1
|
Sun J, Matsushita Y. Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence. MOLECULAR PLANT PATHOLOGY 2024; 25:e13469. [PMID: 38956901 PMCID: PMC11219469 DOI: 10.1111/mpp.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.
Collapse
Affiliation(s)
- Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yosuke Matsushita
- Institute of Plant ProtectionNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
2
|
Dang T, Lavagi-Craddock I, Bodaghi S, Vidalakis G. Next-Generation Sequencing Identification and Characterization of MicroRNAs in Dwarfed Citrus Trees Infected With Citrus Dwarfing Viroid in High-Density Plantings. Front Microbiol 2021; 12:646273. [PMID: 33995303 PMCID: PMC8121382 DOI: 10.3389/fmicb.2021.646273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Citrus dwarfing viroid (CDVd) induces stunting on sweet orange trees [Citrus sinensis (L.) Osbeck], propagated on trifoliate orange rootstock [Citrus trifoliata (L.), syn. Poncirus trifoliata (L.) Raf.]. MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play important roles in the regulation of tree gene expression. To identify miRNAs in dwarfed citrus trees, grown in high-density plantings, and their response to CDVd infection, sRNA next-generation sequencing was performed on CDVd-infected and non-infected controls. A total of 1,290 and 628 miRNAs were identified in stem and root tissues, respectively, and among those, 60 were conserved in each of these two tissue types. Three conserved miRNAs (csi-miR479, csi-miR171b, and csi-miR156) were significantly downregulated (adjusted p-value < 0.05) in the stems of CDVd-infected trees compared to the non-infected controls. The three stem downregulated miRNAs are known to be involved in various physiological and developmental processes some of which may be related to the characteristic dwarfed phenotype displayed by CDVd-infected C. sinensis on C. trifoliata rootstock field trees. Only one miRNA (csi-miR535) was significantly downregulated in CDVd-infected roots and it was predicted to target genes controlling a wide range of cellular functions. Reverse transcription quantitative polymerase chain reaction analysis performed on selected miRNA targets validated the negative correlation between the expression levels of these targets and their corresponding miRNAs in CDVd-infected trees. Our results indicate that CDVd-responsive plant miRNAs play a role in regulating important citrus growth and developmental processes that may participate in the cellular changes leading to the observed citrus dwarf phenotype.
Collapse
Affiliation(s)
| | | | | | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Wu J, Zhou C, Li J, Li C, Tao X, Leontis NB, Zirbel CL, Bisaro DM, Ding B. Functional analysis reveals G/U pairs critical for replication and trafficking of an infectious non-coding viroid RNA. Nucleic Acids Res 2020; 48:3134-3155. [PMID: 32083649 PMCID: PMC7102988 DOI: 10.1093/nar/gkaa100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
While G/U pairs are present in many RNAs, the lack of molecular studies to characterize the roles of multiple G/U pairs within a single RNA limits our understanding of their biological significance. From known RNA 3D structures, we observed that the probability a G/U will form a Watson-Crick (WC) base pair depends on sequence context. We analyzed 17 G/U pairs in the 359-nucleotide genome of Potato spindle tuber viroid (PSTVd), a circular non-coding RNA that replicates and spreads systemically in host plants. Most putative G/U base pairs were experimentally supported by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). Deep sequencing PSTVd genomes from plants inoculated with a cloned master sequence revealed naturally occurring variants, and showed that G/U pairs are maintained to the same extent as canonical WC base pairs. Comprehensive mutational analysis demonstrated that nearly all G/U pairs are critical for replication and/or systemic spread. Two selected G/U pairs were found to be required for PSTVd entry into, but not for exit from, the host vascular system. This study identifies critical roles for G/U pairs in the survival of an infectious RNA, and increases understanding of structure-based regulation of replication and trafficking of pathogen and cellular RNAs.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Cuiji Zhou
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - James Li
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Chun Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Neocles B Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Biao Ding
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.,Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Kenchanmane Raju SK, Ritter EJ, Niederhuth CE. Establishment, maintenance, and biological roles of non-CG methylation in plants. Essays Biochem 2019; 63:743-755. [PMID: 31652316 PMCID: PMC6923318 DOI: 10.1042/ebc20190032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
