1
|
Sharma S, Kajjo S, Harra Z, Hasaj B, Delisle V, Ray D, Gutierrez RL, Carrier I, Kleinman C, Morris Q, Hughes TR, McInnes R, Fabian MR. Uncovering a mammalian neural-specific poly(A) binding protein with unique properties. Genes Dev 2023; 37:760-777. [PMID: 37704377 PMCID: PMC10546976 DOI: 10.1101/gad.350597.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.
Collapse
Affiliation(s)
- Sahil Sharma
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Sam Kajjo
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Zineb Harra
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Benedeta Hasaj
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Victoria Delisle
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Rodrigo L Gutierrez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Isabelle Carrier
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Claudia Kleinman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Quaid Morris
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Roderick McInnes
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada;
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Oncology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
2
|
Andreev DE, Loughran G, Fedorova AD, Mikhaylova MS, Shatsky IN, Baranov PV. Non-AUG translation initiation in mammals. Genome Biol 2022; 23:111. [PMID: 35534899 PMCID: PMC9082881 DOI: 10.1186/s13059-022-02674-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recent proteogenomic studies revealed extensive translation outside of annotated protein coding regions, such as non-coding RNAs and untranslated regions of mRNAs. This non-canonical translation is largely due to start codon plurality within the same RNA. This plurality is often due to the failure of some scanning ribosomes to recognize potential start codons leading to initiation downstream—a process termed leaky scanning. Codons other than AUG (non-AUG) are particularly leaky due to their inefficiency. Here we discuss our current understanding of non-AUG initiation. We argue for a near-ubiquitous role of non-AUG initiation in shaping the dynamic composition of mammalian proteomes.
Collapse
|
3
|
Li G, Eriani G, Wang ED, Zhou XL. Distinct pathogenic mechanisms of various RARS1 mutations in Pelizaeus-Merzbacher-like disease. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1645-1660. [PMID: 33515434 DOI: 10.1007/s11427-020-1838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Mutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.D2G; c.1367C>T, p.S456L; c.1535G>A, p.R512Q and c.1846_1847del, p. Y616Lfs*6 of RARS1 gene, which encodes two forms of human cytoplasmic arginyl-tRNA synthetase (hArgRS), are linked to Pelizaeus-Merzbacher-like disease (PMLD) with unclear pathogenesis. Among these mutations, c.5A>G is the most extensively reported mutation, leading to a p.D2G mutation in the N-terminal extension of the long-form hArgRS. Here, we showed the detrimental effects of R512Q substitution and ΔC mutations on the structure and function of hArgRS, while the most frequent mutation c.5A>G, p.D2G acted in a different manner without impairing hArgRS activity. The nucleotide substitution c.5A>G reduced translation of hArgRS mRNA, and an upstream open reading frame contributed to the suppressed translation of the downstream main ORF. Taken together, our results elucidated distinct pathogenic mechanisms of various RARS1 mutations in PMLD.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67084, Strasbourg, France
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
Unusually efficient CUG initiation of an overlapping reading frame in POLG mRNA yields novel protein POLGARF. Proc Natl Acad Sci U S A 2020; 117:24936-24946. [PMID: 32958672 DOI: 10.1073/pnas.2001433117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While near-cognate codons are frequently used for translation initiation in eukaryotes, their efficiencies are usually low (<10% compared to an AUG in optimal context). Here, we describe a rare case of highly efficient near-cognate initiation. A CUG triplet located in the 5' leader of POLG messenger RNA (mRNA) initiates almost as efficiently (∼60 to 70%) as an AUG in optimal context. This CUG directs translation of a conserved 260-triplet-long overlapping open reading frame (ORF), which we call POLGARF (POLG Alternative Reading Frame). Translation of a short upstream ORF 5' of this CUG governs the ratio between POLG (the catalytic subunit of mitochondrial DNA polymerase) and POLGARF synthesized from a single POLG mRNA. Functional investigation of POLGARF suggests a role in extracellular signaling. While unprocessed POLGARF localizes to the nucleoli together with its interacting partner C1QBP, serum stimulation results in rapid cleavage and secretion of a POLGARF C-terminal fragment. Phylogenetic analysis shows that POLGARF evolved ∼160 million y ago due to a mammalian-wide interspersed repeat (MIR) transposition into the 5' leader sequence of the mammalian POLG gene, which became fixed in placental mammals. This discovery of POLGARF unveils a previously undescribed mechanism of de novo protein-coding gene evolution.
Collapse
|
5
|
Gupta P, Rangan L, Ramesh TV, Gupta M. Comparative analysis of contextual bias around the translation initiation sites in plant genomes. J Theor Biol 2016; 404:303-311. [PMID: 27316311 DOI: 10.1016/j.jtbi.2016.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Nucleotide distribution around translation initiation site (TIS) is thought to play an important role in determining translation efficiency. Kozak in vertebrates and later Joshi et al. in plants identified context sequence having a key role in translation efficiency, but a great variation regarding this context sequence has been observed among different taxa. The present study aims to refine the context sequence around initiation codon in plants and addresses the sampling error problem by using complete genomes of 7 monocots and 7 dicots separately. Besides positions -3 and +4, significant conservation at -2 and +5 positions was also found and nucleotide bias at the latter two positions was shown to directly influence translation efficiency in the taxon studied. About 1.8% (monocots) and 2.4% (dicots) of the total sequences fit the context sequence from positions -3 to +5, which might be indicative of lower number of housekeeping genes in the transcriptome. A three base periodicity was observed in 5' UTR and CDS of monocots and only in CDS of dicots as confirmed against random occurrence and annotation errors. Deterministic enrichment of GCNAUGGC in monocots, AANAUGGC in dicots and GCNAUGGC in plants around TIS was also established (where AUG denotes the start codon), which can serve as an arbiter of putative TIS with efficient translation in plants.
Collapse
Affiliation(s)
- Paras Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Latha Rangan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - T Venkata Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mudit Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Noderer WL, Flockhart RJ, Bhaduri A, Diaz de Arce AJ, Zhang J, Khavari PA, Wang CL. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014; 10:748. [PMID: 25170020 PMCID: PMC4299517 DOI: 10.15252/msb.20145136] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An approach combining fluorescence-activated cell sorting and high-throughput DNA sequencing
(FACS-seq) was employed to determine the efficiency of start codon recognition for all possible
translation initiation sites (TIS) utilizing AUG start codons. Using FACS-seq, we measured
translation from a genetic reporter library representing all 65,536 possible TIS sequences spanning
the −6 to +5 positions. We found that the motif RYMRMVAUGGC enhanced start codon
recognition and translation efficiency. However, dinucleotide interactions, which cannot be conveyed
by a single motif, were also important for modeling TIS efficiency. Our dataset combined with
modeling allowed us to predict genome-wide translation initiation efficiency for all mRNA
transcripts. Additionally, we screened somatic TIS mutations associated with tumorigenesis to
identify candidate driver mutations consistent with known tumor expression patterns. Finally, we
implemented a quantitative leaky scanning model to predict alternative initiation sites that produce
truncated protein isoforms and compared predictions with ribosome footprint profiling data. The
comprehensive analysis of the TIS sequence space enables quantitative predictions of translation
initiation based on genome sequence.
Collapse
Affiliation(s)
- William L Noderer
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ross J Flockhart
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aparna Bhaduri
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA The Program in Cancer Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jiajing Zhang
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A Khavari
- The Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Clifford L Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
van der Velden GJ, Vink MA, Klaver B, Das AT, Berkhout B. An AUG codon upstream of rev and env open reading frames ensures optimal translation of the simian immunodeficiency virus Env protein. Virology 2012; 436:191-200. [PMID: 23260111 DOI: 10.1016/j.virol.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/10/2012] [Accepted: 11/18/2012] [Indexed: 11/16/2022]
Abstract
The mRNAs encoding the Rev and Env proteins of simian immunodeficiency virus (SIV) are unique because upstream translation start codons are present that may modulate the expression of these viral proteins. We previously reported the regulatory effect of a small upstream open reading frame (ORF) on Rev and Env translation. Here we study this mechanism in further detail by modulating the strength of the translation signals upstream of the open reading frames in subgenomic reporters. Furthermore, the effects of these mutations on SIV gene expression and viral replication are analyzed. An intricate regulatory mechanism is disclosed that allows the virus to express a balanced amount of these two proteins.
