to treat patients with estrogen receptor-positive breast cancers. When estrogen interacts with an estrogen receptor known as ERα it can also activate a protein called HSF1, which helps cells to survive under stress. In turn, HSF1 regulates several other proteins that are necessary for ERα and other estrogen receptors to work properly. Previous studies have suggested that high levels of HSF1 may worsen the outcomes for patients with estrogen receptor-positive breast cancers, but it remains unclear how HSF1 acts in breast cancer cells. Vydra, Janus, Kuś et al. used genetics and bioinformatics approaches to study HSF1 in human breast cancer cells. The experiments revealed that breast cancer cells with lower levels of HSF1 also had lower levels of ERα and responded less well to estrogen than cells with higher levels of HSF1. Further experiments suggested that in the absence of estrogen, HSF1 helps to keep ERα inactive. However, when estrogen is present, HSF1 cooperates with ERα and enhances its activity to help cells grow and migrate. Vydra, Janus, Kuś et al. also found that cells with higher levels of HSF1 were less sensitive to two drug therapies that are commonly used to treat estrogen receptor-positive breast cancers. These findings reveal that the effect HSF1 has on ERα activity depends on the presence of estrogen. Therefore, cancer therapies that decrease the amount of estrogen a patient produces may have a different effect on estrogen receptor-positive tumors with high HSF1 levels than tumors with low HSF1 levels.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Patryk Janus
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Paweł Kuś
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Krzywon
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Alexander Jorge Cortez
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, United States
| | - Wieslawa Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
14
|
Fiocchetti M, Bastari G, Cipolletti M, Leone S, Acconcia F, Marino M. The Peculiar Estrogenicity of Diethyl Phthalate: Modulation of Estrogen Receptor α Activities in the Proliferation of Breast Cancer Cells. TOXICS 2021; 9:237. [PMID: 34678933 PMCID: PMC8538674 DOI: 10.3390/toxics9100237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Phthalates comprise a group of synthetic chemicals present in the environment because of their wide use as plasticizers and as additives in products for personal care. Among others, diethyl phthalate (DEP) is largely used in products for infants, children, and adults, in which its exposure has been correlated with an increased risk of breast cancer. The adverse health outcomes deriving from phthalate exposure have been associated with their activity as endocrine disruptors (EDCs) of the steroid and thyroid hormone signaling by affecting developmental and reproductive health, and even carcinogenicity. However, the estrogen disruptor activities of DEP are still controversial, and the mechanism at the root of the estrogenic-disrupting action of DEP remains to be clarified. Here, we evaluated the DEP mechanism of action on the activation status of estrogen receptor α (ERα) by analyzing the receptor's phosphorylation as well as both nuclear and extra-nuclear pathways triggered by the receptor to modulate the proliferation of breast cancer cells. Although DEP does not bind to ERα, our results suggest that this phthalate ester exerts multiple parallel interactions with ERα signaling and emphasize the importance to determine an appropriate battery of in vitro methods that will include specific molecular mechanisms involved in the endocrine disruption.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 446, 00146 Rome, Italy; (G.B.); (M.C.); (S.L.); (F.A.)
| | | | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 446, 00146 Rome, Italy; (G.B.); (M.C.); (S.L.); (F.A.)
| |
Collapse
|
15
|
Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem 2021; 65:985-1001. [PMID: 34328178 DOI: 10.1042/ebc20200174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).
Collapse
|
16
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
17
|
A New Anti-Estrogen Discovery Platform Identifies FDA-Approved Imidazole Anti-Fungal Drugs as Bioactive Compounds against ERα Expressing Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22062915. [PMID: 33805656 PMCID: PMC8000495 DOI: 10.3390/ijms22062915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
17β-estradiol (E2) exerts its physiological effects through the estrogen receptor α (i.e., ERα). The E2:ERα signaling allows the regulation of cell proliferation. Indeed, E2 sustains the progression of ERα positive (ERα+) breast cancers (BCs). The presence of ERα at the BC diagnosis drives their therapeutic treatment with the endocrine therapy (ET), which restrains BC progression. Nonetheless, many patients develop metastatic BCs (MBC) for which a treatment is not available. Consequently, the actual challenge is to complement the drugs available to fight ERα+ primary and MBC. Here we exploited a novel anti-estrogen discovery platform to identify new Food and Drug Administration (FDA)-approved drugs inhibiting E2:ERα signaling to cell proliferation in cellular models of primary and MBC cells. We report that the anti-fungal drugs clotrimazole (Clo) and fenticonazole (Fenti) induce ERα degradation and prevent ERα transcriptional signaling and proliferation in cells modeling primary and metastatic BC. The anti-proliferative effects of Clo and Fenti occur also in 3D cancer models (i.e., tumor spheroids) and in a synergic manner with the CDK4/CDK6 inhibitors palbociclib and abemaciclib. Therefore, Clo and Fenti behave as “anti-estrogens”-like drugs. Remarkably, the present “anti-estrogen” discovery platform represents a valuable method to rapidly identify bioactive compounds with anti-estrogenic activity.
Collapse
|
18
|
Abstract
Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.
Collapse
|
19
|
Ohlsson C, Gustafsson KL, Farman HH, Henning P, Lionikaite V, Movérare-Skrtic S, Sjögren K, Törnqvist AE, Andersson A, Islander U, Bernardi AI, Poutanen M, Chambon P, Lagerquist MK. Phosphorylation site S122 in estrogen receptor α has a tissue-dependent role in female mice. FASEB J 2020; 34:15991-16002. [PMID: 33067917 DOI: 10.1096/fj.201901376rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Estrogen treatment increases bone mass and reduces fat mass but is associated with adverse effects in postmenopausal women. Knowledge regarding tissue-specific estrogen signaling is important to aid the development of new tissue-specific treatments. We hypothesized that the posttranslational modification phosphorylation in estrogen receptor alpha (ERα) may modulate ERα activity in a tissue-dependent manner. Phosphorylation of site S122 in ERα has been shown in vitro to affect ERα activity, but the tissue-specific role in vivo is unknown. We herein developed and phenotyped a novel mouse model with a point mutation at the phosphorylation site 122 in ERα (S122A). Female S122A mice had increased fat mass and serum insulin levels but unchanged serum sex steroid levels, uterus weight, bone mass, thymus weight, and lymphocyte maturation compared to WT mice. In conclusion, phosphorylation site S122 in ERα has a tissue-dependent role with an impact specifically on fat mass in female mice. This study is the first to demonstrate in vivo that a phosphorylation site in a transactivation domain in a nuclear steroid receptor modulates the receptor activity in a tissue-dependent manner.