Cytosine DNA methylation is prevalent throughout eukaryotes and prokaryotes. While most commonly thought of as being localized to dinucleotide CpG sites, non-CG sites can also be modified. Such non-CG methylation is widespread in plants, occurring at trinucleotide CHG and CHH (H = A, T, or C) sequence contexts. The prevalence of non-CG methylation in plants is due to the plant-specific CHROMOMETHYLASE (CMT) and RNA-directed DNA Methylation (RdDM) pathways. These pathways have evolved through multiple rounds of gene duplication and gene loss, generating epigenomic variation both within and between species. They regulate both transposable elements and genes, ensure genome integrity, and ultimately influence development and environmental responses. In these capacities, non-CG methylation influence and shape plant genomes.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
- AgBioResearch, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
5
|
Viability and genetic stability of potato spindle tuber viroid mutants with indels in specific loops of the rod-like secondary structure. Virus Res 2017; 240:94-100. [PMID: 28778395 DOI: 10.1016/j.virusres.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of the rod-like structure of potato spindle tuber viroid (PSTVd), which contains over 20 loops and bulges between double-stranded helices, is important for viroid biology. To study tolerance to modifications of the stem-loop structures and PSTVd capacity for mutation repair, we have created 6 mutants carrying 3-4 nucleotides deletions or insertions at three unique restriction sites, EagI, StyI and AvaII. Differences in the infectivity of these in vitro generated PSTVd mutants can result from where the mutations map, as well as from the extent to which the secondary structure of the molecule is affected. Deletion or insertion of 4 nucleotides at the EagI and StyI sites led to loss of infectivity. However, mutants with deletion (PSTVd-Ava-del) or insertion (PSTVd-Ava-in) of 3 nucleotides (221GAC223), at the AvaII site (loop 20) were viable but not genetically stable. In all analyzed plants, reversion to the wild type PSTVd-S23 sequence was observed for the PSTVd-Ava-in mutant a few weeks after agroinfiltration. Analysis of PSTVd-Ava-del progeny allowed the identification of 10 new sequence variants carrying various modifications, some of them having retained the original three nucleotide deletion at the AvaII site. Interestingly, other variants gained three nucleotides in the deletion site but did not revert to the original wild type sequence. The genetic stability of the progeny PSTVd-Ava-del sequence variants was evaluated in tomato leaves (early infection) and in both leaves and roots (late infection), respectively.
Collapse
|
6
|
Dalakouras A, Dadami E, Wassenegger M, Krczal G, Wassenegger M. RNA-directed DNA methylation efficiency depends on trigger and target sequence identity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:202-14. [PMID: 27121647 DOI: 10.1111/tpj.13193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
RNA-directed DNA methylation (RdDM) in plants has been extensively studied, but the RNA molecules guiding the RdDM machinery to their targets are still to be characterized. It is unclear whether these molecules require full complementarity with their target. In this study, we have generated Nicotiana tabacum (Nt) plants carrying an infectious tomato apical stunt viroid (TASVd) transgene (Nt-TASVd) and a non-infectious potato spindle tuber viroid (PSTVd) transgene (Nt-SB2). The two viroid sequences exhibit 81% sequence identity. Nt-TASVd and Nt-SB2 plants were genetically crossed. In the progeny plants (Nt-SB2/TASVd), deep sequencing of small RNAs (sRNAs) showed that TASVd infection was associated with the accumulation of abundant small interfering RNAs (siRNAs) that mapped along the entire TASVd but only partially matched the SB2 transgene. TASVd siRNAs efficiently targeted SB2 RNA for degradation, but no transitivity was detectable. Bisulfite sequencing in the Nt-SB2/TASVd plants revealed that the TASVd transgene was targeted for dense cis-RdDM along its entire sequence. In the same plants, the SB2 transgene was targeted for trans-RdDM. The SB2 methylation pattern, however, was weak and heterogeneous, pointing to a positive correlation between trigger-target sequence identity and RdDM efficiency. Importantly, trans-RdDM on SB2 was also detected at sites where no homologous siRNAs were detected. Our data indicate that RdDM efficiency depends on the trigger-target sequence identity, and is not restricted to siRNA occupancy. These findings support recent data suggesting that RNAs with sizes longer than 24 nt (>24-nt RNAs) trigger RdDM.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Neustadt, 67435, Germany
| | - Elena Dadami
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Neustadt, 67435, Germany
| | - Michèle Wassenegger
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Neustadt, 67435, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Neustadt, 67435, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Neustadt, 67435, Germany
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
7
|
Abstract
Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliqueé sur le cancer, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
9
|
Dalakouras A, Dadami E, Bassler A, Zwiebel M, Krczal G, Wassenegger M. Replicating Potato spindle tuber viroid mediates de novo methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biol 2015; 12:268-75. [PMID: 25826660 PMCID: PMC4615544 DOI: 10.1080/15476286.2015.1017216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 10/23/2022] Open
Abstract
In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.