Collapse
Affiliation(s)
- Gisela J van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Upstream AUG codons in the simian immunodeficiency virus SIVmac239 genome regulate Rev and Env protein translation. J Virol 2012; 86:12362-71. [PMID: 22951834 DOI: 10.1128/jvi.01532-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mRNAs encoding the Rev and Env proteins of simian immunodeficiency virus (SIV) are unique because upstream translation start codons are present that may modulate the expression of these viral proteins. This is true for the regular mRNAs, but we also report novel mRNA splicing variants that encode up to five upstream AUG (uAUG) codons. Their influence on Rev and Env translation was measured by mutational inactivation in reporter constructs and in the SIVmac239 strain. An intricate regulatory mechanism was disclosed that allows the virus to express a balanced amount of these two proteins. This insight also allows the design of vector constructs that efficiently express these proteins.
Collapse
|
9
|
Sabol I, Matovina M, Si-Mohamed A, Grce M. Characterization and whole genome analysis of human papillomavirus type 16 e1-1374^63nt variants. PLoS One 2012; 7:e41045. [PMID: 22911739 PMCID: PMC3404080 DOI: 10.1371/journal.pone.0041045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 06/20/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The variation of the most common Human papillomavirus (HPV) type found in cervical cancer, the HPV16, has been extensively investigated in almost all viral genes. The E1 gene variation, however, has been rarely studied. The main objective of the present investigation was to analyze the variability of the E6 and E1 genes, focusing on the recently identified E1-1374^63nt variant. METHODOLOGY/PRINCIPAL FINDINGS Variation within the E6 of 786 HPV16 positive cervical samples was analyzed using high-resolution melting, while the E1-1374^63nt duplication was assayed by PCR. Both techniques were supplemented with sequencing. The E1-1374^63nt duplication was linked with the E-G350 and the E-C109/G350 variants. In comparison to the referent HPV16, the E1-1374^63nt E-G350 variant was significantly associated with lower grade cervical lesions (p = 0.029), while the E1-1374^63nt E-C109/G350 variant was equally distributed between high and low grade lesions. The E1-1374^63nt variants were phylogenetically closest to E-G350 variant lineage (A2 sub-lineage based on full genome classification). The major differences between E1-1374^63nt variants were within the LCR and the E6 region. On the other hand, changes within the E1 region were the major differences from the A2 sub-lineage, which has been historically but inconclusively associated with high grade cervical disease. Thus, the shared variations cannot explain the particular association of the E1-1374^63nt variant with lower grade cervical lesions. CONCLUSIONS/SIGNIFICANCE The E1 region has been thus far considered to be well conserved among all HPVs and therefore uninteresting for variability studies. However, this study shows that the variations within the E1 region could possibly affect cervical disease, since the E1-1374^63nt E-G350 variant is significantly associated with lower grade cervical lesions, in comparison to the A1 and A2 sub-lineage variants. Furthermore, it appears that the silent variation 109T>C of the E-C109/G350 variant might have a significant role in the viral life cycle and warrants further study.
Collapse
Affiliation(s)
- Ivan Sabol
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Mihaela Matovina
- Department of Microbiology and Parasitology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ali Si-Mohamed
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Magdalena Grce
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Mechanisms governing the selection of translation initiation sites on foot-and-mouth disease virus RNA. J Virol 2011; 85:10178-88. [PMID: 21813609 DOI: 10.1128/jvi.05085-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation dependent on the foot-and-mouth disease virus (FMDV) internal ribosome entry site (IRES) occurs at two sites (Lab and Lb), 84 nucleotides (nt) apart. In vitro translation of an mRNA comprising the IRES and Lab-Lb intervening segment fused to a chloramphenicol acetyltransferase (CAT) reporter has been used to study the parameters influencing the ratio of the two products and the combined product yield as measures of relative initiation site usage and productive ribosome recruitment, respectively. With wild-type mRNA, ∼40% of initiation occurred at the Lab site, which was increased to 90% by optimization of its context, but decreased to 20% by mutations that reduced downstream secondary structure, with no change in recruitment in either case. Inserting 5 nt into the pyrimidine-rich tract located just upstream of the Lab site increased initiation at this site by 75% and ribosome recruitment by 50%. Mutating the Lab site to RCG or RUN codons decreased recruitment by 20 to 30% but stimulated Lb initiation by 20 to 40%. An antisense oligodeoxynucleotide annealing across the Lab site inhibited initiation at both sites. These and related results lead to the following conclusions. Recruitment by the wild-type IRES is limited by its short oligopyrimidine tract. At least 90% of internal ribosome entry occurs at the Lab AUG, but initiation at this site is restricted by its poor context, despite a counteracting effect of downstream secondary structure. Initiation at the Lb site is by ribosomes that access it by linear scanning from the original entry site, and not by an independent entry process.
Collapse
|
11
|
Aspden JL, Jackson RJ. Differential effects of nucleotide analogs on scanning-dependent initiation and elongation of mammalian mRNA translation in vitro. RNA (NEW YORK, N.Y.) 2010; 16:1130-1137. [PMID: 20423978 PMCID: PMC2874165 DOI: 10.1261/rna.1978610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/16/2010] [Indexed: 05/29/2023]
Abstract
Codon-anticodon interactions are central to both the initiation and elongation phases of eukaryotic mRNA translation. The obvious difference is that the interaction takes place in the ribosomal A-site during elongation, whereas the 40S ribosomal subunit and associated initiation factors scan the mRNA sequence in search of an initiation codon with Met-tRNA(i) bound in the P-site, ceasing once codon-anticodon interaction is established at the AUG. As an indirect test of whether the two mechanisms of mRNA sequence inspection are basically similar or not, the effects of six different uridine analog substitutions in the mRNA were examined in reticulocyte lysate translation assays and 80S initiation complex formation assays. Four constructs, each with the same reporter coding sequence, were used, differing in whether the initiation codon was AUG or ACG, and in whether the 5'-UTR had U residues or not. Three analogs (5-bromoU, 5-aminoallylU, and pseudoU) inhibited both elongation and initiation, but the other three had striking differential effects. Ribothymidine had a negligible effect on elongation but caused a approximately 50% inhibition of initiation, with little effect on actual AUG recognition, which implies that inhibition must have occurred at some earlier step in initiation. In complete contrast, 2' deoxyU was prohibitive to elongation but had no effect on initiation, and 4-thioU actually stimulated initiation but quite strongly inhibited elongation processivity. These results show that the detailed mechanisms of inspection of the mRNA sequence during scanning-dependent initiation and elongation must be considerably different.
Collapse
Affiliation(s)
- Julie L Aspden
- Department of Molecular and Cell Biology and Center of Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
12
|
Volkova OA, Kochetov AV. Interrelations between the nucleotide context of human start AUG codon, N-end amino acids of the encoded protein and initiation of translation. J Biomol Struct Dyn 2010; 27:611-8. [PMID: 20085378 DOI: 10.1080/07391102.2010.10508575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is known that the recognition of AUG triplet by eukaryotic ribosomes as a translation start site strongly depends on its nucleotide context. However, the relative significance of different context positions is not fully clear. In particular, it concerns the role of 3'-end part of the context located at the beginning of the protein-coding sequence. The significant bias observed in nucleotide frequencies in positions +4, +5, +6 (corresponding to the second codon of CDS) could result from different reasons and their contribution to start codon recognition and initiation of translation is under discussion. In this study, we conducted a comparative computational analysis of the human mRNA samples containing different nucleotides (adenine, guanine or pyrimidine) in the essential context position -3. It was found that the presence of G in position +4 could be important for the context variant GnnAUG but not for AnnAUG. Interestingly, the second position of proteins encoded by mRNAs with AnnAUG context variant was specifically and significantly enriched with serine whereas the presence of GnnAUG context also correlated with a higher occurrence of alanine and glycine. It is likely that the efficiency of translation initiation process can depend on the interplay between 5'-context part, 3'-context part and the type of amino acid in the second position of the encoded protein.
Collapse
Affiliation(s)
- Oxana A Volkova
- Institute of Cytology and Genetics, 10, Lavrentiev Ave, Novosibirsk 630090, Russia.
| | | |
Collapse
|
13
|
Frederiks F, Heynen GJJE, van Deventer SJ, Janssen H, van Leeuwen F. Two Dot1 isoforms in Saccharomyces cerevisiae as a result of leaky scanning by the ribosome. Nucleic Acids Res 2010; 37:7047-58. [PMID: 19778927 PMCID: PMC2790890 DOI: 10.1093/nar/gkp765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dot1 is a conserved histone methyltransferase that methylates histone H3 on lysine 79. We previously observed that in Saccharomyces cerevisiae, a single DOT1 gene encodes two Dot1 protein species. Here, we show that the relative abundance of the two isoforms changed under nutrient-limiting conditions. A mutagenesis approach showed that the two Dot1 isoforms are produced from two alternative translation start sites as a result of leaky scanning by the ribosome. The leaky scanning was not affected by the 5′- or 3′-untranslated regions of DOT1, indicating that translation initiation is determined by the DOT1 coding sequence. Construction of yeast strains expressing either one of the isoforms showed that both were sufficient for Dot1’s role in global H3K79 methylation and telomeric gene silencing. However, the absence of the long isoform of Dot1 altered the resistance of yeast cells to the chitin-binding drug Calcofluor White, suggesting that the two Dot1 isoforms have a differential function in cell wall biogenesis.
