1
|
Thomas N, Belanger D, Xu C, Lee H, Hirano K, Iwai K, Polic V, Nyberg KD, Hoff KG, Frenz L, Emrich CA, Kim JW, Chavarha M, Ramanan A, Agresti JJ, Colwell LJ. Engineering highly active nuclease enzymes with machine learning and high-throughput screening. Cell Syst 2025; 16:101236. [PMID: 40081373 DOI: 10.1016/j.cels.2025.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/17/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Optimizing enzymes to function in novel chemical environments is a central goal of synthetic biology, but optimization is often hindered by a rugged fitness landscape and costly experiments. In this work, we present TeleProt, a machine learning (ML) framework that blends evolutionary and experimental data to design diverse protein libraries, and employ it to improve the catalytic activity of a nuclease enzyme that degrades biofilms that accumulate on chronic wounds. After multiple rounds of high-throughput experiments, TeleProt found a significantly better top-performing enzyme than directed evolution (DE), had a better hit rate at finding diverse, high-activity variants, and was even able to design a high-performance initial library using no prior experimental data. We have released a dataset of 55,000 nuclease variants, one of the most extensive genotype-phenotype enzyme activity landscapes to date, to drive further progress in ML-guided design. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Neil Thomas
- X, the Moonshot Factory, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | | | | | | | | | | - Jun W Kim
- X, the Moonshot Factory, Mountain View, CA 94043, USA
| | | | - Abi Ramanan
- X, the Moonshot Factory, Mountain View, CA 94043, USA
| | | | - Lucy J Colwell
- Google DeepMind, Cambridge, MA 02142, USA; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| |
Collapse
|
2
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
3
|
Angani MT, Owen JP, Maddison BC, Gough KC. Isolation of phage-antibodies against Eimeria species that infect chickens. J Immunol Methods 2024; 534:113759. [PMID: 39326781 DOI: 10.1016/j.jim.2024.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Eimeria is one of the most economically important pathogens in poultry production. Diagnosis of infection has the potential to inform treatment and prevention strategies. Here, phage display technology was used to isolate single chain antibodies (scFvs) that had a broad specificity against oocysts from the seven pathogenic species of Eimeria found in poultry. Three such scFvs, representing 2 scFv HCDR3 motifs, were isolated by random picks of clones isolated after five rounds of iterative enrichment (panning) of phage against the seven Eimeria species. Phage-antibody binding to Eimeria oocysts was also interrogated using next generation sequencing of the HCDR3 region of scFv genes contained with phage particles. This analysis demonstrated that the most abundant scFv found after 5 rounds of panning accounted for over >90 % of scFvs. Furthermore, the three scFvs isolated from random picks of clones were the only antibodies that were enriched through each round of panning. They were also seen to be enriched through the stages of phage panning that included binding to the Eimeria oocysts (selection phase) and to be selected against during the stages that consisted solely of phage propagation (growth only phase). The NGS data was further analysed to identify an additional scFv that demonstrated specific enrichment against 3 Eimeria species at the third round of panning and had the same pattern of enrichment during the selection and growth phases of panning. Rescue and analysis of this phage-scFv demonstrated a binder with broad specificity for Eimeria species. The four antibodies with broad specificity detected all seven Eimeria species in immunoassays. The binding of one such scFv that recognised all species was further validated by fluorescent microscopy.
Collapse
Affiliation(s)
- Mary T Angani
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK.
| | - Jonathan P Owen
- ADAS Biotechnology, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK.
| | - Ben C Maddison
- ADAS Biotechnology, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK.
| | - Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK.
| |
Collapse
|
4
|
Chen Y, Ma S, Zhou M, Yao Y, Gao X, Fan X, Wu G. Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: a comprehensive review. Analyst 2024; 149:4583-4599. [PMID: 39140248 DOI: 10.1039/d4an00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Small molecules find extensive application in medicine, food safety, and environmental studies, particularly in biomedicine. Immunoassay technology, leveraging the specific recognition between antigens and antibodies, offers a superior alternative to traditional physical and chemical analysis methods. This approach allows for the rapid and accurate detection of small molecular compounds, owing to its high sensitivity, specificity, and swift analytical capabilities. However, small molecular compounds often struggle to effectively stimulate an immune response due to their low molecular weight, weak antigenicity, and limited antigenic epitopes. To overcome this, coupling small molecule compounds with macromolecular carriers to form complete antigens is typically required to induce specific antibodies in animals. Consequently, the preparation of small-molecule artificial antigens and the production of efficient specific antibodies are crucial for achieving precise immunoassays. This paper reviews recent advancements in small molecule antibody preparation technology, emphasizing the design and synthesis of haptens, the coupling of haptens with carriers, the purification and identification of artificial antigens, and the preparation of specific antibodies. Additionally, it evaluates the current technological shortcomings and limitations while projecting future trends in artificial antigen synthesis and antibody preparation technology.
Collapse
Affiliation(s)
- Yaya Chen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Shuo Ma
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Meiling Zhou
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Yuming Yao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xun Gao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Xiaobo Fan
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
5
|
Puglioli S, Fabbri M, Comacchio C, Alvigini L, De Luca R, Oehler S, Gilardoni E, Bassi G, Cazzamalli S, Neri D, Favalli N. Permutational Encoding Strategy Accelerates HIT Validation from Single-Stranded DNA-Encoded Libraries. Bioconjug Chem 2024; 35:1033-1043. [PMID: 38963407 DOI: 10.1021/acs.bioconjchem.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
DNA-Encoded Libraries (DELs) allow the parallel screening of millions of compounds for various applications, including de novo discovery or affinity maturation campaigns. However, library construction and HIT resynthesis can be cumbersome, especially when library members present an unknown stereochemistry. We introduce a permutational encoding strategy suitable for the construction of highly pure single-stranded single-pharmacophore DELs, designed to distinguish isomers at the sequencing level (e.g., stereoisomers, regio-isomers, and peptide sequences). This approach was validated by synthesizing a mock 921,600-member 4-amino-proline single-stranded DEL ("DEL1"). While screening DEL1 against different targets, high-throughput sequencing results showed selective enrichment of the most potent stereoisomers, with enrichment factors that outperform conventional encoding strategies. The versatility of our methodology was additionally validated by encoding 24 scaffolds derived from different permutations of the amino acid sequence of a previously described cyclic peptide targeting Fibroblast Activation Protein (FAP-2286). The resulting library ("DEL2") was interrogated against human FAP, showing selective enrichment of five cyclic peptides. We observed a direct correlation between enrichment factors and on-DNA binding affinities. The presented encoding methodology accelerates drug discovery by facilitating library synthesis and streamlining HIT resynthesis while enhancing enrichment factors at the DEL sequencing level. This facilitates the identification of HIT candidates prior to medicinal chemistry and affinity maturation campaigns.