Collapse
Affiliation(s)
- Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin L Gustafsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Klara Sjögren
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna E Törnqvist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Annica Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Islander
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Angelina I Bernardi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique, National de la Sante et de la Recherche Medicale, ULP, Collège de France, Illkirch-Strasbourg, France
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Fontaine C, Buscato M, Vinel A, Giton F, Raymond-Letron I, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Gourdy P, Milon A, Flouriot G, Ohlsson C, Lenfant F, Arnal JF. The tissue-specific effects of different 17β-estradiol doses reveal the key sensitizing role of AF1 domain in ERα activity. Mol Cell Endocrinol 2020; 505:110741. [PMID: 32004676 DOI: 10.1016/j.mce.2020.110741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/31/2022]
Abstract
17β-Estradiol (E2) action can be mediated by the full-length estrogen receptor alpha (ERα66), and also by the AF1 domain-deficient ERα (ERα46) isoform, but their respective sensitivity to E2 is essentially unknown. We first performed a dose response study using subcutaneous home-made pellets mimicking either metestrus, proestrus or a pharmacological doses of E2, which resulted in plasma concentrations around 3, 30 and 600 pM, respectively. Analysis of the uterus, vagina and bone after chronic exposure to E2 demonstrated dose-dependent effects, with a maximal response reached at the proestrus-dose in wild type mice expressing mainly ERα66. In contrast, in transgenic mice harbouring only an ERα deleted in AF1, these effects of E2 were either strongly shifted rightward (10-100-fold) and/or attenuated, depending on the tissue studied. Finally, experiments in different cell lines transfected with ERα66 or ERα46 also delineated varying profiles of ERα AF1 sensitivity to E2. Altogether, this work emphasizes the importance of dose in the tissue-specific actions of E2 and demonstrates the key sensitizing role of AF1 in ERα activity.
Collapse
Affiliation(s)
- Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Melissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Alexia Vinel
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Frank Giton
- INSERM IMRB U955 Eq07, Créteil, France; AP-HP, Pôle Biologie-Pathologie Henri Mondor, Créteil, France
| | | | - Sung Hoon Kim
- Departments of Molecular and Integrative Biology, and of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology, and of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology, and of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Alain Milon
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR 1085, Rennes, France
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France.
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
21
|
Cipolletti M, Leone S, Bartoloni S, Busonero C, Acconcia F. Real-time measurement of E2: ERα transcriptional activity in living cells. J Cell Physiol 2020; 235:6697-6710. [PMID: 31989654 DOI: 10.1002/jcp.29565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Kinetic analyses of diverse physiological processes have the potential to unveil new aspects of the molecular regulation of cell biology at temporal levels. 17β-estradiol (E2) regulates diverse physiological effects by binding to the estrogen receptor α (ERα), which primarily works as a transcription factor. Although many molecular details of the modulation of ERα transcriptional activity have been discovered including the impact of receptor plasma membrane localization and its relative E2-evoked signaling, the knowledge of real-time ERα transcriptional dynamics in living cells is lacking. Here, we report the generation of MCF-7 and HeLa cells stably expressing a modified luciferase under the control of an E2-sensitive promoter, which activity can be continuously monitored in living cells and show that E2 induces a linear increase in ERα transcriptional activity. Ligand-independent (e.g., epidermal growth factor) receptor activation was also detected in a time-dependent manner. Kinetic profiles of ERα transcriptional activity measured in the presence of both receptor antagonists and inhibitors of ERα plasma membrane localization reveal a biphasic dynamic of receptor behavior underlying novel aspects of receptor-regulated transcriptional effects. Finally, analysis of the rate of the dose-dependent E2 induction of ERα transcriptional activity demonstrates that low doses of E2 induce an effect identical to that determined by high concentrations of E2 as a function of the duration of hormone administration. Overall, we present the characterization of sensitive stable cell lines were to study the kinetic of E2 transcriptional signaling and to identify new aspects of ERα function in different physiological or pathophysiological conditions.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Stefania Bartoloni
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| |
Collapse
|
22
|
Huang S, Chen Y, Liang ZM, Li NN, Liu Y, Zhu Y, Liao D, Zhou XZ, Lu KP, Yao Y, Luo ML. Targeting Pin1 by All-Trans Retinoic Acid (ATRA) Overcomes Tamoxifen Resistance in Breast Cancer via Multifactorial Mechanisms. Front Cell Dev Biol 2019; 7:322. [PMID: 31867329 PMCID: PMC6908472 DOI: 10.3389/fcell.2019.00322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the most prevalent tumor in women worldwide and about 70% patients are estrogen receptor positive. In these cancer patients, resistance to the anticancer estrogen receptor antagonist tamoxifen emerges to be a major clinical obstacle. Peptidyl-prolyl isomerase Pin1 is prominently overexpressed in breast cancer and involves in tamoxifen-resistance. Here, we explore the mechanism and effect of targeting Pin1 using its chemical inhibitor all-trans retinoic acid (ATRA) in the treatment of tamoxifen-resistant breast cancer. We found that Pin1 was up-regulated in tamoxifen-resistant human breast cancer cell lines and tumor tissues from relapsed patients. Pin1 overexpression increased the phosphorylation of ERα on S118 and stabilized ERα protein. ATRA treatment, resembling the effect of Pin1 knockdown, promoted ERα degradation in tamoxifen-resistant cells. Moreover, ATRA or Pin1 knockdown decreased the activation of ERK1/2 and AKT pathways. ATRA also reduced the nuclear expression and transcriptional activity of ERα. Importantly, ATRA inhibited cell viability and proliferation of tamoxifen-resistant human breast cancer cells in vitro. Slow-releasing ATRA tablets reduced the growth of tamoxifen-resistant human breast cancer xenografts in vivo. In conclusion, ATRA-induced Pin1 ablation inhibits tamoxifen-resistant breast cancer growth by suppressing multifactorial mechanisms of tamoxifen resistance simultaneously, which demonstrates an attractive strategy for treating aggressive and endocrine-resistant tumors.