Collapse
Affiliation(s)
- Floor Frederiks
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Martinez A, Traverso JA, Valot B, Ferro M, Espagne C, Ephritikhine G, Zivy M, Giglione C, Meinnel T. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 2008; 8:2809-31. [PMID: 18655050 DOI: 10.1002/pmic.200701191] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most proteins in all organisms undergo crucial N-terminal modifications involving N-terminal methionine excision, N-alpha-acetylation or N-myristoylation (N-Myr), or S-palmitoylation. We investigated the occurrence of these poorly annotated but essential modifications in proteomes, focusing on eukaryotes. Experimental data for the N-terminal sequences of animal, fungi, and archaeal proteins, were used to build dedicated predictive modules in a new software. In vitro N-Myr experiments were performed with both plant and animal N-myristoyltransferases, for accurate prediction of the modification. N-terminal modifications from the fully sequenced genome of Arabidopsis thaliana were determined by MS. We identified 105 new modified protein N-termini, which were used to check the accuracy of predictive data. An accuracy of more than 95% was achieved, demonstrating (i) overall conservation of the specificity of the modification machinery in higher eukaryotes and (ii) robustness of the prediction tool. Predictions were made for various proteomes. Proteins that had undergone both N-terminal methionine (Met) cleavage and N-acetylation were found to be strongly overrepresented among the most abundant proteins, in contrast to those retaining their genuine unblocked Met. Here we propose that the nature of the second residue of an ORF is a key marker of the abundance of the mature protein in eukaryotes.
Collapse
Affiliation(s)
- Aude Martinez
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lheureux F, Laboureau N, Muller E, Lockhart BEL, Iskra-Caruana ML. Molecular characterization of banana streak acuminata Vietnam virus isolated from Musa acuminata siamea (banana cultivar). Arch Virol 2007; 152:1409-16. [PMID: 17431738 DOI: 10.1007/s00705-007-0946-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
An isolate of banana streak virus (BSV) that does not also occur as an integrant in the Musa balbisiana genome was sought in order to investigate the biological role of BSV in the evolution of either the Musa genome or of the virus itself. We isolated BSV virions from a Musa acuminata siamea accession from Vietnam and sequenced the entire viral genome. The molecular organization is similar to that described for other BSV but slightly larger (7801 bp vs. 1611-7568 bp), and ORF I has a non-conventional start codon. This genome was sufficiently different to propose it as a member of a distinct species named Banana streak virus strain acuminata Vietnam (BSAcVNV).
Collapse
Affiliation(s)
- F Lheureux
- CIRAD/UMR BGPI TA A54/K, Montpellier, France
| | | | | | | | | |
Collapse
|
16
|
Gog JR, Afonso EDS, Dalton RM, Leclercq I, Tiley L, Elton D, von Kirchbach JC, Naffakh N, Escriou N, Digard P. Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 2007; 35:1897-907. [PMID: 17332012 PMCID: PMC1874621 DOI: 10.1093/nar/gkm087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses.
Collapse
Affiliation(s)
- Julia R. Gog
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Emmanuel Dos Santos Afonso
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Rosa M. Dalton
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - India Leclercq
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Laurence Tiley
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Debra Elton
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Johann C. von Kirchbach
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Nadia Naffakh
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Nicolas Escriou
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Paul Digard
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK, Unité de Génétique Moléculaire des Virus Respiratoires, URA-CNRS 1966, Université Paris 7 EA302, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris cedex 15, France, Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK and Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- *To whom correspondence should be addressed. + 44 1223 336920+ 44 1223 336926
| |
Collapse
|
17
|
Xia X. The +4G site in Kozak consensus is not related to the efficiency of translation initiation. PLoS One 2007; 2:e188. [PMID: 17285142 PMCID: PMC1781341 DOI: 10.1371/journal.pone.0000188] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/05/2007] [Indexed: 01/19/2023] Open
Abstract
The optimal context for translation initiation in mammalian species is GCCRCCaugG (where R = purine and “aug” is the initiation codon), with the -3R and +4G being particularly important. The presence of +4G has been interpreted as necessary for efficient translation initiation. Accumulated experimental and bioinformatic evidence has suggested an alternative explanation based on amino acid constraint on the second codon, i.e., amino acid Ala or Gly are needed as the second amino acid in the nascent peptide for the cleavage of the initiator Met, and the consequent overuse of Ala and Gly codons (GCN and GGN) leads to the +4G consensus. I performed a critical test of these alternative hypotheses on +4G based on 34169 human protein-coding genes and published gene expression data. The result shows that the prevalence of +4G is not related to translation initiation. Among the five G-starting codons, only alanine codons (GCN), and glycine codons (GGN) to a much smaller extent, are overrepresented at the second codon, whereas the other three codons are not overrepresented. While highly expressed genes have more +4G than lowly expressed genes, the difference is caused by GCN and GGN codons at the second codon. These results are inconsistent with +4G being needed for efficient translation initiation, but consistent with the proposal of amino acid constraint hypothesis.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
18
|
Shiokawa D, Shika Y, Saito K, Yamazaki K, Tanuma SI. Physical and biochemical properties of mammalian DNase X proteins: non-AUG translation initiation of porcine and bovine mRNAs for DNase X. Biochem J 2006; 392:511-7. [PMID: 16107205 PMCID: PMC1316290 DOI: 10.1042/bj20051114] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DNase X is the first human DNase protein identified as being homologous with DNase I. In the present study we describe the isolation of several mammalian DNase X cDNAs and the molecular characterization of their coding proteins. A sequence comparison reveals some conserved characteristics: all the mammalian DNase X proteins have an N-terminal signal peptide, a potential N-linked glycosylation site and a C-terminal hydrophobic domain. Human DNase X, ectopically expressed in HeLa S3 cells, is located in the ER (endoplasmic reticulum) and is modified by an N-linked glycosylation at Asn-243. Gene expression analyses show that the high expression level in muscular tissues, a known feature of human DNASE X, is also observed in mouse DNase X. Interestingly, the translation of porcine and bovine DNase X proteins occurs in the absence of an in-frame AUG initiation codon. We show that their mRNAs utilize a conserved CUG triplet for translation initiation.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- *Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukari Shika
- *Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazuki Saito
- *Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kosuke Yamazaki
- *Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sei-ichi Tanuma
- *Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- †Genome and Drug Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Urabe M, Nakakura T, Xin KQ, Obara Y, Mizukami H, Kume A, Kotin RM, Ozawa K. Scalable generation of high-titer recombinant adeno-associated virus type 5 in insect cells. J Virol 2006; 80:1874-85. [PMID: 16439543 PMCID: PMC1367135 DOI: 10.1128/jvi.80.4.1874-1885.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We established a method for production of recombinant adeno-associated virus type 5 (rAAV5) in insect cells by use of baculovirus expression vectors. One baculovirus harbors a transgene between the inverted terminal repeat sequences of type 5, and the second expresses Rep78 and Rep52. Interestingly, the replacement of type 5 Rep52 with type 1 Rep52 generated four times more rAAV5 particles. We replaced the N-terminal portion of type 5 VP1 with the equivalent portion of type 2 to generate infectious AAV5 particles. The rAAV5 with the modified VP1 required alpha2-3 sialic acid for transduction, as revealed by a competition experiment with an analog of alpha2-3 sialic acid. rAAV5-GFP/Neo with a 4.4-kb vector genome produced in HEK293 cells or Sf9 cells transduced COS cells with similar efficiencies. Surprisingly, Sf9-produced humanized Renilla green fluorescent protein (hGFP) vector with a 2.4-kb vector genome induced stronger GFP expression than the 293-produced one. Transduction of murine skeletal muscles with Sf9-generated rAAV5 with a 3.4-kb vector genome carrying a human secreted alkaline phosphatase (SEAP) expression cassette induced levels of SEAP more than 30 times higher than those for 293-produced vector 1 week after injection. Analysis of virion DNA revealed that in addition to a 2.4- or 3.4-kb single-stranded vector genome, Sf9-rAAV5 had more-abundant forms of approximately 4.7 kb, which appeared to correspond to the monomer duplex form of hGFP vector or truncated monomer duplex SEAP vector DNA. These results indicated that rAAV5 can be generated in insect cells, although the difference in incorporated virion DNA may induce different expression patterns of the transgene.