Collapse
Affiliation(s)
| | - Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Alexandra Bassler
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
10
|
In vitro and in vivo evidence for differences in the protease activity of two arabis mosaic nepovirus isolates and their impact on the infectivity of chimeric cDNA clones. Virology 2013; 446:102-11. [DOI: 10.1016/j.virol.2013.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/11/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022]
|
11
|
Dadami E, Moser M, Zwiebel M, Krczal G, Wassenegger M, Dalakouras A. An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Lett 2013; 587:706-10. [PMID: 23380068 DOI: 10.1016/j.febslet.2013.01.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 01/19/2023]
Abstract
In plants, transgenes are generally more sensitive against RNA silencing than endogenes are. In this study, we generated a transgene that structurally mimicks an endogene. It is composed of endogenous promoter, 5'-UTR, introns, 3'-UTR and terminator elements. Our data revealed that, in contrast to a conventional transgene, an endogene-resembling transgene was more stably expressed and poorly processed into small RNAs. In addition, although both constructs triggered methylation of homologous DNA sequences at similar levels, the endogene-resembling transgene exhibited significantly delayed onset of local and systemic silencing.
Collapse
Affiliation(s)
- Elena Dadami
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435 Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Molecular evolution of the genomic RNA of Apple stem grooving capillovirus. J Mol Evol 2012; 75:92-101. [PMID: 23149596 DOI: 10.1007/s00239-012-9518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
The complete genome of the German isolate AC of Apple stem grooving virus (ASGV) was sequenced. It encodes two overlapping open reading frames (ORFs), similarly to previously described ASGV isolates. Two regions of high variability were detected between the ASGV isolates, variable region 1 (V1, from amino acids (aa) 532 to 570), and variable region 2 (V2, from aa 1,583 to 1,868). The phylogenetic analysis of the V1 and V2 regions suggested that the ASGV diversity was structured by host plant species rather than geographical origin. The dN/dS ratio between nonsynonymous and synonymous nucleotide substitution rates varied greatly along the ASGV genome. Most of ORF1 showed predominant negative selection except for the two regions V1 and V2. V1 showed an elevated dN and an average dS when compared to the ORF1 background but no significant positive selection was detected. The V2 region of ORF1 showed an elevated dN and a low dS when compared to the ORF1 background with an average dN/dS ≈ 3.0 indicative of positive selection. However, the V2 area includes overlapping ORFs, making the dN/dS estimate biased. Joint estimates of the selection intensity in the different ORFs by a recent method indicated that this region of ORF1 was in fact evolving close to neutrality. This was convergent with previous results showing that introduction of stop codons in this region of ORF1 did not impair plant infection. These data suggest that the elimination of a stop codon caused the overprinting of a novel coding region over the ancestral ORF.