Collapse
Affiliation(s)
- Sara Puglioli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Mosè Fabbri
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Claudia Comacchio
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Laura Alvigini
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Roberto De Luca
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Sebastian Oehler
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Ettore Gilardoni
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Gabriele Bassi
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Samuele Cazzamalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 1-5/10, Zürich CH-8093, Switzerland
- Philogen S.p.A., Via Bellaria, 35, Sovicille, SI IT-53018, Italy
| | - Nicholas Favalli
- R&D Department, Philochem AG, Libernstrasse 3, Otelfingen, ZH CH-8112, Switzerland
| |
Collapse
|
6
|
Keller M, Petrov D, Gloger A, Dietschi B, Jobin K, Gradinger T, Martinelli A, Plais L, Onda Y, Neri D, Scheuermann J. Highly pure DNA-encoded chemical libraries by dual-linker solid-phase synthesis. Science 2024; 384:1259-1265. [PMID: 38870307 DOI: 10.1126/science.adn3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
The first drugs discovered using DNA-encoded chemical library (DEL) screens have entered late-stage clinical development. However, DEL technology as a whole still suffers from poor chemical purity resulting in suboptimal performance. In this work, we report a technique to overcome this issue through self-purifying release of the DEL after magnetic bead-based synthesis. Both the first and last building blocks of each assembled library member were linked to the beads by tethers that could be cleaved by mutually orthogonal chemistry. Sequential cleavage of the first and last tether, with washing in between, ensured that the final library comprises only the fully complete compounds. The outstanding purity attained by this approach enables a direct correlation of chemical display and encoding, allows for an increased chemical reaction scope, and facilitates the use of more diversity elements while achieving greatly improved signal-to-noise ratios in selections.
Collapse
Affiliation(s)
- Michelle Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dimitar Petrov
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Bastien Dietschi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Kilian Jobin
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Timon Gradinger
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Yuichi Onda
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Ferrara F, Fanni A, Teixeira AAR, Molina E, Leal-Lopes C, DeAguero A, D'Angelo S, Erasmus MF, Spector L, Rodriguez Carnero LA, Li J, Pohl TJ, Suslov N, Desrumeaux K, McMahon C, Kathuria S, Bradbury ARM. A next-generation Fab library platform directly yielding drug-like antibodies with high affinity, diversity, and developability. MAbs 2024; 16:2394230. [PMID: 39192463 DOI: 10.1080/19420862.2024.2394230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
We previously described an in vitro single-chain fragment (scFv) library platform originally designed to generate antibodies with excellent developability properties. The platform design was based on the use of clinical antibodies as scaffolds into which replicated natural complementarity-determining regions purged of sequence liabilities were inserted, and the use of phage and yeast display to carry out antibody selection. In addition to being developable, antibodies generated using our platform were extremely diverse, with most campaigns yielding sub-nanomolar binders. Here, we describe a platform advancement that incorporates Fab phage display followed by single-chain antibody-binding fragment Fab (scFab) yeast display. The scFab single-gene format provides balanced expression of light and heavy chains, with enhanced conversion to IgG, thereby combining the advantages of scFvs and Fabs. A meticulously engineered, quality-controlled Fab phage library was created using design principles similar to those used to create the scFv library. A diverse panel of binding scFabs, with high conversion efficiency to IgG, was isolated against two targets. This study highlights the compatibility of phage and yeast display with a Fab semi-synthetic library design, offering an efficient approach to generate drug-like antibodies directly, facilitating their conversion to potential therapeutic candidates.
Collapse
Affiliation(s)
| | - Adeline Fanni
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | - Esteban Molina
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | | | - Sara D'Angelo
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | - Laura Spector
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | - Jianquan Li
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | - Thomas J Pohl
- Specifica LLC, a Q2 Solutions Company, Santa Fe, NM, USA
| | | | | | | | | | | |
Collapse
|
8
|
Shuai RW, Ruffolo JA, Gray JJ. IgLM: Infilling language modeling for antibody sequence design. Cell Syst 2023; 14:979-989.e4. [PMID: 37909045 PMCID: PMC11018345 DOI: 10.1016/j.cels.2023.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/14/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Discovery and optimization of monoclonal antibodies for therapeutic applications relies on large sequence libraries but is hindered by developability issues such as low solubility, high aggregation, and high immunogenicity. Generative language models, trained on millions of protein sequences, are a powerful tool for the on-demand generation of realistic, diverse sequences. We present the Immunoglobulin Language Model (IgLM), a deep generative language model for creating synthetic antibody libraries. Compared with prior methods that leverage unidirectional context for sequence generation, IgLM formulates antibody design based on text-infilling in natural language, allowing it to re-design variable-length spans within antibody sequences using bidirectional context. We trained IgLM on 558 million (M) antibody heavy- and light-chain variable sequences, conditioning on each sequence's chain type and species of origin. We demonstrate that IgLM can generate full-length antibody sequences from a variety of species and its infilling formulation allows it to generate infilled complementarity-determining region (CDR) loop libraries with improved in silico developability profiles. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Richard W Shuai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Jeffrey A Ruffolo
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Puglioli S, Oehler S, Prati L, Scheuermann J, Bassi G, Cazzamalli S, Neri D, Favalli N. Impact of library input on the hit discovery rate in DNA-encoded chemical library selections. Chem Sci 2023; 14:12026-12033. [PMID: 37969600 PMCID: PMC10631129 DOI: 10.1039/d3sc03688j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 11/17/2023] Open
Abstract
DNA-encoded chemical libraries (DELs) are powerful drug discovery tools, enabling the parallel screening of millions of DNA-barcoded compounds. We investigated how the DEL input affects the hit discovery rate in DEL screenings. Evaluation of selection fingerprints revealed that the use of approximately 105 copies of each library member is required for the confident identification of nanomolar hits, using generally applicable methodologies.
Collapse
Affiliation(s)
- Sara Puglioli
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | | | - Luca Prati
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Zürich Switzerland
| | - Gabriele Bassi
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
| | | | - Dario Neri
- Philochem AG, R&D Department 8112 Otelfingen Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Zürich Switzerland
| | | |
Collapse
|
10
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
11
|
Kumari S, Singh K, Singh N, Khan S, Kumar A. Phage display and human disease detection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:151-172. [PMID: 37770169 DOI: 10.1016/bs.pmbts.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage display is a significant and active molecular method and has continued crucial for investigative sector meanwhile its unearthing in 1985. This practice has numerous benefits: the association among physiology and genome, the massive variety of variant proteins showed in sole collection and the elasticity of collection that can be achieved. It suggests a diversity of stages for manipulating antigen attachment; yet, variety and steadiness of exhibited library are an alarm. Additional improvements, like accumulation of non-canonical amino acids, resulting in extension of ligands that can be recognized through collection, will support in expansion of the probable uses and possibilities of technology. Epidemic of COVID-19 had taken countless lives, and while indicative prescriptions were provided to diseased individuals, still no prevention was observed for the contamination. Phage demonstration has presented an in-depth understanding into protein connections included in pathogenesis. Phage display knowledge is developing as an influential, inexpensive, quick, and effectual method to grow novel mediators for the molecular imaging and analysis of cancer.