Collapse
Affiliation(s)
- Masashi Urabe
- Division of Genetic Therapeutics, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Depeiges A, Degroote F, Espagnol MC, Picard G. Translation initiation by non-AUG codons in Arabidopsis thaliana transgenic plants. PLANT CELL REPORTS 2006; 25:55-61. [PMID: 16184386 DOI: 10.1007/s00299-005-0034-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 05/19/2005] [Accepted: 06/28/2005] [Indexed: 05/04/2023]
Abstract
The efficiency of translation initiation at codons differing at one or two nucleotides from AUG was tested as initiation codons for the phosphinotricin-acetyltransferase gene in T-DNA plant transformation in Arabidopsis thaliana. With the exception of UUA codon that differs from AUG at two nucleotides and does not permit any detectable activity, all the other codons (AUC, GUG, ACG, and CUG) present a phosphinotrycin acetyltransferase activity that varies between 5 and 10% of the AUG activity. This low activity is sufficient to confer glufosinate resistance to some of the plants. These results indicate that, in plants as is the case in animals, non-AUG initiating codons may be used for translation initiation, namely when a low expression rate is needed.
Collapse
Affiliation(s)
- Annie Depeiges
- UMR 6547 CNRS GEEM-BIOMOVE, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France.
| | | | | | | |
Collapse
|
21
|
Babkin IV, Shchelkunov SN. Adequate system for studying translation initiation on the human retrotransposon L1 mRNA in vitro. Mol Biol 2006; 40:20-4. [PMID: 16523687 DOI: 10.1134/s0026893306010043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike vertebrates and RNA-containing viruses, the objective estimate of molecular clock for DNA-containing viruses was so far absent. An extended central conservative genomic region of orthopoxviruses (about 102 kbp) and the sequence of DNA polymerase gene (about 3 kbp) of the viruses belonging to various genera from the family Poxviridae were analyzed. During this analysis, the known dating of variola virus (VARV) transfer from West Africa to South America (XVI century) and our own data on close phylogenetic relations between the modem West African and South American VARV isolates were used. As a result of this work, it was calculated for the first time that the rate of mutation accumulation in these DNA-containing viruses amounted to 0.9-1.2 x 10(-6) substitutions per site per year. The poxviruses started separating from the ancestor virus to form the modem genera approximately 500 thousand years ago; the ancestor of the genus Orthopoxvirus separated about 300 thousand years ago; and its division into the modem studied species took place approximately 14 thousand years ago.
Collapse
|
22
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 540] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Schwab SR, Shugart JA, Horng T, Malarkannan S, Shastri N. Unanticipated antigens: translation initiation at CUG with leucine. PLoS Biol 2004; 2:e366. [PMID: 15510226 PMCID: PMC524250 DOI: 10.1371/journal.pbio.0020366] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 08/24/2004] [Indexed: 11/29/2022] Open
Abstract
Major histocompatibility class I molecules display tens of thousands of peptides on the cell surface for immune surveillance by T cells. The peptide repertoire represents virtually all cellular translation products, and can thus reveal a foreign presence inside the cell. These peptides are derived from not only conventional but also cryptic translational reading frames, including some without conventional AUG codons. To define the mechanism that generates these cryptic peptides, we used T cells as probes to analyze the peptides generated in transfected cells. We found that when CUG acts as an alternate initiation codon, it can be decoded as leucine rather than the expected methionine residue. The leucine start does not depend on an internal ribosome entry site–like mRNA structure, and its efficiency is enhanced by the Kozak nucleotide context. Furthermore, ribosomes scan 5′ to 3′ specifically for the CUG initiation codon in a eukaryotic translation initiation factor 2–independent manner. Because eukaryotic translation initiation factor 2 is frequently targeted to inhibit protein synthesis, this novel translation mechanism allows stressed cells to display antigenic peptides. This initiation mechanism could also be used at non-AUG initiation codons often found in viral transcripts as well as in a growing list of cellular genes. Proteins have been identified for which a unique translational machinery makes use of unconventional start codons
Collapse
Affiliation(s)
- Susan R Schwab
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Jessica A Shugart
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Tiffany Horng
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Subramaniam Malarkannan
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| | - Nilabh Shastri
- 1Division of Immunology, Department of Molecular and Cell BiologyUniversity of California, Berkeley, CaliforniaUnited States of America
| |
Collapse
|
24
|
Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, Greiner E, Schweizer E. HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 2004; 279:21779-86. [PMID: 14761959 DOI: 10.1074/jbc.m401071200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae gene, HFA1, encodes a >250-kDa protein, which is required for mitochondrial function. Hfa1p exhibits 72% overall sequence similarity (54% identity) to ACC1-encoded yeast cytoplasmic acetyl-CoA carboxylase. Nevertheless, HFA1 and ACC1 functions are not overlapping because mutants of the two genes have different phenotypes and do not complement each other. Whereas ACC1 is involved in cytoplasmic fatty acid synthesis, the phenotype of hfa1Delta disruptants resembles that of mitochondrial fatty-acid synthase mutants. They fail to grow on lactate or glycerol, and the mitochondrial cofactor, lipoic acid, is reduced to <10% of its normal cellular concentration. Other than Acc1p, the N-terminal sequence of Hfa1p comprises a canonical mitochondrial targeting signal together with a matrix protease cleavage site. Accordingly, the HFA1-encoded protein was specifically assigned by Western blotting of appropriate cell fractions to the mitochondrial compartment. Removal of the mitochondrial targeting sequence abolished the competence of HFA1 DNA to complement hfal null mutants. Conversely and in contrast to the intact HFA1 sequence, the signal sequence-free HFA1 gene complemented the mutational loss of cytoplasmic acetyl-CoA carboxylase. Expression of HFA1 under the control of the ACC1 promoter restored cellular ACC activity in ACC1-defective yeast mutants to wild type levels. From this finding, it is concluded that HFA1 encodes a specific mitochondrial acetyl-CoA carboxylase providing malonyl-CoA for intraorganellar fatty acid and, in particular, lipoic acid synthesis.
Collapse
Affiliation(s)
- Ursula Hoja
- Lehrstuhl für Biochemie der Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
de Breyne S, Monney RS, Curran J. Proteolytic processing and translation initiation: two independent mechanisms for the expression of the Sendai virus Y proteins. J Biol Chem 2004; 279:16571-80. [PMID: 14739274 DOI: 10.1074/jbc.m312391200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four Sendai virus C-proteins (C', C, Y1, and Y2) represent an N-terminal nested set of non-structural proteins whose expression modulates both the readout of the viral genome and the host cell response. In particular, they modulate the innate immune response by perturbing the signaling of type 1 interferons. The initiation codons for the four C-proteins have been mapped in vitro, and it has been proposed that the Y proteins are initiated by ribosomal shunting. A number of mutations were reported that significantly enhanced Y expression, and this was attributed to increased shunt-mediated initiation. However, we demonstrate that this arises due to enhanced proteolytic processing of C', an event that requires its very N terminus. Curiously, although Y expression in vitro is mediated almost exclusively by initiation, Y proteins in vivo can arise both by translation initiation and processing of the C' protein. To our knowledge this is the first example of two apparently independent pathways leading to the expression of the same polypeptide chain. This dual pathway explains several features of Y expression.
Collapse
Affiliation(s)
- Sylvain de Breyne
- Department of Microbiology and Molecular Medicine, The University of Geneva Medical School (Centre Médicale Universitaire), 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
26
|
Pöyry TAA, Kaminski A, Jackson RJ. What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev 2003; 18:62-75. [PMID: 14701882 PMCID: PMC314277 DOI: 10.1101/gad.276504] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
If the 5'-proximal AUG triplet in a mammalian mRNA is followed by a short open reading frame (sORF), a significant fraction of ribosomes resume scanning after termination of sORF translation, and reinitiate at a downstream AUG. To examine the underlying mechanism, we examined reinitiation in vitro using a series of mRNAs that differed only in the 5'-untranslated region (UTR). Efficient reinitiation was found to occur only if the eIF4F complex, or at a minimum the central one-third fragment of eIF4G, participated in the primary initiation event at the sORF initiation codon. It did not occur, however, when sORF translation was driven by the classical swine fever virus or cricket paralysis virus internal ribosome entry sites (IRESs), which do not use eIF4A, 4B, 4E, or 4G. A critical test was provided by an mRNA with an unstructured 5'-UTR, which is translated by scanning but does not absolutely need eIF4G and eIF4A: There was efficient reinitiation in a standard reticulocyte lysate, when initiation would be largely driven by eIF4F, but no reinitiation in an eIF4G-depleted lysate. These results suggest that resumption of scanning may depend on the interaction between eIF4F (or the eIF4G central domain) and the ribosome being maintained while the ribosome translates the sORF.