Collapse
Affiliation(s)
- Songyin Huang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Mei Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na-Na Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinghua Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dingzhun Liao
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
PREX1 drives spontaneous bone dissemination of ER+ breast cancer cells. Oncogene 2019; 39:1318-1334. [PMID: 31636389 PMCID: PMC7007387 DOI: 10.1038/s41388-019-1064-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
A significant proportion of breast cancer patients develop bone metastases, but the mechanisms regulating tumor cell dissemination from the primary site to the skeleton remain largely unknown. Using a novel model of spontaneous bone metastasis derived from human ER+ MCF7 cells, molecular profiling revealed increased PREX1 expression in a cell line established from bone-disseminated MCF7 cells (MCF7b), which were more migratory, invasive, and adhesive in vitro compared to parental MCF7 cells, and this phenotype was mediated by PREX1. MCF7b cells grew poorly in the primary tumor site when re-inoculated in vivo, suggesting these cells are primed to grow in the bone, and were enriched in skeletal sites of metastasis over soft tissue sites. Skeletal dissemination from the primary tumor was reversed with PREX1 knockdown, indicating that PREX1 is a key driver of spontaneous dissemination of tumor cells from the primary site to the bone marrow. In breast cancer patients, PREX1 levels are significantly increased in ER+ tumors and associated with invasive disease and distant metastasis. Together, these findings implicate PREX1 in spontaneous bone dissemination and provide a significant advance to the molecular mechanisms by which breast cancer cells disseminate from the primary tumor site to bone.
Collapse
|
24
|
Lung DK, Warrick JW, Hematti P, Callander NS, Mark CJ, Miyamoto S, Alarid ET. Bone Marrow Stromal Cells Transcriptionally Repress ESR1 but Cannot Overcome Constitutive ESR1 Mutant Activity. Endocrinology 2019; 160:2427-2440. [PMID: 31504407 PMCID: PMC6760314 DOI: 10.1210/en.2019-00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022]
Abstract
Estrogen receptor α (ER) is the target of endocrine therapies in ER-positive breast cancer (BC), but their therapeutic effectiveness diminishes with disease progression. Most metastatic BCs retain an ER-positive status, but ER expression levels are reduced. We asked how the bone tumor microenvironment (TME) regulates ER expression. We observed ESR1 mRNA and ER protein downregulation in BC cells treated with conditioned media (CM) from patient-derived, cancer-activated bone marrow stromal cells (BMSCs) and the BMSC cell line HS5. Decreases in ESR1 mRNA were attributed to decreases in nascent transcripts as well as decreased RNA polymerase II occupancy and H3K27Ac levels on the ESR1 promoter and/or distal enhancer (ENH1). Repression extended to neighboring genes of ESR1, including ARMT1 and SYNE1. Although ERK/MAPK signaling pathway can repress ER expression by other TME cell types, MAPK inhibition did not reverse decreases in ER expression by BMSC-CM. ESR1 mRNA and ER protein half-lives in MCF7 cells were unchanged by BMSC-CM treatment. Whereas ER phosphorylation was induced, ER activity was repressed by BMSC-CM as neither ER occupancy at known binding sites nor estrogen response element-luciferase activity was detected. BMSC-CM also repressed expression of ER target genes. In cells expressing the Y537S and D538G ESR1 mutations, BMSC-CM reduced ESR1, but expression of target genes PGR and TFF1 remained significantly elevated compared with that of control wild-type cells. These studies demonstrate that BMSCs can transcriptionally corepress ESR1 with neighboring genes and inhibit receptor activity, but the functional consequences of the BMSC TME can be limited by metastasis-associated ESR1 mutations.
Collapse
Affiliation(s)
- David K Lung
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Jay W Warrick
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Natalie S Callander
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin
| | - Christina J Mark
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Shigeki Miyamoto
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Elaine T Alarid
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Comprehensive Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
- Correspondence: Elaine T. Alarid, PhD, 6151 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, Wisconsin 53705. E-mail: .
| |
Collapse
|
25
|
Pollard KJ, Daniel JM. Nuclear estrogen receptor activation by insulin-like growth factor-1 in Neuro-2A neuroblastoma cells requires endogenous estrogen synthesis and is mediated by mutually repressive MAPK and PI3K cascades. Mol Cell Endocrinol 2019; 490:68-79. [PMID: 30986444 PMCID: PMC6520186 DOI: 10.1016/j.mce.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
Non-canonical mechanisms of estrogen receptor activation may continue to support women's cognitive health long after cessation of ovarian function. These mechanisms of estrogen receptor activation may include ligand-dependent actions via locally synthesized neuroestrogens and ligand-independent actions via growth factor-dependent activation of intracellular kinase cascades. We tested the hypothesis that ligand-dependent and ligand-independent mechanisms interact to activate nuclear estrogen receptors in the Neuro-2A neuroblastoma cell line in the absence of exogenous estrogens. Transcriptional output of estrogen receptors was measured following treatment with insulin-like growth factor-1 (IGF-1) in the presence of specific inhibitors for mitogen-activated protein kinase (MAPK), phosphoinositde-3 kinase (PI3K), and neuroestrogen synthesis. Results indicate that IGF-1-dependent activation of nuclear estrogen receptors is mediated by MAPK, is opposed PI3K, and requires concomitant endogenous neuroestrogen synthesis. We conclude that both cellular signaling context and endogenous ligand availability are important modulators of ligand-independent nuclear estrogen receptor activation.