Collapse
Affiliation(s)
- Sonu Kumari
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Krati Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Neha Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Suphiya Khan
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
12
|
Choi HL, Yang HR, Shin HG, Hwang K, Kim JW, Lee JH, Ryu T, Jung Y, Lee S. Generation and Next-Generation Sequencing-Based Characterization of a Large Human Combinatorial Antibody Library. Int J Mol Sci 2023; 24:ijms24066011. [PMID: 36983085 PMCID: PMC10057307 DOI: 10.3390/ijms24066011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody phage display is a key technology for the discovery and development of target-specific monoclonal antibodies (mAbs) for use in research, diagnostics, and therapy. The construction of a high-quality antibody library, with larger and more diverse antibody repertoires, is essential for the successful development of phage display-derived mAbs. In this study, a large human combinatorial single-chain variable fragment library (1.5 × 1011 colonies) was constructed from Epstein-Barr virus-infected human peripheral blood mononuclear cells stimulated with a combination of two of the activators of human B cells, the Toll-like receptor 7/8 agonist R848 and interleukin-2. Next-generation sequencing analysis with approximately 1.9 × 106 and 2.7 × 106 full-length sequences of heavy chain variable (VH) and κ light chain variable (Vκ) domains, respectively, revealed that the library consists of unique VH (approximately 94%) and Vκ (approximately 91%) sequences with greater diversity than germline sequences. Lastly, multiple unique mAbs with high affinity and broad cross-species reactivity could be isolated from the library against two therapeutically relevant target antigens, validating the library quality. These findings suggest that the novel antibody library we have developed may be useful for the rapid development of target-specific phage display-derived recombinant human mAbs for use in therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyusang Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
13
|
Identification and Structure of Epitopes on Cashew Allergens Ana o 2 and Ana o 3 Using Phage Display. Molecules 2023; 28:molecules28041880. [PMID: 36838874 PMCID: PMC9964899 DOI: 10.3390/molecules28041880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Cashew (Anacardium occidentale L.) is a commercially important plant. Cashew nuts are a popular food source that belong to the tree nut family. Tree nuts are one of the eight major food allergens identified by the Food and Drug Administration in the USA. Allergies to cashew nuts cause severe and systemic immune reactions. Tree nut allergies are frequently fatal and are becoming more common. AIM We aimed to identify the key allergenic epitopes of cashew nut proteins by correlating the phage display epitope prediction results with bioinformatics analysis. DESIGN We predicted and experimentally confirmed cashew nut allergen antigenic peptides, which we named Ana o 2 (cupin superfamily) and Ana o 3 (prolamin superfamily). The Ana o 2 and Ana o 3 epitopes were predicted using DNAstar and PyMoL (incorporated in the Swiss-model package). The predicted weak and strong epitopes were synthesized as peptides. The related phage library was built. The peptides were also tested using phage display technology. The expressed antigens were tested and confirmed using microtiter plates coated with pooled human sera from patients with cashew nut allergies or healthy controls. RESULTS The Ana o 2 epitopes were represented by four linear peptides, with the epitopes corresponding to amino acids 108-111, 113-119, 181-186, and 218-224. Furthermore, the identified Ana o 3 epitopes corresponding to amino acids 10-24, 13-27, 39-49, 66-70, 101-106, 107-114, and 115-122 were also screened out and chosen as the key allergenic epitopes. DISCUSSION The Ana o 3 epitopes accounted for more than 40% of the total amino acid sequence of the protein; thus, Ana o 3 is potentially more allergenic than Ana o 2. CONCLUSIONS The bioinformatic epitope prediction produced subpar results in this study. Furthermore, the phage display method was extremely effective in identifying the allergenic epitopes of cashew nut proteins. The key allergenic epitopes were chosen, providing important information for the study of cashew nut allergens.
Collapse
|
14
|
Yang Z, Wu Z, Santich BH, Liu J, Liu C, Cheung NKV. Targeting Intracellular Antigens with pMHC-Binding Antibodies: A Phage Display Approach. Methods Mol Biol 2023; 2702:327-345. [PMID: 37679628 DOI: 10.1007/978-1-0716-3381-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Antibodies that bind peptide-MHC (pMHC) complex in a manner akin to T cell receptor (TCR) have not only helped in understanding the mechanism of TCR-pMHC interactions in the context of T cell biology but also spurred considerable interest in recent years as potential cancer therapeutics. Traditional methods to generate such antibodies using hybridoma and B cell sorting technologies are sometimes inadequate, possibly due to the small contribution of peptide to the overall B cell epitope space on the surface of the pMHC complex (typical peptide MW = 1 kDa versus MHC MW = 45 kDa) and to the multiple efficiency limiting steps inherent in these methods. In this chapter we describe phage display approaches, including a cell panning strategy, for the rapid generation of such antibodies with high specificity and affinity.
Collapse
Affiliation(s)
| | - Zhihao Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian H Santich
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Cheng Liu
- Eureka Therapeutics, Emeryville, CA, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Peissert F, Plüss L, Giudice AM, Ongaro T, Villa A, Elsayed A, Nadal L, Dakhel Plaza S, Scietti L, Puca E, De Luca R, Forneris F, Neri D. Selection of a PD-1 blocking antibody from a novel fully human phage display library. Protein Sci 2022; 31:e4486. [PMID: 36317676 PMCID: PMC9667898 DOI: 10.1002/pro.4486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death protein 1 (PD-1) is an immunoregulatory target which is recognized by different monoclonal antibodies, approved for the therapy of multiple types of cancer. Different anti-PD-1 antibodies display different therapeutic properties and there is a pharmaceutical interest to generate and characterize novel anti-PD-1 antibodies. We screened multiple human antibody phage display libraries to target novel epitopes on the PD-1 surface and we discovered a unique and previously undescribed binding specificity (termed D12) from a new antibody library (termed AMG). The library featured antibody fragments in single-chain fragment variable (scFv) format, based on the IGHV3-23*03 (VH ) and IGKV1-39*01 (Vκ) genes. The D12 antibody was characterized by surface plasmon resonance (SPR), cross-reacted with the Cynomolgus monkey antigen and bound to primary human T cells, as shown by flow cytometry. The antibody blocked the PD-1/PD-L1 interaction in vitro with an EC50 value which was comparable to the one of nivolumab, a clinically approved antibody. The fine details of the interaction between D12 and PD-1 were elucidated by x-ray crystallography of the complex at a 3.5 Å resolution, revealing an unprecedented conformational change at the N-terminus of PD-1 following D12 binding, as well as partial overlap with the binding site for the cognate PD-L1 and PD-L2 ligands which prevents their binding. The results of the study suggest that the expansion of antibody library repertoires may facilitate the discovery of novel binding specificities with unique properties that hold promises for the modulation of PD-1 activity in vitro and in vivo.