Collapse
Affiliation(s)
- Tuija A A Pöyry
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | |
Collapse
|
27
|
Iida Y, Kanagu D. Strength of the Translation Initiation Signal Sequence of mRNA as Studied by the Quantification Method: Effect of Nucleotides at Positions from +4 to +6 upon the Recognition of ATG and Alternative Initiation Codons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2003. [DOI: 10.1246/bcsj.76.913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Fletcher SP, Jackson RJ. Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5' untranslated region important for IRES function. J Virol 2002; 76:5024-33. [PMID: 11967318 PMCID: PMC136163 DOI: 10.1128/jvi.76.10.5024-5033.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of certain structural features of the 5' untranslated region of classical swine fever virus (CSFV) RNA for the function of the internal ribosome entry site (IRES) was investigated by mutagenesis followed by in vitro transcription and translation. Deletions made from the 5' end of the CSFV genome sequence showed that the IRES boundary was close to nucleotide 65: thus, the IRES includes the whole of domain II but no sequences upstream of this domain. Deletions which invaded domain II even to a small extent reduced activity to about 20% that of the full-length structure, and this 20% residual activity persisted with more extensive deletions until the whole of domain II had been removed and the deletions invaded the pseudoknot, whereupon IRES activity fell to zero. The importance of both stems of the pseudoknot was verified by making mutations in both sides of each stem; this severely reduced IRES activity, but the compensating mutations which restored base pairing caused almost full IRES function to be regained. The importance of the length of the loop linking the two stems of the pseudoknot was demonstrated by the finding that a reduction in length from the wild-type AUAAAAUU to AUU almost completely abrogated IRES activity. Random A-->U substitutions in the wild-type sequence showed that IRES activity was fairly proportional to the number of A residues retained in this pseudoknot loop, with a preference for clustered neighboring A residues rather than dispersed As. Finally, it was found that the sequence of the highly conserved domain IIIa loop is, rather surprisingly, not important for the maintenance of full IRES activity, although amputation of the entire domain IIIa stem and loop was highly debilitating. These results are interpreted in the light of recent models, derived from cryo-electron microscopy, of the interaction of the closely related hepatitis C virus IRES with 40S ribosomal subunits.
Collapse
Affiliation(s)
- Simon P Fletcher
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | |
Collapse
|
29
|
Akiyama T, Gohda J, Shibata S, Nomura Y, Azuma S, Ohmori Y, Sugano S, Arai H, Yamamoto T, Inoue J. Mammalian homologue of E. coli Ras-like GTPase (ERA) is a possible apoptosis regulator with RNA binding activity. Genes Cells 2001; 6:987-1001. [PMID: 11733036 DOI: 10.1046/j.1365-2443.2001.00480.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND ERA (Escherichia coli Ras-like protein) is an E. coli GTP binding protein that is essential for proliferation. A DNA database search suggests that homologous sequences with ERA exist in various organisms including human, mouse, Drosophila, Caenorhabditis elegans and Antirrhinum majus. However, the physiological function of eukaryotic ERA-like proteins is not known. RESULTS We have cloned cDNAs encoding the entire coding region of a human homologue (H-ERA) and a mouse homologue (M-ERA) of ERA. The mammalian homologue of ERA consists of a typical GTPase/GTP-binding domain and a putative K homology (KH) domain, which is known as an RNA binding domain. We performed transfection experiments with wild-type H-ERA or various H-ERA mutants. H-ERA possessing the amino acid substitution mutation into the GTPase domain induced apoptosis of HeLa cells, which was blocked by Bcl-2 expression. Deletion of the C-terminus, which contains a part of the KH domain, alleviated apoptosis by the H-ERA mutant, suggesting the importance of this domain in the function of H-ERA. We have also shown the RNA binding activity of H-ERA by pull-down experiments using RNA homopolymer immobilized on beads or recombinant H-ERA proteins. CONCLUSION Our data suggest that H-ERA plays an important role in the regulation of apoptotic signalling with its GTPase/GTP binding domain.
Collapse
Affiliation(s)
- T Akiyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
BAG-1 is a family of cochaperones consisting of at least four polypeptides BAG-1L, BAG-1M/RAP46, BAG-1 and p29. These proteins are translated from the same mRNA at alternative translation initiation sites. They possess conserved carboxy-terminal sequences which enable them to bind and inhibit the action of the molecular chaperone Hsp70/Hsc70. BAG-1 was the first member in the family of the BAG-1 proteins to be isolated. It was identified as an anti-apoptotic protein because of its ability to bind and augment the activity of the anti-death protein, Bcl-2. Since then other BAG-1 proteins have been identified and shown to interact with several cellular factors including nuclear receptors. Recent findings show that the effect of the BAG-1 proteins on nuclear receptors ranges from inhibition to enhancement of the transactivation functions of the receptors. Available data on the negative regulation of glucocorticoid receptor (GR) action by the BAG-1 proteins identify two modes of action: inhibition of the hormone binding activity of the GR and a more direct nuclear action at the level of regulation of the transactivation function of the receptor. In the latter case, the BAG-1 proteins repress DNA binding by the GR in a process that requires prior binding of Hsp70/Hsc70 to the receptor. Positive regulatory action of the BAG-1 proteins on nuclear receptors has also been reported which may involve yet other mechanisms. This review puts together recent findings on the action the BAG-1 proteins and presents them as a novel group of regulators of action of nuclear receptor.
Collapse
Affiliation(s)
- A C Cato
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, D-76021, Karlsruhe, Germany.
| | | |
Collapse
|
31
|
Sawant SV, Kiran K, Singh PK, Tuli R. Sequence architecture downstream of the initiator codon enhances gene expression and protein stability in plants. PLANT PHYSIOLOGY 2001; 126:1630-6. [PMID: 11500561 PMCID: PMC117162 DOI: 10.1104/pp.126.4.1630] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2001] [Revised: 02/15/2001] [Accepted: 04/18/2001] [Indexed: 05/18/2023]
Abstract
Nucleotide positions conserved on the 3' side of the initiator codon ATG and the corresponding N-terminal amino acid residues in a number of highly abundant plant proteins were identified by computational analysis of a dataset of highly expressed plant genes. The reporter genes uidA and gfp were modified to introduce these features. Insertion of GCT TCC TCC after the initiator codon ATG augmented expression for both the reporter genes. The insertion of each successive codon improved the expression of beta-glucuronidase (GUS) in an incremental fashion in transient transformation of tobacco (Nicotiana tabacum) leaves. The insertion of alanine-serine (Ser)-Ser resulted in about a 2-fold increase in the stability of GUS. However, this did not account for the 30- to 40-fold increase in GUS activity between the constructs coding for methionine-alanine-Ser-Ser-GUS and the native enzyme. Substitution of the codon for Ser at the third amino acid residue with synonymous codons reduced GUS expression. The results suggest a role for the conserved nucleotides in the +4 to +11 region in augmenting posttranscriptional events in the expression of genes in plants.
Collapse
Affiliation(s)
- S V Sawant
- National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, India
| | | | | | | |
Collapse
|
32
|
Abstract
The development of functional genomic resources is essential to understand and utilize information generated from genome sequencing projects. Central to the development of this technology is the creation of high-quality cDNA resources and improved technologies for analyzing coding and noncoding mRNA sequences. The isolation and mapping of cDNAs is an entrée to characterizing the information that is of significant biological relevance in the genome of an organism. However, a bottleneck is often encountered when attempting to bring to full-length (or at least full-coding) a number of incomplete cDNAs in parallel, since this involves the nonsystematic, time consuming, and labor-intensive iterative screening of a number of cDNA libraries of variable quality and/or directed strategies to process individual clones (e.g., 5' rapid amplification of cDNA ends). Here, we review the current state of the art in cDNA library generation, as well as present an analysis of the different steps involved in cDNA library generation.