Collapse
Affiliation(s)
- Kevin J Pollard
- Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Neuroscience Program, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA.
| | - Jill M Daniel
- Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Neuroscience Program, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| |
Collapse
|
26
|
Estrogenic Compounds or Adiponectin Inhibit Cyclic AMP Response to Human Luteinizing Hormone in Mouse Leydig Tumor Cells. BIOLOGY 2019; 8:biology8020045. [PMID: 31212720 PMCID: PMC6627054 DOI: 10.3390/biology8020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
Mouse Leydig Tumor cells (mLTC), transiently expressing cAMP-dependent luciferase, were used to study the influence of sexual steroids and of adiponectin (ADPN) on the cAMP response to luteinizing hormones (LH). While testosterone and progesterone had no significant effect, several molecules with estrogenic activity (17β-estradiol, ethynylestradiol, and bisphenol A) provoked a decrease in intracellular cyclic AMP accumulation under 0.7 nM human LH stimulation. Adiponectin exhibited a bimodal dose-effect on LH response: synergistic between 2–125 ng/mL and inhibitory between 0.5–5 µg/mL. In brief, our data indicate that estrogens and ADPN separately exert rapid (<1 h) inhibitory and/or synergistic effects on cAMP response to LH in mLTC-1 cells. As the inhibitory effect of each estrogenic molecule was observed after only 1-h preincubation, it might be mediated through the G protein-coupled estrogen receptor (GPER) membrane receptor, but this remains to be demonstrated. The synergistic effect with low concentrations of ADPN with human Luteinizing Hormone (hLH) was observed with both fresh and frozen/thawed ADPN. In contrast, the inhibitory effect with high concentrations of ADPN was lost with frozen/thawed ADPN, suggesting deterioration of its polymeric structure.
Collapse
|
27
|
Cairns J, Ingle JN, Kalari KR, Shepherd LE, Kubo M, Goetz MP, Weinshilboum RM, Wang L. The lncRNA MIR2052HG regulates ERα levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1. Breast Cancer Res 2019; 21:47. [PMID: 30944027 PMCID: PMC6448248 DOI: 10.1186/s13058-019-1130-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
Background Our previous genome-wide association study using the MA.27 aromatase inhibitors adjuvant trial identified SNPs in the long noncoding RNA MIR2052HG associated with breast cancer-free interval. MIR2052HG maintained ERα both by promoting AKT/FOXO3-mediated ESR1 transcription and by limiting ubiquitin-mediated ERα degradation. Our goal was to further elucidate MIR2052HG’s mechanism of action. Methods RNA-binding protein immunoprecipitation assays were performed to demonstrate that the transcription factor, early growth response protein 1 (EGR1), worked together with MIR2052HG to regulate that lemur tyrosine kinase-3 (LMTK3) transcription in MCF7/AC1 and CAMA-1 cells. The location of EGR1 on the LMTK3 gene locus was mapped using chromatin immunoprecipitation assays. The co-localization of MIR2052HG RNA and the LMTK3 gene locus was determined using RNA-DNA dual fluorescent in situ hybridization. Single-nucleotide polymorphisms (SNP) effects were evaluated using a panel of human lymphoblastoid cell lines. Results MIR2052HG depletion in breast cancer cells results in a decrease in LMTK3 expression and cell growth. Mechanistically, MIR2052HG interacts with EGR1 and facilitates its recruitment to the LMTK3 promoter. LMTK3 sustains ERα levels by reducing protein kinase C (PKC) activity, resulting in increased ESR1 transcription mediated through AKT/FOXO3 and reduced ERα degradation mediated by the PKC/MEK/ERK/RSK1 pathway. MIR2052HG regulated LMTK3 in a SNP- and aromatase inhibitor-dependent fashion: the variant SNP increased EGR1 binding to LMTK3 promoter in response to androstenedione, relative to wild-type genotype, a pattern that can be reversed by aromatase inhibitor treatment. Finally, LMTK3 overexpression abolished the effect of MIR2052HG on PKC activity and ERα levels. Conclusions Our findings support a model in which the MIR2052HG regulates LMTK3 via EGR1, and LMTK3 regulates ERα stability via the PKC/MEK/ERK/RSK1 axis. These results reveal a direct role of MIR2052HG in LMTK3 regulation and raise the possibilities of targeting MIR2052HG or LMTK3 in ERα-positive breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-019-1130-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lois E Shepherd
- NCIC Clinical Trials Group, Kingston, Ontario, K7L 3N6, Canada
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama City, 230-0045, Japan
| | - Matthew P Goetz
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
The Phosphorylated Estrogen Receptor α (ER) Cistrome Identifies a Subset of Active Enhancers Enriched for Direct ER-DNA Binding and the Transcription Factor GRHL2. Mol Cell Biol 2019; 39:MCB.00417-18. [PMID: 30455249 DOI: 10.1128/mcb.00417-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.
Collapse
|
29
|
Baxter E, Windloch K, Kelly G, Lee JS, Gannon F, Brennan DJ. Molecular basis of distinct oestrogen responses in endometrial and breast cancer. Endocr Relat Cancer 2019; 26:31-46. [PMID: 30121621 DOI: 10.1530/erc-17-0563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Up to 80% of endometrial and breast cancers express oestrogen receptor alpha (ERα). Unlike breast cancer, anti-oestrogen therapy has had limited success in endometrial cancer, raising the possibility that oestrogen has different effects in both cancers. We investigated the role of oestrogen in endometrial and breast cancers using data from The Cancer Genome Atlas (TCGA) in conjunction with cell line studies. Using phosphorylation of ERα (ERα-pSer118) as a marker of transcriptional activation of ERα in TCGA datasets, we found that genes associated with ERα-pSer118 were predominantly unique between tumour types and have distinct regulators. We present data on the alternative and novel roles played by SMAD3, CREB-pSer133 and particularly XBP1 in oestrogen signalling in endometrial and breast cancer.