Collapse
Affiliation(s)
- Frederik Peissert
- Philochem AGOtelfingenSwitzerland
- Biomolecular Sciences and BiotechnologyUniversity School for Advanced Studies IUSS PaviaPaviaItaly
| | - Louis Plüss
- Philochem AGOtelfingenSwitzerland
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland
| | | | - Tiziano Ongaro
- The Armenise‐Harvard Laboratory of Structural Biology, Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | - Abdullah Elsayed
- Philochem AGOtelfingenSwitzerland
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland
| | | | | | - Luigi Scietti
- The Armenise‐Harvard Laboratory of Structural Biology, Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | | | | | - Federico Forneris
- The Armenise‐Harvard Laboratory of Structural Biology, Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Dario Neri
- Philochem AGOtelfingenSwitzerland
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich)ZürichSwitzerland
- Philogen SpASovicille (SI)Italy
| |
Collapse
|
16
|
André AS, Moutinho I, Dias JNR, Aires-da-Silva F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol 2022; 13:962124. [PMID: 36225354 PMCID: PMC9549074 DOI: 10.3389/fmicb.2022.962124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of hybridoma technology, described by Kohler and Milstein in 1975, and the resulting ability to generate monoclonal antibodies (mAbs) initiated a new era in antibody research and clinical development. However, limitations of the hybridoma technology as a routine antibody generation method in conjunction with high immunogenicity responses have led to the development of alternative approaches for the streamlined identification of most effective antibodies. Within this context, display selection technologies such as phage display, ribosome display, yeast display, bacterial display, and mammalian cell surface display have been widely promoted over the past three decades as ideal alternatives to traditional hybridoma methods. The display of antibodies on phages is probably the most widespread and powerful of these methods and, since its invention in late 1980s, significant technological advancements in the design, construction, and selection of antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. With evolving novel disease targets and the emerging of a new generation of therapeutic antibodies, such as bispecific antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapies, it is clear that phage display is expected to continue to play a central role in antibody development. Nevertheless, for non-standard and more demanding cases aiming to generate best-in-class therapeutic antibodies against challenging targets and unmet medical needs, in vivo phage display selections by which phage libraries are directly injected into animals or humans for isolating and identifying the phages bound to specific tissues offer an advantage over conventional in vitro phage display screening procedures. Thus, in the present review, we will first summarize a general overview of the antibody therapeutic market, the different types of antibody fragments, and novel engineered variants that have already been explored. Then, we will discuss the state-of-the-art of in vivo phage display methodologies as a promising emerging selection strategy for improvement antibody targeting and drug delivery properties.
Collapse
Affiliation(s)
- Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Isa Moutinho
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Joana N. R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
17
|
Second-generation DNA-encoded multiple display on a constant macrocyclic scaffold enabled by an orthogonal protecting group strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
19
|
Aikawa C, Kawashima K, Fukuzaki C, Nakakido M, Murase K, Nozawa T, Tsumoto K, Nakagawa I. Single-chain variable fragment (scFv) targeting streptolysin O controls group A Streptococcus infection. Biochem Biophys Res Commun 2021; 566:177-183. [PMID: 34129965 DOI: 10.1016/j.bbrc.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) causes a range of human diseases, including life-threatening and severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS). Several antibiotics, including penicillin, are effective against GAS. Still, invasive GAS diseases have a high mortality rate (>30%). Clinical isolates from STSS patients show higher expression of pore-forming streptolysin O (SLO). Thus, SLO is an important pathogenic factor for GAS and may be an effective target for treatment of GAS disease. We succeeded in obtaining a single-chain variable fragment (scFv) SLO-I4 capable of recognizing SLO, which significantly inhibited GAS-induced cell lytic activity in erythrocytes, macrophages, and epithelial cells. In epithelial cells, SLO-I4 significantly reduced SLO-mediated endosomal membrane damage, which consequently prevented bacterial escape from the endosome. The effectiveness of anti-SLO scFv in counteracting SLO function suggests that it might be beneficial against GAS infections.
Collapse
Affiliation(s)
- Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Kiyosumi Kawashima
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Chihiro Fukuzaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 108-8639, Japan; Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501, Japan.
| |
Collapse
|
20
|
Favalli N, Bassi G, Pellegrino C, Millul J, De Luca R, Cazzamalli S, Yang S, Trenner A, Mozaffari NL, Myburgh R, Moroglu M, Conway SJ, Sartori AA, Manz MG, Lerner RA, Vogt PK, Scheuermann J, Neri D. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat Chem 2021; 13:540-548. [PMID: 33833446 PMCID: PMC8405038 DOI: 10.1038/s41557-021-00660-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023]
Abstract
The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.
Collapse
Affiliation(s)
- Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | | | | | | | - Su Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Richard A Lerner
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, USA
| | - Peter K Vogt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
21
|
Kiguchi Y, Oyama H, Morita I, Nagata Y, Umezawa N, Kobayashi N. The V H framework region 1 as a target of efficient mutagenesis for generating a variety of affinity-matured scFv mutants. Sci Rep 2021; 11:8201. [PMID: 33859250 PMCID: PMC8050046 DOI: 10.1038/s41598-021-87501-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
In vitro affinity-maturation potentially generates antibody fragments with enhanced antigen-binding affinities that allow for developing more sensitive diagnostic systems and more effective therapeutic agents. Site-directed mutagenesis targeting “hot regions,” i.e., amino acid substitutions therein frequently increase the affinities, is desirable for straightforward discovery of valuable mutants. We here report two “designed” site-directed mutagenesis (A and B) targeted the N-terminal 1–10 positions of the VH framework region 1 that successfully improved an anti-cortisol single-chain Fv fragment (Ka, 3.6 × 108 M−1). Mutagenesis A substituted the amino acids at the position 1–3, 5–7, 9 and 10 with a limited set of substitutions to generate only 1,536 different members, while mutagenesis B inserted 1–6 random residues between the positions 6 and 7. Screening the resulting bacterial libraries as scFv-phage clones with a clonal array profiling system provided 21 genetically unique scFv mutants showing 17–31-fold increased affinity with > 109 M−1Ka values. Among the mutants selected from the library A and B, scFv mA#18 (with five-residue substitutions) and mB1-3#130 (with a single residue insertion) showed the greatest Ka value, 1.1 × 1010 M−1.