Collapse
Affiliation(s)
- M Das
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
33
|
Nateri AS, Hughes PJ, Stanway G. In vivo and in vitro identification of structural and sequence elements of the human parechovirus 5' untranslated region required for internal initiation. J Virol 2000; 74:6269-77. [PMID: 10864636 PMCID: PMC112132 DOI: 10.1128/jvi.74.14.6269-6277.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sequence analysis of the picornavirus echovirus 22 led to its classification as the first member of a new genus, Parechovirus, and renaming as human parechovirus type 1 (HPeV1). Although distinct from other genera in most of the genome, the 5' untranslated region (5'UTR) shows similarities to that of cardio/aphthoviruses in some of its structural domains (A to L). The 5'UTR plays an important role in picornavirus translation initiation and in RNA synthesis. To investigate translation in HPeV1, we engineered an extensive range of mutations (including precise deletions and point mutations) into the 5'UTR. Their effects were studied both by in vitro transcription-translation using a bicistronic construct and by in vivo studies using an infectious, full-length HPeV1 cDNA. These approaches allowed the HPeV1 internal ribosome entry site (IRES) to be mapped. Deletions within the first 298 nucleotides had little impact in the in vitro system, while deletions of nucleotides 298 to 538 had a significant effect. Precise removal of domains H and L (nucleotides 287 to 316 and 664 to 682, respectively) did not significantly reduce translation efficiency in vitro, while domains I, J, and K (nucleotides 327 to 545, 551 to 661, and 614 to 645, respectively) appeared to have much more important roles. Mutation of a phylogenetically conserved GNRA motif (positions 421 to 424) within domain I severely reduced translation. We also confirmed the identity of the AUG (positions 710 to 712) which initiates the open reading frame, the positive identification of which has not been possible previously, as the N terminus of the polyprotein is blocked and not amenable to sequence analysis. This is therefore important in understanding parechovirus genome organization. Mutation of the AUG or an upstream polypyrimidine tract leads to aberrant translation, suggesting they both form part of the parechovirus Yn-Xm-AUG motif. In vivo experiments confirmed the importance of domains I, J, and K, the conserved GNRA motif, polypyrimidine sequences, and AUG, as mutations here were lethal. These features are also important in the IRES elements of cardio/aphthoviruses, but other features reported to be part of the IRES of some members of these genera, notably domains H and L, do not appear to be critical in HPeV1. This adds weight to the idea that there may be functional differences between the IRES elements of different picornaviruses, even when they share significant structural similarity.
Collapse
Affiliation(s)
- A S Nateri
- Department of Biological Sciences, John Tabor Laboratories, University of Essex, Colchester CO4 3SQ, United Kingdom
| | | | | |
Collapse
|
34
|
Lukaszewicz M, Feuermann1 M, Jérouville B, Stas A, Boutry M. In vivo evaluation of the context sequence of the translation initiation codon in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:89-98. [PMID: 10725562 DOI: 10.1016/s0168-9452(00)00195-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Statistical analysis of the AUG initiation codon context in several plant organisms identified a nucleotide preference in some positions around the AUG. Sixteen AUG contexts were studied using transient expression in tobacco, maize and Norway spruce. Besides the importance of A or G at position -3, we revealed the role of positions -2, -1 for which AA or CC were found to be the best for tobacco and maize, respectively. GC (positions +4, +5) were also found to be important in both tobacco and maize. Finally, we identified a variation in context efficiency according to cell type, since A was better than G at position -3 in tobacco leaf protoplasts, while both nucleotides were equally efficient in tobacco suspension cells.
Collapse
Affiliation(s)
- M Lukaszewicz
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Place Croix du Sud 2-20, B-1348, Louvain-La-Neuve, Belgium
| | | | | | | | | |
Collapse
|
35
|
Verrier SB, Jean-Jean O. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation. RNA (NEW YORK, N.Y.) 2000; 6:584-97. [PMID: 10786849 PMCID: PMC1369939 DOI: 10.1017/s1355838200992239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- Animals
- Base Pairing/genetics
- Base Sequence
- Cell Line
- Codon, Initiator/genetics
- Conserved Sequence/genetics
- Gene Expression Regulation/genetics
- Genes, Reporter/genetics
- Humans
- Mice
- Molecular Sequence Data
- Open Reading Frames/genetics
- Polyribosomes/chemistry
- Polyribosomes/genetics
- Protein Biosynthesis/genetics
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- Sequence Deletion/genetics
- Transfection
Collapse
Affiliation(s)
- S B Verrier
- Laboratoire de Génétique Moléculaire, Centre National de la Recherche Scientifique, UMR 8541, Ecole Normale Supérieure, Paris, France
| | | |
Collapse
|
36
|
Baron MD, Barrett T. Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J Virol 2000; 74:2603-11. [PMID: 10684274 PMCID: PMC111748 DOI: 10.1128/jvi.74.6.2603-2611.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1999] [Accepted: 12/21/1999] [Indexed: 11/20/2022] Open
Abstract
Rinderpest virus is a morbillivirus and the causative agent of an important disease of cattle and wild bovids. The P genes of all morbilliviruses give rise to two proteins in addition to the P protein itself: use of an alternate start translation site, in a second open reading frame, gives rise to the C protein, while cotranscriptional insertion of an extra base gives rise to the V protein, a fusion of the amino-terminal half of P to a short, highly conserved, cysteine-rich zinc binding domain. Little is known about the function of either of these two proteins in the rinderpest virus life cycle. We have constructed recombinant rinderpest viruses in which the expression of these proteins has been suppressed, individually and together, and studied the replication of these viruses in tissue culture. We show that the absence of the V protein has little effect on the replication rate of the virus but does lead to an increase in synthesis of genome and antigenome RNAs and a change in cytopathic effect to a more syncytium-forming phenotype. Virus that does not express the C protein, on the other hand, is clearly defective in growth in all cell lines tested, and this defect appears to be related to a decreased transcription of mRNA from viral genes. The phenotypes of both individual mutant virus types are both expressed in the double mutant expressing neither V nor C.
Collapse
Affiliation(s)
- M D Baron
- Institute for Animal Health, Pirbright, Surrey GU24 ONF, United Kingdom.
| | | |
Collapse
|
37
|
Gaikwad A, Tewari KK, Kumar D, Chen W, Mukherjee SK. Isolation and characterisation of the cDNA encoding a glycosylated accessory protein of pea chloroplast DNA polymerase. Nucleic Acids Res 1999; 27:3120-9. [PMID: 10454608 PMCID: PMC148538 DOI: 10.1093/nar/27.15.3120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cDNA encoding p43, a DNA binding protein from pea chloroplasts (ct) that binds to cognate DNA polymerase and stimulates the polymerase activity, has been cloned and characterised. The characteristic sequence motifs of hydroxyproline-rich glyco-proteins (HRGP) are present in the cDNA corres-ponding to the N-terminal domain of the mature p43. The protein was found to be highly O-arabinosylated. Chemically deglycosylated p43 (i.e. p29) retains its binding to both DNA and pea ct-DNA polymerase but fails to stimulate the DNA polymerase activity. The mature p43 is synthesised as a pre-p43 protein containing a 59 amino acid long transit peptide which undergoes stromal cleavage as evidenced from the post-translational in vitro import of the precursor protein into the isolated intact pea chloroplasts. Surprisingly, p43 is found only in pea chloroplasts. The unique features present in the cloned cDNA indicate that p43 is a novel member of the HRGP family of proteins. Besides p43, no other DNA-polymerase accessory protein with O-glycosylation has been reported yet.
Collapse
Affiliation(s)
- A Gaikwad
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | | | | | | | |
Collapse
|
38
|
Chang MJ, Kuzio J, Blissard GW. Modulation of translational efficiency by contextual nucleotides flanking a baculovirus initiator AUG codon. Virology 1999; 259:369-83. [PMID: 10388661 DOI: 10.1006/viro.1999.9787] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study of translational regulation of a baculovirus gene, we observed that translation initiated at an unexpectedly high efficiency from an AUG codon found in what was believed to be a poor context (M.-J. Chang and G. W. Blissard, 1997, J. Virol. 71, 7448-7460). In the current study, we examined the roles of nucleotides flanking a baculovirus AUG initiator codon in modulating translation initiation in lepidopteran insect cells. The roles of nucleotides flanking the AcMNPV gp64 initiator codon were examined by site-directed mutagenesis and functional assays in transfected Sf9 cells. To eliminate potential cis-acting sequences and effects, the gp64 initiator context was cloned in-frame with a chloramphenicol acetyl transferase reporter gene and under the control of a heterologous promoter. All possible single-nucleotide substitutions were generated in positions -6 to -1 and +4 to +6, relative to the A of the initiator AUG codon, which was designated +1. Constructs were transfected into lepidopteran cells and translation products were quantified by an enzyme-linked immunosorbent assay procedure. Substitutions of pyrimidines or other nucleotides at the -3 position resulted in little or no detectable effect on translation efficiency. In contrast, specific substitutions at the +4 and +5 positions resulted in approximately 2- to 3-fold increases in translation. Substitution of A in the +4 position resulted in an approximately 3-fold increase in translation, and substitution of any nucleotide for T in the +5 position resulted in approximately 1.9- to 2.8-fold increases. Substitutions at other positions (-6 to -1 and +6) resulted in no detectable increase or decrease in translation efficiency. These experimental results suggest an optimal initiator context of 5'-N N N N N N A U G A a/c/g N-3' for efficient translation initiation in lepidopteran cells. Consensus translation initiation contexts were generated from baculovirus genes and lepidopteran genes, then compared with the experimental results from the gp64 initiator context.