Collapse
Affiliation(s)
- Eva Baxter
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Karolina Windloch
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Greg Kelly
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jason S Lee
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Frank Gannon
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donal J Brennan
- UCD School of Medicine, Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
30
|
Pollard KJ, Wartman HD, Daniel JM. Previous estradiol treatment in ovariectomized mice provides lasting enhancement of memory and brain estrogen receptor activity. Horm Behav 2018; 102:76-84. [PMID: 29742445 PMCID: PMC6004337 DOI: 10.1016/j.yhbeh.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Jill M Daniel
- Tulane University, Tulane Brain Institute, United States; Tulane University, Department of Psychology, United States
| |
Collapse
|
31
|
Gourdy P, Guillaume M, Fontaine C, Adlanmerini M, Montagner A, Laurell H, Lenfant F, Arnal JF. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab 2018; 15:56-69. [PMID: 29807870 PMCID: PMC6066739 DOI: 10.1016/j.molmet.2018.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.
Collapse
Affiliation(s)
- Pierre Gourdy
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France.
| | - Maeva Guillaume
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France; Service d'Hépatologie et Gastro-Entérologie, CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Marine Adlanmerini
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Alexandra Montagner
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Françoise Lenfant
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| | - Jean-François Arnal
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048/I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Toulouse, Toulouse, France
| |
Collapse
|
32
|
Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, Xiao T, Li W, Qiu X, Buchwalter G, Feiglin A, Abell-Hart K, Fei T, Rao P, Long H, Kwiatkowski N, Zhang T, Gray N, Melchers D, Houtman R, Liu XS, Cohen O, Wagle N, Winer EP, Zhao J, Brown M. Allele-Specific Chromatin Recruitment and Therapeutic Vulnerabilities of ESR1 Activating Mutations. Cancer Cell 2018; 33:173-186.e5. [PMID: 29438694 PMCID: PMC5813700 DOI: 10.1016/j.ccell.2018.01.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/02/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Estrogen receptor α (ER) ligand-binding domain (LBD) mutations are found in a substantial number of endocrine treatment-resistant metastatic ER-positive (ER+) breast cancers. We investigated the chromatin recruitment, transcriptional network, and genetic vulnerabilities in breast cancer models harboring the clinically relevant ER mutations. These mutants exhibit both ligand-independent functions that mimic estradiol-bound wild-type ER as well as allele-specific neomorphic properties that promote a pro-metastatic phenotype. Analysis of the genome-wide ER binding sites identified mutant ER unique recruitment mediating the allele-specific transcriptional program. Genetic screens identified genes that are essential for the ligand-independent growth driven by the mutants. These studies provide insights into the mechanism of endocrine therapy resistance engendered by ER mutations and potential therapeutic targets.
Collapse
Affiliation(s)
- Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA
| | - Johann S Bergholz
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew Pun
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - MacIntosh Cornwell
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Weihan Liu
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Agostina Nardone
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Tengfei Xiao
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Wei Li
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Gilles Buchwalter
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02215, USA
| | - Kayley Abell-Hart
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Teng Fei
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Prakash Rao
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Diane Melchers
- PamGene International BV, Hertogenbosch 5211, the Netherlands
| | - Rene Houtman
- PamGene International BV, Hertogenbosch 5211, the Netherlands
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA
| | - Ofir Cohen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nikhil Wagle
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA
| | - Jean Zhao
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02210, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02210, USA.
| |
Collapse
|
33
|
Fiocchetti M, Cipolletti M, Ascenzi P, Marino M. Dissecting the 17β-estradiol pathways necessary for neuroglobin anti-apoptotic activity in breast cancer. J Cell Physiol 2018; 233:5087-5103. [PMID: 29219195 DOI: 10.1002/jcp.26378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Neuroglobin (NGB) is a relatively recent discovered monomeric heme-protein, which behave in neurons as a sensor of injuring stimuli including oxidative stress, hypoxia, and neurotoxicity. In addition, the anti-apoptotic activity of overexpressed NGB has been reported both in neurons and in cancer cell lines. We recently demonstrated that, NGB functions as a compensatory protein of the steroid hormone 17β-estradiol (E2) protecting cancer cells against the apoptotic death induced by oxidative stress. However, the E2-induced signaling pathways at the root of NGB over-expression and mitochondrial re-localization in breast cancer cells is still elusive. By using a kinase screening library, here, we report that: i) There is a strong positive correlation between NGB and ERα expression and activity in breast cancer cells; ii) The E2-activated phosphatidyl-inositol 3 kinase (PI3K)/protein kinase B (AKT) and protein kinase C (PKC) pathways are necessary to modulate the NGB protein levels; iii) The E2-induced persistent activation of AKT drive NGB to mitochondria; iv) Reactive oxygen species (ROS)-inducing compounds activating rapidly and transiently AKT does not affect the NGB mitochondrial level; and v) High level of NGB into mitochondria are necessary for the pro-survival and anti-apoptotic effect of this globin in cancer cells. As a whole, these results underline the E2 triggered pathways in E2-responsive breast cancer cells that involve NGB as a compensatory protein devoted to cancer cell survival.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Department of Science, University of Roma Tre, Roma, Italy.,Interdepartmental Laboratory for Electron Microscopy, University of Roma Tre, Roma, Italy
| | - Maria Marino
- Department of Science, University of Roma Tre, Roma, Italy
| |
Collapse
|
34
|
Leone S, Busonero C, Acconcia F. A high throughput method to study the physiology of E2:ERα signaling in breast cancer cells. J Cell Physiol 2017; 233:3713-3722. [PMID: 29091270 DOI: 10.1002/jcp.26251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
17β-estradiol (E2) regulates diverse physiological effects including cell proliferation through the estrogen receptor α (ERα), which as a transcription factor drives gene transcription and as an extra-nuclear localized receptor triggers the membrane-dependent activation of diverse kinase cascades. E2 also modifies ERα intracellular levels via diverse intracellular mechanisms. In this way, the E2-acivated ERα integrates signaling cascades with the modulation of receptor intracellular concentration and with the induction of DNA synthesis and ultimately drives cell proliferation. In turn, E2 signaling deregulation can cause many diseases including breast cancer (BC). Recently, we performed a Western blotting (WB)-based screen to identify novel pathways affecting ERα intracellular levels and BC cell proliferation. However, because WB lacks high throughput potential, a high-content method to detect all aspects of E2:ERα signaling (nuclear and extra-nuclear receptor activity, ERα levels, E2-induced DNA synthesis) is desirable. Here, we set up a rapid way to measure E2:ERα signaling in 96-well plate format. To demonstrate its robustness, we also challenged 4OH-tamoxifen resistant (Tam-Res) BC cells with a library of anti-cancer drugs and identified methotrexate (MTX) as a molecule inducing ERα degradation and preventing BC cell proliferation. Overall, our research provides a high-content technique to study the physiology of E2:ERα signaling in cells and further suggests a possible anti-ERα and anti-proliferative use for MTX in Tam-Res BCs.