Collapse
Affiliation(s)
- Yuki Kiguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yasuhiro Nagata
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Naoko Umezawa
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
22
|
Rossotti MA, Bélanger K, Henry KA, Tanha J. Immunogenicity and humanization of single‐domain antibodies. FEBS J 2021; 289:4304-4327. [DOI: 10.1111/febs.15809] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Rossotti
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kasandra Bélanger
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
| | - Kevin A. Henry
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| | - Jamshid Tanha
- Life Sciences Division Human Health Therapeutics Research Centre National Research Council Canada Ottawa Canada
- Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa Canada
| |
Collapse
|
23
|
Shadman Z, Farajnia S, Pazhang M, Tohidkia M, Rahbarnia L, Najavand S, Toraby S. Isolation and characterizations of a novel recombinant scFv antibody against exotoxin A of Pseudomonas aeruginosa. BMC Infect Dis 2021; 21:300. [PMID: 33761869 PMCID: PMC7992942 DOI: 10.1186/s12879-021-05969-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is the leading cause of nosocomial infections, especially in people with a compromised immune system. Targeting virulence factors by neutralizing antibodies is a novel paradigm for the treatment of antibiotic-resistant pseudomonas infections. In this respect, exotoxin A is one of the most potent virulence factors in P. aeruginosa. The present study was carried out to identify a novel human scFv antibody against the P. aeruginosa exotoxin A domain I (ExoA-DI) from a human scFv phage library. METHODS The recombinant ExoA-DI of P. aeruginosa was expressed in E. coli, purified by Ni-NTA column, and used for screening of human antibody phage library. A novel screening procedure was conducted to prevent the elimination of rare specific clones. The phage clone with high reactivity was evaluated by ELISA and western blot. RESULTS Based on the results of polyclonal phage ELISA, the fifth round of biopanning leads to the isolation of several ExoA-DI reactive clones. One positive clone with high affinity was selected by monoclonal phage ELISA and used for antibody expression. The purified scFv showed high reactivity with the recombinant domain I and full-length native exotoxin A. CONCLUSIONS The purified anti-exotoxin A scFv displayed high specificity against exotoxin A. The human scFv identified in this study could be the groundwork for developing a novel therapeutic agent to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Zahra Shadman
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cellular and Molecular Biology, Faculty of Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Pazhang
- Department of Cellular and Molecular Biology, Faculty of Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Najavand
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayna Toraby
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
25
|
Kim YJ, Lee MH, Lee SR, Chung HY, Kim K, Lee TG, Kim DY. Neutralizing Human Antibodies against Severe Acute Respiratory Syndrome Coronavirus 2 Isolated from a Human Synthetic Fab Phage Display Library. Int J Mol Sci 2021; 22:1913. [PMID: 33671877 PMCID: PMC7918989 DOI: 10.3390/ijms22041913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since it was first reported in Wuhan, China, in 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic outbreak resulting in a tremendous global threat due to its unprecedented rapid spread and an absence of a prophylactic vaccine or therapeutic drugs treating the virus. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a key player in the viral entry into cells through its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor protein, and the RBD has therefore been crucial as a drug target. In this study, we used phage display to develop human monoclonal antibodies (mAbs) that neutralize SARS-CoV-2. A human synthetic Fab phage display library was panned against the RBD of the SARS-CoV-2 spike protein (SARS-2 RBD), yielding ten unique Fabs with moderate apparent affinities (EC50 = 19-663 nM) for the SARS-2 RBD. All of the Fabs showed no cross-reactivity to the MERS-CoV spike protein, while three Fabs cross-reacted with the SARS-CoV spike protein. Five Fabs showed neutralizing activities in in vitro assays based on the Fabs' activities antagonizing the interaction between the SARS-2 RBD and ACE2. Reformatting the five Fabs into immunoglobulin Gs (IgGs) greatly increased their apparent affinities (KD = 0.08-1.0 nM), presumably due to the effects of avidity, without compromising their non-aggregating properties and thermal stability. Furthermore, two of the mAbs (D12 and C2) significantly showed neutralizing activities on pseudo-typed and authentic SARS-CoV-2. Given their desirable properties and neutralizing activities, we anticipate that these human anti-SARS-CoV-2 mAbs would be suitable reagents to be further developed as antibody therapeutics to treat COVID-19, as well as for diagnostics and research tools.
Collapse
|
26
|
Ferrara F, Teixeira AA, Naranjo L, Erasmus MF, D'Angelo S, Bradbury ARM. Exploiting next-generation sequencing in antibody selections - a simple PCR method to recover binders. MAbs 2021; 12:1701792. [PMID: 31829073 PMCID: PMC7009332 DOI: 10.1080/19420862.2019.1701792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antibody discovery using invitro display technologies such as phage and/or yeast display has become acornerstone in many research and development projects, including the creation of new drugs for clinical use. Traditionally, after the selection phase, random clones are isolated for binding validation and Sanger sequencing. More recently, next-generation sequencing (NGS) technology has allowed deeper insight into the antibody population after aselection campaign, enabling the identification of many more specific binders. However, this approach only provides the DNA sequences of potential binders, the properties of which need to be fully elucidated by obtaining corresponding clones and expressing them for further validation. Here we present arapid novel method to harvest potential clones identified by NGS that uses asimple PCR and yeast recombination approach. The protocol was tested in selections against three different targets and was able to recover clones at an abundance level that would be impractical to identify using traditional methods.
Collapse
Affiliation(s)
| | - Andre A Teixeira
- Specifica Inc., Santa Fe, NM, USA.,Bioscience Division, New Mexico Consortium, Los Alamos, NM, USA
| | | | | | | | | |
Collapse
|
27
|
Azevedo Reis Teixeira A, Erasmus MF, D’Angelo S, Naranjo L, Ferrara F, Leal-Lopes C, Durrant O, Galmiche C, Morelli A, Scott-Tucker A, Bradbury ARM. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. MAbs 2021; 13:1980942. [PMID: 34850665 PMCID: PMC8654478 DOI: 10.1080/19420862.2021.1980942] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022] Open
Abstract
Therapeutic antibodies must have "drug-like" properties. These include high affinity and specificity for the intended target, biological activity, and additional characteristics now known as "developability properties": long-term stability and resistance to aggregation when in solution, thermodynamic stability to prevent unfolding, high expression yields to facilitate manufacturing, low self-interaction, among others. Sequence-based liabilities may affect one or more of these characteristics. Improving the stability and developability of a lead antibody is typically achieved by modifying its sequence, a time-consuming process that often results in reduced affinity. Here we present a new antibody library format that yields high-affinity binders with drug-like developability properties directly from initial selections, reducing the need for further engineering or affinity maturation. The innovative semi-synthetic design involves grafting natural complementarity-determining regions (CDRs) from human antibodies into scaffolds based on well-behaved clinical antibodies. HCDR3s were amplified directly from B cells, while the remaining CDRs, from which all sequence liabilities had been purged, were replicated from a large next-generation sequencing dataset. By combining two in vitro display techniques, phage and yeast display, we were able to routinely recover a large number of unique, highly developable antibodies against clinically relevant targets with affinities in the subnanomolar to low nanomolar range. We anticipate that the designs and approaches presented here will accelerate the drug development process by reducing the failure rate of leads due to poor antibody affinities and developability.Abbreviations: AC-SINS: affinity-capture self-interaction nanoparticle spectroscopy; CDR: complementarity-determining region; CQA: critical quality attribute; ELISA: enzyme-linked immunoassay; FACS: fluorescence-activated cell sorting; Fv: fragment variable; GM-CSF: granulocyte-macrophage colony-stimulating factor; HCDR3: heavy chain CDR3; IFN2a: interferon α-2; IL6: interleukin-6; MACS: magnetic-activated cell sorting; NGS: next generation sequencing; PCR: polymerase chain reaction; SEC: size-exclusion chromatography; SPR: surface plasmon resonance; TGFβ-R2: transforming growth factor β-R2; VH: variable heavy; VK: variable kappa; VL: variable light; Vl: variable lambda.