Collapse
Affiliation(s)
- M J Chang
- Boyce Thompson Institute at Cornell University, Tower Road, Ithaca, New York, 14853-1801, USA
| | | | | |
Collapse
|
39
|
Ohlmann T, Jackson RJ. The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA (NEW YORK, N.Y.) 1999; 5:764-778. [PMID: 10376876 PMCID: PMC1369803 DOI: 10.1017/s1355838299982158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The internal ribosome entry segment (IRES) of picornaviruses consists of approximately 450 nt of 5'-untranslated region, terminating at the 3' end with an approximately 25 nt element consisting of an absolutely conserved UUUC motif followed by a more variable pyrimidine-rich tract and G-poor spacer, and finally an AUG triplet, which is considered to be the actual ribosome entry site. Events following entry at this site differ among picornaviruses: in encephalomyocarditis virus (EMCV) virtually all ribosomes initiate translation at this site (AUG-11); in foot-and-mouth-disease virus (FMDV), one-third of the ribosomes initiate at this AUG (the Lab site), and the rest at the next AUG 84 nt downstream (Lb site); and in poliovirus (PV), the AUG at the 3' end of the IRES (at nt 586 in PV type 1) is considered to be a silent entry site, with all ribosomes initiating translation at the next AUG downstream (nt 743). To investigate what determines this different behavior, chimeras were constructed with a crossover at the conserved UUUC motif: the body of the IRES, the sequences upstream of this UUUC motif, was derived from one species, and the downstream sequences from another. When the body of the FMDV or PV IRESes was replaced by that of EMCV, there was a marked increase in the absolute and relative frequency of initiation at the upstream AUG, the Lab site of FMDV and 586AUG of PV, respectively. In contrast, when the body of the EMCV IRES was replaced by that of PV, initiation occurred with no preference at three AUGs: the normal site (AUG-11), AUG-10 situated 8 nt upstream, and AUG-12, which is 12 nt downstream. Thus although the context of the AUG at the 3' end of the IRES may influence initiation frequency at this site, as was shown by improving the context of 586AUG of PV, the behavior of the ribosome is also highly dependent on the nature of the upstream IRES. Delivery of the ribosome to this AUG in an initiation-competent manner is particularly efficient and accurate with the EMCV IRES.
Collapse
Affiliation(s)
- T Ohlmann
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
40
|
Nayernia K, von Mering MH, Kraszucka K, Burfeind P, Wehrend A, Köhler M, Schmid M, Engel W. A novel testicular haploid expressed gene (THEG) involved in mouse spermatid-sertoli cell interaction. Biol Reprod 1999; 60:1488-95. [PMID: 10330110 DOI: 10.1095/biolreprod60.6.1488] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The successful production of male gametes requires extensive and precise interactions between germ cells and surrounding testicular somatic cells. We have made use of the mRNA differential display technique to isolate genes involved in germ cell-Sertoli cell interaction. We have identified five differential cDNA bands by comparing RNA from Sertoli cells, spermatids and spermatid-Sertoli cell cocultures. One of the isolated cDNA fragments detected a 1. 4-kilobase (kb) testis- and spermatid-specific transcript (designated as THEG: testicular haploid expressed gene). Northern blot analysis on RNA from spermatids and spermatid-Sertoli cell cocultures demonstrated that Sertoli cells are required for the continued expression of THEG in spermatids. We found two alternatively spliced transcripts for the THEG gene with 1437 base pairs (bp) and 1375 bp by using reverse transcription-polymerase chain reaction. The two open reading frames of 376 amino acids and 181 amino acids coded for putative nuclear proteins. The gene is approximately 10 kb pairs in size, contains 8 exons, and was mapped on mouse chromosome 10 to region B5-C1. Comparison of the two cDNA sequences with the genomic sequence indicated that the smaller transcript lacks exon 4. The differential gene expression of THEG in spermatid-Sertoli cell coculture supports the relevance of germ cell-Sertoli cell interaction for gene regulation during spermatogenesis.
Collapse
Affiliation(s)
- K Nayernia
- Institute of Human Genetics, University of Göttingern, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
López de Quinto S, Martínez-Salas E. Involvement of the aphthovirus RNA region located between the two functional AUGs in start codon selection. Virology 1999; 255:324-36. [PMID: 10069958 DOI: 10.1006/viro.1999.9598] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Initiation of translation in picornavirus RNAs occurs internally, mediated by an element termed internal ribosome entry site (IRES). In the aphthovirus RNA, the IRES element directs translation initiation at two in-frame AUGs separated by 84 nucleotides. We have found that bicistronic constructs that contained the IRES element followed by the fragment including the aphthovirus start codons in front of the second gene mimicked the translation initiation pattern of viral RNA observed in infected cells. In those constructs, the frequency of initiation at the first AUG was increased by a sequence context that resembled the favorable consensus for cap-dependent translation, although initiation at the second site was always preferred. In addition, we have found that initiation at the second start codon was not diminished under conditions in which the first initiation codon was blocked by antisense oligonucleotide interference. Interestingly, mutations that positioned the second AUG out-of-frame with the first AUG did not interfere with the frequency of initiation at the second one. On the contrary, IRES-dependent translation initiation in bicistronic constructs lacking the sequences present between functional AUGs in the viral RNA was sensitive to the presence of out-of-frame initiator codons and hairpins in the spacer region. This remarkable difference in start codon recognition was due to the nucleotide composition of the RNA that separated the IRES from the initiator codon. Thus our results indicate that the region located in the aphthovirus RNA between functional AUGs is involved in start codon recognition, strongly favoring selection of the second start AUG as the main initiator codon.
Collapse
Affiliation(s)
- S López de Quinto
- Consejo Superior de Investigaciones Científicas-, Universidad Autónoma de Madrid, Madrid, Cantoblanco, 28049, Spain
| | | |
Collapse
|
42
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
43
|
Chiang GG, Rubin HL, Cherington V, Wang T, Sobolewski J, McGrath CA, Gaffney A, Emami S, Sarver N, Levine PH, Greenberger JS, Hurwitz DR. Bone marrow stromal cell-mediated gene therapy for hemophilia A: in vitro expression of human factor VIII with high biological activity requires the inclusion of the proteolytic site at amino acid 1648. Hum Gene Ther 1999; 10:61-76. [PMID: 10022531 DOI: 10.1089/10430349950019192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To evaluate the potential of the ex vivo bone marrow stromal cell (BMSC) system as a gene therapy for hemophilia A, we studied the in vitro expression of human factor VIII (hFVIII) in canine BMSCs following transfection with plasmid vectors and transduction with retroviral vectors. Vectors were composed of B domain-deleted forms of hFVIII that either retain or delete the proteolytic site at amino acid 1648. On transfection of BMSCs, vectors supported expression and secretion of similar levels of up to 386 mU/10(6) cells/24 hr, even though only 3-9% of the cells expressed hFVIII while 42-48% of transfected cells harbored plasmid vector. Much higher percentages (approximately 70%) of cells expressing hFVIII were achieved when BMSCs were transduced by retroviral vectors, resulting in expression and secretion as high as 1000-4000 mU/10(6) cells/24 hr. Western analysis demonstrated that the B domain-deleted forms possessing the proteolytic site were secreted predominantly as heavy and light chain heterodimers that resemble native forms found in plasma. In contrast, the hFVIII lacking the proteolytic site was expressed mostly as unprocessed, single heavy-light chains. Both hFVIII forms were correctly cleaved and activated by thrombin. The proteolyzed hFVIII form possessed > or = 93% normal biological activity while the unproteolyzed form possessed consistently less than 55% normal biological activity and was therefore considered less suitable for therapeutic application. These results demonstrate that the BMSC system has potential utility in gene therapy for hemophilia A and stress the importance of selecting the appropriate hFVIII structure for prospective clinical use.
Collapse
|
44
|
Duga S, Asselta R, Del Giacco L, Malcovati M, Ronchi S, Tenchini ML, Simonic T. A new exon in the 5' untranslated region of the connexin32 gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:188-96. [PMID: 9914492 DOI: 10.1046/j.1432-1327.1999.00029.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cloning and sequencing of two bovine connexin32 cDNAs are reported. Comparative analysis with known corresponding mammalian cDNA and protein sequences, besides confirming a high degree of similarity among these proteins, allowed us to identify some specific features of the bovine connexin32 gene. The latter include: the presence of a novel exon in the 5' UTR which is alternatively spliced, giving rise to a new mRNA species; the presence of two potential hairpin loops in the 5' and 3' UTR; and the presence of an additional amino acid, glycine235, in the C-terminal domain of the 284 residue protein. Among the common features, the presence of polypyrimidine clusters within the 3' UTR, containing a consensus sequence for a cis-acting element, is noteworthy. Expression of connexin32 mRNAs was analysed in 16 bovine tissues. Transcript analysis suggests the presence, in cattle, of an alternative downstream promoter.