Collapse
Affiliation(s)
- Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| |
Collapse
|
35
|
Beddowes E, Sammut SJ, Gao M, Caldas C. Predicting treatment resistance and relapse through circulating DNA. Breast 2017; 34 Suppl 1:S31-S35. [PMID: 28694015 DOI: 10.1016/j.breast.2017.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The use of circulating DNA(ctDNA) to provide a non-invasive, personalised genomic snapshot of a patients' tumour has huge potential. Over the past five years this area of research has gained huge momentum. A number of studies in metastatic breast cancer have shown the potential of ctDNA to predict prognosis and treatment response using ctDNA. Further developments have included deeper sequencing using whole exome and shallow whole genome approaches which has the potential to identify new mutations and chromosomal copy number changes which appear upon resistance to treatment. In early breast cancer, recent work utilising personalised digital PCR probes has shown huge potential in predicting disease relapse and the detection of micrometastatic disease which could lead to improved treatment and outcome for these patients. Specific pathways of resistance can also be monitored and liquid biopsy approaches for the detection of ESR1 mutations have been used which could identify patients who have become resistant to particular endocrine therapies. The identification of PIK3CA mutations in plasma has also been shown to predict a higher response rate to specific PI3K inhibitors and could be used as a non-invasive screening tool prior to treatment. Further work on the detection of exosomal miRNA and hypermethylated DNA in plasma have shown promise in terms of specificity for early breast cancer detection and could be used to monitor treatment response. This review will focus on technological advances in the field, early detection of relapse and the detection of tumour-specific genomic alterations which could predict treatment response and resistance in patients with breast cancer.
Collapse
Affiliation(s)
- Emma Beddowes
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Stephen J Sammut
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Meiling Gao
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Department of Oncology, University of Cambridge, and Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom.
| |
Collapse
|
36
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
37
|
Nanjappa MK, Mesa AM, Tevosian SG, de Armas L, Hess RA, Bagchi IC, Cooke PS. Membrane estrogen receptor 1 is required for normal reproduction in male and female mice. JOURNAL OF ENDOCRINOLOGY AND REPRODUCTION : JER 2017; 21:1-14. [PMID: 34321782 PMCID: PMC8315114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Steroid hormones, acting through their cognate nuclear receptors, are critical for many reproductive and non-reproductive functions. Over the past two decades, it has become increasingly clear that in addition to cytoplasmic/nuclear steroid receptors that alter gene transcription when liganded, a small fraction of cellular steroid receptors are localized to the cell membranes, where they mediate rapid steroid hormone effects. 17β-Estradiol (E2), a key steroid hormone for both male and female reproduction, acts predominately through its main receptor, estrogen receptor 1 (ESR1). Most ESR1 is nuclear; however, 5-10% of ESR1 is localized to the cell membrane after being palmitoylated at cysteine 451 in mice. This review discusses reproductive phenotypes of a newly-developed mouse model with a C451A point mutation that precludes membrane targeting of ESR1. This transgenic mouse, termed the nuclear-only ESR1 (NOER) mouse, shows extensive male and female reproductive abnormalities and infertility despite normally functional nuclear ESR1 (nESR1). These results provide the first in vivo evidence that membrane-initiated E2/ESR1 signaling is required for normal male and female reproductive functions and fertility. Signaling mechanisms for membrane ESR1 (mESR1), as well as how mESR1 works with nESR1 to mediate estrogen effects, are still being established. We discuss some possible mechanisms by which mESR1 might facilitate nESR1 signaling, as well as the emerging evidence that mESR1 might be a major mediator of epigenetic effects of estrogens, which are potentially linked to various adult-onset pathologies.
Collapse
Affiliation(s)
| | - Ana M. Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Laura de Armas
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A. Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
38
|
Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:401-426. [PMID: 29224105 DOI: 10.1007/978-3-319-70178-3_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.
Collapse
|
39
|
Kulkoyluoglu E, Madak-Erdogan Z. Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids 2016; 114:41-47. [PMID: 27394959 DOI: 10.1016/j.steroids.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
Estrogens regulate function of reproductive and non-reproductive tissues in healthy and diseased states including breast cancer. They mainly work through estrogen receptor alpha (ERα) and/or estrogen receptor beta (ERβ). There are various ERα targeting agents that have been used for treatment of ER (+) breast tumors. The impact of direct nuclear activity of ER is very well characterized in ER (+) breast cancers and development and progression of endocrine resistance. Recent studies also suggested important roles for extranuclear-initiated ERα pathways, which would decrease the potency and efficiency of ERα targeting agents. In this mini-review, we will discuss the role of nuclear and extra-nuclear ER signaling and how they relate to therapy resistance in breast cancer.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, USA.