Collapse
|
28
|
Leivo J, Vehniäinen M, Lamminmäki U. Phage Display Selection of an Anti-Idiotype-Antibody with Broad-Specificity to Deoxynivalenol Mycotoxins. Toxins (Basel) 2020; 13:toxins13010018. [PMID: 33379255 PMCID: PMC7823383 DOI: 10.3390/toxins13010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
The use of synthetic antibody libraries and phage displays provides an efficient and robust method for the generation of antibodies against a wide range of targets with highly specific binding properties. As the in vitro selection conditions can be easily controlled, these methods enable the rapid generation of binders against difficult targets such as toxins and haptens. In this study, we used deoxynivalenol mycotoxin as a target to generate anti-idiotype-antibodies with unique binding properties from synthetic antibody libraries. The binding of the selected anti-idiotype antibodies can be efficiently inhibited with the addition of free isoforms of deoxynivalenol. The antibody was consecutively used to develop deoxynivalenol-specific ELISA and TRF-immunoassays, which can detect deoxynivalenol and two of the most common metabolic isoforms in the range of 78-115 ng/mL.
Collapse
Affiliation(s)
- Janne Leivo
- Department of Biochemistry, University of Turku, 20520 Turku, Finland;
- Correspondence: ; Tel.: +358-44-0555738
| | | | - Urpo Lamminmäki
- Department of Biochemistry, University of Turku, 20520 Turku, Finland;
| |
Collapse
|
29
|
Selection and Characterization of YKL-40-Targeting Monoclonal Antibodies from Human Synthetic Fab Phage Display Libraries. Int J Mol Sci 2020; 21:ijms21176354. [PMID: 32883029 PMCID: PMC7504393 DOI: 10.3390/ijms21176354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
YKL-40, also known as chitinase-3-like 1 (CHI3L1), is a glycoprotein that is expressed and secreted by various cell types, including cancers and macrophages. Due to its implications for and upregulation in a variety of diseases, including inflammatory conditions, fibrotic disorders, and tumor growth, YKL-40 has been considered as a significant therapeutic biomarker. Here, we used a phage display to develop novel monoclonal antibodies (mAbs) targeting human YKL-40 (hYKL-40). Human synthetic antibody phage display libraries were panned against a recombinant hYKL-40 protein, yielding seven unique Fabs (Antigen-binding fragment), of which two Fabs (H1 and H2) were non-aggregating and thermally stable (75.5 °C and 76.5 °C, respectively) and had high apparent affinities (KD = 2.3 nM and 4.0 nM, respectively). Reformatting the Fabs into IgGs (Immunoglobulin Gs) increased their apparent affinities (notably, for H1 and H2, KD = 0.5 nM and 0.3 nM, respectively), presumably due to the effects of avidity, with little change to their non-aggregation property. The six anti-hYKL-40 IgGs were analyzed using a trans-well migration assay in vitro, revealing that three clones (H1, H2, and H4) were notably effective in reducing cell migration from both A549 and H460 lung cancer cell lines. The three clones were further analyzed in an in vivo animal test that assessed their anti-cancer activities, demonstrating that the tumor area and the number of tumor nodules were significantly reduced in the lung tissues treated with H1 (IgG). Given its high affinity and desirable properties, we expect that the H1 anti-hYKL-40 mAb will be a suitable candidate for developing anti-cancer therapeutics.
Collapse
|
30
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Bashir S, Paeshuyse J. Construction of Antibody Phage Libraries and Their Application in Veterinary Immunovirology. Antibodies (Basel) 2020; 9:E21. [PMID: 32503103 PMCID: PMC7345743 DOI: 10.3390/antib9020021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Antibody phage display (APD) technology has revolutionized the field of immunovirology with its application in viral disease diagnostics and antiviral therapy. This robust and versatile technology allows the expression of an antibody fused to a phage coat protein on the surface of a filamentous phage. The DNA sequence coding for the antibody is packaged within the phage, linking the phenotype to genotype. Antibody phage display inherits the ability to rapidly generate and modify or improve high-affinity monoclonal antibodies, rendering it indispensable in immunology. In the last two decades, phage-display-derived antibodies have been extensively used in human medicine as diagnostic and therapeutic modalities. Recently, they are also gaining significant ground in veterinary medicine. Even though these advancements are mainly biased towards economically important animals such as chicken, cattle, and pigs, they are laying the foundation of fulfilling the unmet needs of veterinary medicine as antibody-based biologics in viral diagnostics, therapeutics, and immunoprophylaxis. This review provides a brief overview of the construction of antibody phage libraries and their application in diagnosis, prevention, and control of infectious viral diseases in veterinary medicine in detail.
Collapse
Affiliation(s)
| | - Jan Paeshuyse
- Department of Biosystems, Division of Animal and Human Health Engineering, Laboratory of Host Pathogen Interaction in Livestock, KU Leuven University, 3000 Leuven, Belgium;
| |
Collapse
|
32
|
Maranhão AQ, Silva HM, da Silva WMC, França RKA, De Leo TC, Dias-Baruffi M, Burtet RT, Brigido MM. Discovering Selected Antibodies From Deep-Sequenced Phage-Display Antibody Library Using ATTILA. Bioinform Biol Insights 2020; 14:1177932220915240. [PMID: 32425512 PMCID: PMC7218273 DOI: 10.1177/1177932220915240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/03/2020] [Indexed: 11/20/2022] Open
Abstract
Phage display is a powerful technique to select high-affinity antibodies for different purposes, including biopharmaceuticals. Next-generation sequencing (NGS) presented itself as a robust solution, making it possible to assess billions of sequences of the variable domains from selected sublibraries. Handling this process, a central difficulty is to find the selected clones. Here, we present the AutomaTed Tool For Immunoglobulin Analysis (ATTILA), a new tool to analyze and find the enriched variable domains throughout a biopanning experiment. The ATTILA is a workflow that combines publicly available tools and in-house programs and scripts to find the fold-change frequency of deeply sequenced amplicons generated from selected VH and VL domains. We analyzed the same human Fab library NGS data using ATTILA in 5 different experiments, as well as on 2 biopanning experiments regarding performance, accuracy, and output. These analyses proved to be suitable to assess library variability and to list the more enriched variable domains, as ATTILA provides a report with the amino acid sequence of each identified domain, along with its complementarity-determining regions (CDRs), germline classification, and fold change. Finally, the methods employed here demonstrated a suitable manner to combine amplicon generation and NGS data analysis to discover new monoclonal antibodies (mAbs).