Collapse
Affiliation(s)
- S Duga
- Istituto di Fisiologia Veterinaria e Biochimica, Dipartimento di Biologia e Genetica per le Scienze Mediche, Universitá di Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Malet I, Wychowski C, Huraux JM, Agut H, Cahour A. Yellow fever 5' noncoding region as a potential element to improve hepatitis C virus production through modification of translational control. Biochem Biophys Res Commun 1998; 253:257-64. [PMID: 9878525 DOI: 10.1006/bbrc.1998.9740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lengthy 5' noncoding region (5' NCR) of hepatitis C virus (HCV) RNA forms a highly ordered secondary structure, very conserved among different strains. It includes an internal ribosome entry site (IRES) element, responsible for the cap-independent translation initiation of HCV RNA. Similarly to the IRES of hepatitis A virus (HAV), another human hepatitis virus, HCV IRES, activity in internal initiation of translation is weak. Furthermore, both viruses exhibit a poor growth phenotype that may result at least partially from an inhibitory control of translation. To enhance HCV translation, as a preliminary step in designing constructs for improvement in viral production, we sought to evaluate a chimeric construct containing the yellow fever virus (YFV) 5' NCR fused to the initiation codon of the HCV coding sequence. YF viral RNA, as the majority of eukaryotic messenger RNAs, is translated by a ribosome scanning mechanism in a cap-dependent manner. The efficiency of translation initiation of the parental HCV construct was compared in vitro in rabbit reticulocyte lysates with that of the chimeric construct containing YFV 5' NCR. Surprisingly, the related distanced YFV 5' NCR was fivefold more active than was the wild-type HCV IRES in directing that function. Furthermore, chimeric transcripts were shown to be effective in vivo after transfection of eukaryotic cells. Taken together, these results raise the following question: why has the HCV genus evolved to the acquisition of an IRES element within its 5' NCR among the Flaviviridae family?
Collapse
Affiliation(s)
- I Malet
- Laboratoire de Virologie du CERVI, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
46
|
López de Quinto S, Martínez-Salas E. Parameters influencing translational efficiency in aphthovirus IRES-based bicistronic expression vectors. Gene X 1998; 217:51-6. [PMID: 9795130 DOI: 10.1016/s0378-1119(98)00379-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Initiation of translation in picornavirus RNAs occurs internally, mediated by an internal ribosome entry site (IRES) element. This property has been exploited to coexpress proteins from a single bicistronic transcription unit in eukaryotic cells. The region that separates the IRES element from the authentic initiator codon of the second gene plays an important role in the translation efficiency of this cistron. In the present report, we have analyzed the effect of sequence modifications in this region on the translation efficiency directed by the foot-and-mouth disease (FMDV) IRES in bicistronic expression vectors. Insertion of various sequences, which contained additional start codons and/or the capacity to form hairpins immediately downstream of the 3' border of the IRES, strongly reduced the translation efficiency of the second gene in bicistronic RNAs. Interestingly, an increase of distance per se did not have a deleterious effect on translation efficiency. The bicistronic vector studied here tolerated 95 nucleotides between the 3' border of the IRES and the authentic start codon, provided that out-of-frame AUG codons or hairpins were not present in this RNA segment. These results indicate that FMDV-derived bicistronic constructs are extremely well suited for use in eukaryotic expression vectors.
Collapse
Affiliation(s)
- S López de Quinto
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | |
Collapse
|
47
|
Latorre P, Kolakofsky D, Curran J. Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 1998; 18:5021-31. [PMID: 9710586 PMCID: PMC109087 DOI: 10.1128/mcb.18.9.5021] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sendai virus P/C mRNA expresses eight primary translation products by using a combination of ribosomal choice and cotranscriptional mRNA editing. The longest open reading frame (ORF) of the mRNA starts at AUG104 (the second initiation site) and encodes the 568-amino-acid P protein, an essential subunit of the viral polymerase. The first (ACG81), third (ATG114), fourth (ATG183), and fifth (ATG201) initiation sites are used to express a C-terminal nested set of polypeptides (collectively named the C proteins) in the +1 ORF relative to P, namely, C', C, Y1, and Y2, respectively. Leaky scanning accounts for translational initiation at the first three start sites (a non-ATG followed by ATGs in progressively stronger contexts). Consistent with this, changing ACG81/C' to ATG (GCCATG81G) abrogates expression from the downstream ATG104/P and ATG114/C initiation codons. However, expression of the Y1 and Y2 proteins remains normal in this background. We now have evidence that initiation from ATG183/Y1 and ATG201/Y2 takes place via a ribosomal shunt or discontinuous scanning. Scanning complexes appear to assemble at the 5' cap and then scan ca. 50 nucleotides (nt) of the 5' untranslated region before being translocated to an acceptor site at or close to the Y initiation codons. No specific donor site sequences are required, and translation of the Y proteins continues even when their start codons are changed to ACG. Curiously, ATG codons (in good contexts) in the P ORF, placed either 16 nt upstream of Y1, 29 nt downstream of Y2, or between the Y1 and Y2 codons, are not expressed even in the ACGY1/ACGY2 background. This indicates that ATG183/Y1 and ATG201/Y2 are privileged start sites within the acceptor site. Our observations suggest that the shunt delivers the scanning complex directly to the Y start codons.
Collapse
Affiliation(s)
- P Latorre
- Department of Genetics and Microbiology, University of Geneva Medical School (CMU), CH1211 Geneva, Switzerland
| | | | | |
Collapse
|
48
|
Latorre P, Cadd T, Itoh M, Curran J, Kolakofsky D. The various Sendai virus C proteins are not functionally equivalent and exert both positive and negative effects on viral RNA accumulation during the course of infection. J Virol 1998; 72:5984-93. [PMID: 9621061 PMCID: PMC110403 DOI: 10.1128/jvi.72.7.5984-5993.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/1998] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
Recombinant Sendai viruses were prepared which cannot express their Cprime, C, or Cprime plus C proteins due to mutation of their respective start codons ([Cprime-minus], [C-minus] and [double mutant], respectively). The [Cprime-minus] and [C-minus] stocks were similar to that of wild-type (wt) virus in virus titer and plaque formation, whereas the double-mutant stock had a much-reduced PFU or 50% egg infective dose/particle ratio and produced very small plaques. Relative to the wt virus infection, the [Cprime-minus] and [C-minus] infections of BHK cells resulted in significantly greater accumulation of viral RNAs, consistent with the known inhibitory effects of the Cprime and C proteins. The double-mutant infection, in contrast, was delayed in its accumulation of viral RNAs; however, once accumulation started, overaccumulation quickly occurred, as in the single-mutant infections. Our results suggest that the Cprime and C proteins both provide a common positive function early in infection, so that only the double mutant undergoes delayed RNA accumulation and exhibits the highly debilitated phenotype. Later in infection, the same proteins appear to act as inhibitors of RNA accumulation. In infections of mice, [Cprime-minus] was found to be as virulent as wt virus whereas [C-minus] was highly attenuated. These results suggest that the Cprime and C proteins cannot be functionally equivalent, since C can replace Cprime for virulence in mice whereas Cprime cannot replace C.
Collapse
Affiliation(s)
- P Latorre
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Abstract
The VpreB and lambda 5 genes encode proteins that associate non-covalently to form the so-called surrogate light (SL) chain. The SL chain complexes with the immunoglobulin heavy chain to form the pre-B cell receptor, which plays a critical role in B cell development. Expression of the murine SL genes is regulated at the level of transcription initiation. Here, we show that a VpreB1 enhancer is located within the 356 bp immediately upstream of the coding sequence. Interestingly, this region exhibits 96% identity to the upstream region of VpreB2. Deletion mapping located the enhancer to between positions -214 and -47 (+1 is the 5'-most transcription initiation site). The enhancer is tissue and differentiation stage specific, and is composed of several DNA elements that are important for its activity. We also show that a transcription factor, early B cell factor, binds to two such elements, and that at least one of these sites is involved in determining enhancer activity.
Collapse
Affiliation(s)
- C Persson
- Department of Cell and Molecular Biology, University of Lund, Sweden.
| | | | | |
Collapse
|
50
|
|