Collapse
|
13
|
Abstract
Plants are excellent systems for discovering and studying epigenetic phenomena, such as transposon silencing, RNAi, imprinting, and DNA methylation. Imprinting, referring to preferential expression of maternal or paternal alleles, plays an important role in reproduction development of both mammals and plants. DNA methylation is critical for determining whether the maternal or paternal alleles of an imprinted gene is expressed or silenced. In flowering plants, there is a double fertilization event in reproduction: one sperm fertilizes the egg cell to form embryo and a second sperm fuses with the central cell to give rise to endosperm. Endosperm is the tissue where imprinting occurs in plants. MEDEA (MEA), a SET domain Polycomb group gene, was the first plant gene shown to be imprinted in endosperm, and its maternal expression is controlled by DNA methylation and demethylation. Recently there has been significant progress in identifying imprinted genes as well as understanding molecular mechanisms of imprinting in plants. Up to date, approximately 350 genes were found to have differential parent-of-origin expression in plant endosperm (Arabidopsis, corn, and rice). In Arabidopsis, many imprinted genes are regulated by the DNA METHYLTRANSFERASE1 (MET1) and the DNA-demethylating glycosylase DEMETER (DME), and/or their chromatin states regulated by Polycomb group proteins (PRC2). There are also maternally expressed genes regulated by unknown mechanisms in endosperm. In this protocol, we describe in detail how to perform a genetic cross, isolate the endosperm tissue from seed, determine the imprinting status of a gene, and analyze DNA methylation of imprinted genes by bisulfite sequencing in Arabidopsis.
Collapse
|
14
|
Daldoul S, Mliki A, Höfer MU. Suppressive subtractive hybridization method analysis and its application to salt stress in grapevine (Vitis vinifera L.). RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412010061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Dalakouras A, Tzanopoulou M, Tsagris M, Wassenegger M, Kalantidis K. Hairpin transcription does not necessarily lead to efficient triggering of the RNAi pathway. Transgenic Res 2011; 20:293-304. [PMID: 20582569 DOI: 10.1007/s11248-010-9416-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/04/2010] [Indexed: 11/30/2022]
Abstract
Previously, we had shown that stable expression of a hairpin RNA sharing homology with the coat protein (CP) of the Cucumber mosaic virus (CMV) (hpRNA(CMV)) produced CMV resistant Nicotiana tabacum plants. However, only 17% of the hpRNA(CMV)-expressing plants generated substantial amounts of siRNAs that mediated CMV resistance (siRNAs(CMV)). Here, we demonstrate that the transcription of a hpRNA(CMV) per se is not sufficient to trigger cytoplasmic and nuclear RNAi. A multiple-transgene copy line showed a strong resistance phenotype. Segregation of individual copies revealed that in one locus, the transgene-produced hpRNA(CMV) transcript was processed into 21-nt and 24-nt siRNAs(CMV) and lines containing this locus were resistant. At a second locus, where the transgene was shown to be transcribed, no siRNAs(CMV) were produced and lines harbouring only this locus were susceptible. In addition, the second locus failed to trigger de novo RNA-directed DNA methylation (RdDM) in cis, of its cognate sequence. However, after being induced in trans, methylation in the transcribed region of the transgene was maintained in both CG and CHG residues. Sequence-specific maintenance of methylation in transcribed regions, as well as diverse RNA degradation pathways in plants are discussed in view of our observations.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435, Neustadt, Germany
| | | | | | | | | |
Collapse
|
16
|
Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer MU. Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:489-98. [PMID: 21802607 DOI: 10.1016/j.plantsci.2010.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 06/17/2010] [Accepted: 07/22/2010] [Indexed: 05/11/2023]
Abstract
Salt stress adversely affects the growth of grapevine plants. In order to understand the molecular basis of salt stress response in grapevine plants, suppression subtractive hybridization (SSH) and microarray based screening approaches were combined. Two leaf-specific subtractive cDNA libraries were constructed from grapevine plants subjected to a moderate, incremental salt stress treatment. SSH were performed 6h and 24h after NaCl peaked at 100mM using cDNAs prepared from leaves of a salt tolerant cultivar (Razegui) as testers and cDNAs from unstressed leaves as drivers. Then, a pre-screened subset of cDNA clones from these SSH libraries were used to construct a Vitis vinifera cDNA array, in order to verify the expression changes of the genes upon salt treatment. Expression profiles were compared between the salt tolerant and a susceptible cultivar (Syrah) under both control conditions and after salt stress treatment. Seven cDNA clones were identified which were up-regulated by salt stress in two independent growth experiments and confirmed by RNA blot analysis. The transcript expression patterns of the selected genes differed between the contrasting grapevine cultivars tested with respect to stress-regulation. The possible relationship of individual cDNAs with salinity tolerance mechanisms is discussed.