Collapse
Affiliation(s)
- Andréa Queiroz Maranhão
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Heidi Muniz Silva
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil
| | - Waldeyr Mendes Cordeiro da Silva
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil.,NEPBio, Federal Institute of Goiás, Formosa, Brazil
| | - Renato Kaylan Alves França
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil
| | - Thais Canassa De Leo
- School of Pharmaceutical Sciences of Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - Marcelo Dias-Baruffi
- School of Pharmaceutical Sciences of Ribeirão Preto, USP, Ribeirão Preto, Brazil
| | - Rafael Trindade Burtet
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil
| | - Marcelo Macedo Brigido
- Department of Cellular Biology, Institute of Biological Science, University of Brasília, Brasília, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), São Paulo, Brazil
| |
Collapse
|
33
|
Generating therapeutic monoclonal antibodies to complex multi-spanning membrane targets: Overcoming the antigen challenge and enabling discovery strategies. Methods 2020; 180:111-126. [PMID: 32422249 DOI: 10.1016/j.ymeth.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning helices, encompass families of proteins which are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels and transporters. Although these proteins have typically been targeted by small molecule drugs and peptides, the high specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. However, it remains the case that isolation of antibodies with desired pharmacological function(s) has proven difficult due to technical challenges in preparing membrane protein antigens suitable to support antibody drug discovery. In this review recent progress in defining strategies for generation of membrane protein antigens is outlined. We also highlight antibody isolation strategies which have generated antibodies which bind the membrane protein and modulate the protein function.
Collapse
|
34
|
Oyama H, Kiguchi Y, Morita I, Yamamoto C, Higashi Y, Taguchi M, Tagawa T, Enami Y, Takamine Y, Hasegawa H, Takeuchi A, Kobayashi N. Seeking high-priority mutations enabling successful antibody-breeding: systematic analysis of a mutant that gained over 100-fold enhanced affinity. Sci Rep 2020; 10:4807. [PMID: 32179767 PMCID: PMC7075871 DOI: 10.1038/s41598-020-61529-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/27/2020] [Indexed: 01/05/2023] Open
Abstract
"Antibody-breeding" has provided therapeutic/diagnostic antibody mutants with greater performance than native antibodies. Typically, random point mutations are introduced into the VH and VL domains of parent antibodies to generate diverse libraries of single-chain Fv fragments (scFvs), from which evolved mutants are selected. We produced an scFv against estradiol-17β with 11 amino acid substitutions and a >100-fold improved affinity constant (Ka = 1.19 × 1010 M-1) over the parent scFv, enabling immunoassays with >30-fold higher sensitivity. We systematically analyzed contributions of these substitutions to the affinity enhancement. Comparing various partial scFv revertants based on their Kas indicated that a revertant with four substitutions (VH-L100gQ, VL-I29V, -L36M, -S77G) exhibited somewhat higher affinity (Ka = 1.46 × 1010 M-1). Finally, the VH-L100gQ substitution, occurring in VH complementarity-determining region (CDR) 3, was found to be the highest-priority for improving the affinity, and VL-I29V and/or VL-L36M cooperated significantly. These findings encouraged us to reconsider the potential of VH-CDR3-targeting mutagenesis, which has been frequently attempted. The substitution(s) wherein might enable a "high rate of return" in terms of selecting mutants with dramatically enhanced affinities. The "high risk" of generating a tremendous excess of "junk mutants" can be overcome with the efficient selection systems that we developed.
Collapse
Affiliation(s)
- Hiroyuki Oyama
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuki Kiguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Izumi Morita
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Chika Yamamoto
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuka Higashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Miku Taguchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Tatsuya Tagawa
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuri Enami
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuriko Takamine
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hanako Hasegawa
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Atsuko Takeuchi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
35
|
Shahmirzaie M, Safarnejad MR, Rakhshandehroo F, Safarpour H, Shirazi FH, Zamanizadeh HR, Elbeaino T. Generation and molecular docking analysis of specific single-chain variable fragments selected by phage display against the recombinant nucleocapsid protein of fig mosaic virus. J Virol Methods 2020; 276:113796. [DOI: 10.1016/j.jviromet.2019.113796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
|
36
|
Sellmann C, Pekar L, Bauer C, Ciesielski E, Krah S, Becker S, Toleikis L, Kügler J, Frenzel A, Valldorf B, Hust M, Zielonka S. A One-Step Process for the Construction of Phage Display scFv and VHH Libraries. Mol Biotechnol 2020; 62:228-239. [DOI: 10.1007/s12033-020-00236-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Abstract
The origins of the various elements in the human antibody repertoire have been and still are subject to considerable uncertainty. Uncertainty in respect of whether the various elements have always served a specific defense function or whether they were co-opted from other organismal roles to form a crude naïve repertoire that then became more complex as combinatorial mechanisms were added. Estimates of the current size of the human antibody naïve repertoire are also widely debated with numbers anywhere from 10 million members, based on experimentally derived numbers, to in excess of one thousand trillion members or more, based on the different sequences derived from theoretical combinatorial calculations. There are questions that are relevant at both ends of this number spectrum. At the lower bound it could be questioned whether this is an insufficient repertoire size to counter all the potential antigen-bearing pathogens. At the upper bound the question is rather simpler: How can any individual interrogate such an astronomical number of antibody-bearing B cells in a timeframe that is meaningful? This review evaluates the evolutionary aspects of the adaptive immune system, the calculations that lead to the large repertoire estimates, some of the experimental evidence pointing to a more restricted repertoire whose variation appears to derive from convergent 'structure and specificity features', and includes a theoretical model that seems to support it. Finally, a solution that may reconcile the size difference anomaly, which is still a hot subject of debate, is suggested.