| |
Collapse
|
40
|
Fiocchetti M, Cipolletti M, Leone S, Ascenzi P, Marino M. Neuroglobin overexpression induced by the 17β-Estradiol-Estrogen receptor-α Pathway reduces the sensitivity of MCF-7 Breast cancer cell to paclitaxel. IUBMB Life 2016; 68:645-51. [PMID: 27312786 DOI: 10.1002/iub.1522] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/27/2016] [Indexed: 11/11/2022]
Abstract
Although paclitaxel (Taxol) is an active chemotherapeutic agent for the treatment of breast cancer, not all breast tumors are sensitive to this drug. In particular, there is a wide agreement on the low sensitivity of estrogen receptor (ER) α-positive breast cancer to paclitaxel treatment. However, the ERα-based insensitivity to paclitaxel is still elusive. Here, the effect of the E2/ERα-dependent upregulation of neuroglobin (NGB), an antiapoptotic globin, on the reduced sensitivity of breast cancer cells to paclitaxel-induced apoptosis has been evaluated in ERα-containing MCF-7 cells. The E2 pretreatment enhances the ERα activity and significantly impairs paclitaxel-induced apoptosis as evaluated by Annexin V assay and PARP-1 cleavage. NGB displays a pivotal role in the E2/ERα-induced antiapoptotic pathway to abrogate paclitaxel-induced cell death in stable NGB-silenced MCF-7 cell clones. Moreover, in the absence of the active ERα, paclitaxel significantly reduces the NGB cell content. In conclusion, these results highlight the involvement of ERα activation and of E2/ERα-dependent NGB upregulation in the insensitivity of MCF-7 to paclitaxel. These novel findings could have important implications in the development of targeted therapeutics for overcoming paclitaxel insensitivity in ERα-positive human breast cancer. © 2016 IUBMB Life, 68(8):645-651, 2016.
Collapse
Affiliation(s)
| | | | - Stefano Leone
- Department of Science, Roma Tre University, Roma, Italy
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Roma, Italy.,Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Roma, Italy
| | - Maria Marino
- Department of Science, Roma Tre University, Roma, Italy
| |
Collapse
|
41
|
Campesi I, Marino M, Montella A, Pais S, Franconi F. Sex Differences in Estrogen Receptor α and β Levels and Activation Status in LPS-Stimulated Human Macrophages. J Cell Physiol 2016; 232:340-345. [PMID: 27171902 DOI: 10.1002/jcp.25425] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
Abstract
Immune function, inflammation, and atherosclerosis display sex differences and are influenced by 17β-estradiol through estrogen receptors subtypes ERα and ERβ. Male tissues express active ERs, but their possible involvement in inflammation in males has never been assessed. Macrophages express both ERα and ERβ and offer the opportunity to evaluate the role of ER levels and activation in inflammation. We assessed the ability of lipopolysaccharide (LPS) to modulate, in a sex-specific way, the expression and the activation status of ERα and ERβ in blood monocytes-derived macrophages (MDMs) from men and women. MDMs were incubated with 100 ng/ml LPS for 24 h and used to evaluate ERα, ERβ, P-ERα, p38, and P-p38 expression by Western Blotting. In basal conditions, ERα and ERβ were significantly higher in female MDMs than in male MDMs. LPS up-regulated ERα and ERα phosphorylation in both sexes, with a significantly higher effect observed in male MDMs, and down-regulated ERβ level only in female MDMs. p38 and P-p38 proteins, indicative of ERβ activity, did not show sex differences both in basal conditions and after LPS treatment. Finally, ERα/ERβ and P-ERα/ERα ratios were significantly higher in male MDMs than in female ones. Our data indicate, for the first time, that LPS affects ERα but not ERβ activation status. We identify a significant role of ERα in LPS-mediated inflammatory responses in MDMs, which represents an initial step in understanding the influence of sex in the relationship between LPS and ERα. J. Cell. Physiol. 232: 340-345, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy. .,Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| | - Maria Marino
- Cell Physiology Lab, Department of Science, University Roma Tre, Rome, Italy.
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Pais
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy
| |
Collapse
|
42
|
Totta P, Busonero C, Leone S, Marino M, Acconcia F. Dynamin II is required for 17β-estradiol signaling and autophagy-based ERα degradation. Sci Rep 2016; 6:23727. [PMID: 27009360 PMCID: PMC4806323 DOI: 10.1038/srep23727] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
17β-estradiol (E2) regulates diverse physiological effects, including cell proliferation, by binding to estrogen receptor α (ERα). ERα is both a transcription factor that drives E2-sensitive gene expression and an extra-nuclear localized receptor that triggers the activation of diverse kinase cascades. While E2 triggers cell proliferation, it also induces ERα degradation in a typical hormone-dependent feedback loop. Although ERα breakdown proceeds through the 26S proteasome, a role for lysosomes and for some endocytic proteins in controlling ERα degradation has been reported. Here, we studied the role of the endocytic protein dynamin II in E2-dependent ERα signaling and degradation. The results indicate that dynamin II siRNA-mediated knock-down partially prevents E2-induced ERα degradation through the inhibition of an autophagy-based pathway and impairs E2-induced cell proliferation signaling. Altogether, these data demonstrate that dynamin II is required for the E2:ERα signaling of physiological functions and uncovers a role for autophagy in the control of ERα turnover.
Collapse
Affiliation(s)
- Pierangela Totta
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Stefano Leone
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| |
Collapse
|
43
|
Why (multi)targeting of cyclin-dependent kinases is a promising therapeutic option for hormone-positive breast cancer and beyond. Future Med Chem 2015; 8:55-72. [PMID: 26692095 DOI: 10.4155/fmc.15.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Estrogens, via induction of their specific receptors (e.g., ER-α), regulate cell proliferation, differentiation and morphogenesis in mammary epithelium. Cell-cycle progression is driven by activation of complexes consisting of cyclin-dependent kinases (CDKs) and cyclins, which also modulate the activity of ER-α. Loss of control over the cell-cycle results in accelerated cell division and malignant transformation. Thus, a reciprocal relation exists between estrogen signaling and cell proliferation. Based on these findings, a new concept was developed to reduce ER-α activity and bring the cell cycle in transformed cells to heel. Prevention of ER-α activation and control over the deregulated cell cycle was achieved by supplementation with pharmacological CDK inhibitors alone or in combination with selective antiestrogens.
Collapse
|
44
|
Keselman A, Heller N. Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma. Front Immunol 2015; 6:568. [PMID: 26635789 PMCID: PMC4644929 DOI: 10.3389/fimmu.2015.00568] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease that affects ~300 million people worldwide. It is characterized by airway constriction that leads to wheezing, coughing, and shortness of breath. The most common treatments are corticosteroids and β2-adrenergic receptor antagonists, which target inflammation and airway smooth muscle constriction, respectively. The incidence and severity of asthma is greater in women than in men, and women are more prone to develop corticosteroid-resistant or “hard-to-treat” asthma. Puberty, menstruation, pregnancy, menopause, and oral contraceptives are known to contribute to disease outcome in women, suggesting a role for estrogen and other hormones impacting allergic inflammation. Currently, the mechanisms underlying these sex differences are poorly understood, although the effect of sex hormones, such as estrogen, on allergic inflammation is gaining interest. Asthma presents as a heterogeneous disease. In typical Th2-type allergic asthma, interleukin (IL)-4 and IL-13 predominate, driving IgE production and recruitment of eosinophils into the lungs. Chronic Th2-inflammation in the lung results in structural changes and activation of multiple immune cell types, leading to a deterioration of lung function over time. Most immune cells express estrogen receptors (ERα, ERβ, or the membrane-bound G-protein-coupled ER) to varying degrees and can respond to the hormone. Together these receptors have demonstrated the capacity to regulate a spectrum of immune functions, including adhesion, migration, survival, wound healing, and antibody and cytokine production. This review will cover the current understanding of estrogen signaling in allergic inflammation and discuss how this signaling may contribute to sex differences in asthma and allergy.
Collapse
Affiliation(s)
- Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Nicola Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
45
|
Totta P, Gionfra F, Busonero C, Acconcia F. Modulation of 17β-Estradiol Signaling on Cellular Proliferation by Caveolin-2. J Cell Physiol 2015; 231:1219-25. [DOI: 10.1002/jcp.25218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Pierangela Totta
- Department of Sciences; Section Biomedical Sciences and Technology; University Roma Tre; Viale Guglielmo Marconi; Rome Italy
| | - Fabio Gionfra
- Department of Sciences; Section Biomedical Sciences and Technology; University Roma Tre; Viale Guglielmo Marconi; Rome Italy
| | - Claudia Busonero
- Department of Sciences; Section Biomedical Sciences and Technology; University Roma Tre; Viale Guglielmo Marconi; Rome Italy
| | - Filippo Acconcia
- Department of Sciences; Section Biomedical Sciences and Technology; University Roma Tre; Viale Guglielmo Marconi; Rome Italy
| |
Collapse
|
46
|
Wu VS, Kanaya N, Lo C, Mortimer J, Chen S. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer? J Steroid Biochem Mol Biol 2015; 153:45-53. [PMID: 25998416 PMCID: PMC4568143 DOI: 10.1016/j.jsbmb.2015.05.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/11/2022]
Abstract
Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease.
Collapse
Affiliation(s)
- Victoria Shang Wu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Joanne Mortimer
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Medical Center Duarte, CA, United States
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
47
|
Daniel JM, Witty CF, Rodgers SP. Long-term consequences of estrogens administered in midlife on female cognitive aging. Horm Behav 2015; 74:77-85. [PMID: 25917862 PMCID: PMC4573273 DOI: 10.1016/j.yhbeh.2015.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 12/15/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Many of the biochemical, structural, and functional changes that occur as the female brain ages are influenced by changes in levels of estrogens. Administration of estrogens begun during a critical window near menopause is hypothesized to prevent or delay age-associated cognitive decline. However, due to potential health risks women often limit use of estrogen therapy to a few years to treat menopausal symptoms. The long-term consequences for the brain of short-term use of estrogens are unknown. Interestingly, there are preliminary data to suggest that short-term use of estrogens during the menopausal transition may afford long-term cognitive benefits to women as they age. Thus, there is the intriguing possibility that short-term estrogen therapy may provide lasting benefits to the brain and cognition. The focus of the current review is an examination of the long-term impact for cognition of midlife use of estrogens. We review data from our lab and others indicating that the ability of midlife estrogens to impact estrogen receptors in the hippocampus may contribute to its ability to exert lasting impacts on cognition in aging females.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology, Tulane University New Orleans, LA 70118, USA; Program in Neuroscience, Tulane University New Orleans, LA 70118, USA.
| | - Christine F Witty
- Program in Neuroscience, Tulane University New Orleans, LA 70118, USA
| | | |
Collapse
|
48
|
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth. Oncogene 2015; 35:1143-52. [PMID: 26148232 PMCID: PMC4703573 DOI: 10.1038/onc.2015.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 12/14/2022]
Abstract
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mTOR signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the anti-estrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4, and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer datasets. LRIG1, an estrogen-inducible ErbB down-regulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to down-regulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, while cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα down-regulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in anti-estrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways, and blunting therapeutic response to fulvestrant.
Collapse
|
49
|
Bratton MR, Martin EC, Elliott S, Rhodes LV, Collins-Burow BM, McLachlan JA, Wiese TE, Boue SM, Burow ME. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. J Steroid Biochem Mol Biol 2015; 150:17-23. [PMID: 25771071 PMCID: PMC4424142 DOI: 10.1016/j.jsbmb.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha (α) phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER signaling, specifically we demonstrate an inhibition of ribosomal protein S6 kinase, 70 kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ERα through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Steven Elliott
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Lyndsay V Rhodes
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - John A McLachlan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States
| | - Thomas E Wiese
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Stephen M Boue
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, LA, United States
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
50
|
Helzer KT, Hooper C, Miyamoto S, Alarid ET. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. J Mol Endocrinol 2015; 54:R151-67. [PMID: 25943391 PMCID: PMC4457637 DOI: 10.1530/jme-14-0308] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
The nuclear receptor (NR) superfamily is a group of transcriptional regulators that control multiple aspects of both physiology and pathology and are broadly recognized as viable therapeutic targets. While receptor-modulating drugs have been successful in many cases, the discovery of new drug targets is still an active area of research, because resistance to NR-targeting therapies remains a significant clinical challenge. Many successful targeted therapies have harnessed the control of receptor activity by targeting events within the NR signaling pathway. In this review, we explore the role of NR ubiquitylation and discuss how the expanding roles of ubiquitin could be leveraged to identify additional entry points to control receptor function for future therapeutic development.
Collapse
Affiliation(s)
- Kyle T Helzer
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Christopher Hooper
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer ResearchDepartment of Oncology, 6151 Wisconsin Institutes for Medical Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|