Collapse
|
38
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
39
|
Steven J, Ubah OC, Buschhaus M, Kovaleva M, Ferguson L, Porter AJ, Barelle CJ. In Vitro Maturation of a Humanized Shark VNAR Domain to Improve Its Biophysical Properties. Methods Mol Biol 2020; 2070:115-142. [PMID: 31625093 DOI: 10.1007/978-1-4939-9853-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
VNAR domains are the binding regions of new antigen receptor proteins (IgNAR) which are unique to sharks, skates, and rays (Elasmobranchii). Individual VNAR domains can bind antigens independently and are the smallest reported adaptive immune recognition entities in the vertebrate kingdom. Sharing limited sequence homology with human immunoglobulin domains, their development and use as biotherapeutic agents require that they be humanized to minimize their potential immunogenicity. Efforts to humanize a human serum albumin (HSA)-specific VNAR, E06, resulted in protein molecules that initially had undesirable biophysical properties or reduced affinity for cognate antigen. Two lead humanized anti-HSA clones, v1.10 and v2.4, were subjected to a process of random mutagenesis using error-prone PCR. The mutated sequences for each humanized VNAR variant were screened for improvements in affinity for HSA and biophysical properties, achieved without a predicted increase in overall immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew J Porter
- Elasmogen Ltd., Aberdeen, UK
- Scottish Biologics Facility, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
40
|
Winter G. Harnessing Evolution to Make Medicines (Nobel Lecture). Angew Chem Int Ed Engl 2019; 58:14438-14445. [PMID: 31529671 DOI: 10.1002/anie.201909343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 11/08/2022]
Abstract
Antibody libraries and phage display have provided the key elements for the creation of a fast evolutionary system for the generation of fully human antibody medicines. Important steps leading to this development are outlined by G. Winter in his Nobel lecture.
Collapse
Affiliation(s)
- Gregory Winter
- MRC Laboratory of Molecular Biology, Cambridge and Trinity College, Cambridge, UK
| |
Collapse
|
41
|
Rafique A, Satake K, Kishimoto S, Hasan Khan K, Kato DI, Ito Y. Efficient Screening and Design of Variable Domain of Heavy Chain Antibody Ligands Through High Throughput Sequencing for Affinity Chromatography to Purify Fab Fragments. Monoclon Antib Immunodiagn Immunother 2019; 38:190-200. [DOI: 10.1089/mab.2019.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Abdur Rafique
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Kiriko Satake
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Satoshi Kishimoto
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Kamrul Hasan Khan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Dai-ichiro Kato
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| |
Collapse
|
42
|
Affiliation(s)
- Gregory Winter
- MRC Laboratory of Molecular Biology Cambridge and Trinity College Cambridge UK
| |
Collapse
|
43
|
Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM. Phage Display Libraries for Antibody Therapeutic Discovery and Development. Antibodies (Basel) 2019; 8:antib8030044. [PMID: 31544850 PMCID: PMC6784186 DOI: 10.3390/antib8030044] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023] Open
Abstract
Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.
Collapse
Affiliation(s)
- Juan C Almagro
- GlobalBio, Inc., 320, Cambridge, MA 02138, USA.
- UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico.
| | - Martha Pedraza-Escalona
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Hugo Iván Arrieta
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Sonia Mayra Pérez-Tapia
- CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
44
|
Tsopelas F, Tsantili-Kakoulidou A. Advances with weak affinity chromatography for fragment screening. Expert Opin Drug Discov 2019; 14:1125-1135. [DOI: 10.1080/17460441.2019.1648425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
45
|
Kim H, Kwak G, Kim K, Yoon HY, Kwon IC. Theranostic designs of biomaterials for precision medicine in cancer therapy. Biomaterials 2019; 213:119207. [DOI: 10.1016/j.biomaterials.2019.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
|
46
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
47
|
Keresztessy Z, Erdos E, Ozgyin L, Kádas J, Horváth J, Zahuczky G, Balint BL. Development of an antibody control system using phage display. J Biotechnol 2019; 300:63-69. [PMID: 31129070 DOI: 10.1016/j.jbiotec.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While chromatin immunoprecipitation has become a widely-used method in the field of transcription regulation studies, serious limitations connected to the complexity and relatively little standardization of the method serve as obstacles for its use in clinical research. In this paper we introduce a method for developing bacteriophage-based controls for the better standardization of the chromatin immunoprecipitation reactions. Random phage display libraries were selected with ChIP-grade antibodies for several rounds and individual monoclonal phages were isolated. These monoclonal phages can be propagated, characterized, capillary sequenced and if needed later cloned from in-silico data. Using such control tools allows for a better characterization of the immunoprecipitation stage needed for further clinical research in the field of chromatin-immunoprecipitation-based studies.
Collapse
Affiliation(s)
- Zsolt Keresztessy
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Edina Erdos
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Lilla Ozgyin
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - János Kádas
- UD-GenoMed Medical Genomic Technologies Ltd., 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - József Horváth
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Gábor Zahuczky
- UD-GenoMed Medical Genomic Technologies Ltd., 98 Nagyerdei krt., H-4032 Debrecen, Hungary
| | - Balint L Balint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., H-4032 Debrecen, Hungary.
| |
Collapse
|
48
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
49
|
Valadon P, Pérez-Tapia SM, Nelson RS, Guzmán-Bringas OU, Arrieta-Oliva HI, Gómez-Castellano KM, Pohl MA, Almagro JC. ALTHEA Gold Libraries™: antibody libraries for therapeutic antibody discovery. MAbs 2019; 11:516-531. [PMID: 30663541 PMCID: PMC6512909 DOI: 10.1080/19420862.2019.1571879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We describe here the design, construction and validation of ALTHEA Gold Libraries™. These single-chain variable fragment (scFv), semisynthetic libraries are built on synthetic human well-known IGHV and IGKV germline genes combined with natural human complementarity-determining region (CDR)-H3/JH (H3J) fragments. One IGHV gene provided a universal VH scaffold and was paired with two IGKV scaffolds to furnish different topographies for binding distinct epitopes. The scaffolds were diversified at positions identified as in contact with antigens in the known antigen-antibody complex structures. The diversification regime consisted of high-usage amino acids found at those positions in human antibody sequences. Functionality, stability and diversity of the libraries were improved throughout a three-step construction process. In a first step, fully synthetic primary libraries were generated by combining the diversified scaffolds with a set of synthetic neutral H3J germline gene fragments. The second step consisted of selecting the primary libraries for enhanced thermostability based on the natural capacity of Protein A to bind the universal VH scaffold. In the third and final step, the resultant stable synthetic antibody fragments were combined with natural H3J fragments obtained from peripheral blood mononuclear cells of a large pool of 200 donors. Validation of ALTHEA Gold Libraries™ with seven targets yielded specific antibodies in all the cases. Further characterization of the isolated antibodies indicated KD values as human IgG1 molecules in the single-digit and sub-nM range. The thermal stability (Tm) of all the antigen-binding fragments was 75°C–80°C, demonstrating that ALTHEA Gold Libraries™ are a valuable source of specific, high affinity and highly stable antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary Ann Pohl
- c Tri-Institutional Therapeutics Discovery Institute , New York , NY , USA
| | | |
Collapse
|
50
|
Sannino A, Gabriele E, Bigatti M, Mulatto S, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Quantitative Assessment of Affinity Selection Performance by Using DNA‐Encoded Chemical Libraries. Chembiochem 2019; 20:955-962. [DOI: 10.1002/cbic.201800766] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Elena Gabriele
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | | | - Sara Mulatto
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Jacopo Piazzi
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | | | - Florent Samain
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| |
Collapse
|