Collapse
Affiliation(s)
- Samia Daldoul
- Centre de Biotechnologie de Borj cédria, Laboratoire de Physiologie Moléculaire des Plantes, B.P.901, 2050 Hammam-Lif, Tunisia; RLP-Agroscience GmbH/Alplanta-Institute for Plant Research, Breitenweg 71, 67435 Neustadt and der Weinstraße, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dalakouras A, Moser M, Krczal G, Wassenegger M. A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco. PLANT MOLECULAR BIOLOGY 2010; 73:439-47. [PMID: 20364297 DOI: 10.1007/s11103-010-9631-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/18/2010] [Indexed: 05/29/2023]
Abstract
In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4-5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3' end by a 19 bp PSTVd and at its 5' end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)-mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, 67435 Neustadt, Germany
| | | | | | | |
Collapse
|
18
|
Dyachenko OV, Shevchuk TV, Buryanov YI. Structural and functional features of the 5-methylcytosine distribution in the eukaryotic genome. Mol Biol 2010. [DOI: 10.1134/s0026893310020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Vachev T, Ivanova D, Minkov I, Tsagris M, Gozmanova M. Trafficking of the Potato spindle tuber viroid between tomato and Orobanche ramosa. Virology 2010; 399:187-93. [DOI: 10.1016/j.virol.2009.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/11/2009] [Accepted: 12/12/2009] [Indexed: 10/19/2022]
|
20
|
Weinheimer I, Boonrod K, Moser M, Zwiebel M, Füllgrabe M, Krczal G, Wassenegger M. Analysis of an autoproteolytic activity of rice yellow mottle virus silencing suppressor P1. Biol Chem 2010; 391:271-281. [PMID: 20030588 DOI: 10.1515/bc.2010.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ectopically expressed rice yellow mottle virus P1 fusion proteins were found to be cleaved in planta and in Escherichia coli. Cleavage takes place in the absence of bacterial protease activity, indicating that the P1 fusion is autocatalytically processed independently of host factors. N-terminal sequencing of the C-terminal cleavage product of transiently expressed P1/GFP (green fluorescence protein) in Nicotiana benthamiana showed that the cleavage site is located between the first two amino acids (aa) downstream of the P1 sequence. Mutagenesis experiments revealed that a phenylalanine to valine substitution at position 157 of the P1 aa sequence impairs proper cleavage, which is nearly unaffected by replacement of phenylalanine with tyrosine. Deletion of methionine(159) (first GFP aa residue) appeared to not affect P1/GFP cleavage. N-terminal P1-tagging with GFP turned out to impair autocleavage, whereas a small His-tag could not fully prevent cleavage. Additionally, a modified P1/GFP carrying an N-terminal deletion of 81 aa was not cleaved. These findings indicate that this region is involved in the proteolysis mechanism and that large N-terminal fusion partners might affect correct folding of the P1 necessary for self-catalysis.
Collapse
Affiliation(s)
- Isabel Weinheimer
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Kajohn Boonrod
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Mirko Moser
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Michèle Zwiebel
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Marc Füllgrabe
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, D-67435 Neustadt, Germany
| |
Collapse
|
21
|
Dalakouras A, Moser M, Zwiebel M, Krczal G, Hell R, Wassenegger M. A hairpin RNA construct residing in an intron efficiently triggered RNA-directed DNA methylation in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:840-51. [PMID: 19702668 DOI: 10.1111/j.1365-313x.2009.04003.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
So far, conventional hairpin RNA (hpRNA) constructs consisting of an inverted repeat (IR) of target promoters directly introduced into an expression cassette have been used to mediate de novo DNA methylation. Transcripts of such constructs resemble mRNA molecules, and are likely to be exported to the cytoplasm. The presence of hpRNAs in the cytoplasm and the nucleus may account for the simultaneous activation of post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM). We hypothesized that by retaining hpRNAs in the nucleus, efficient induction of only RdDM may be achieved. Thus, we introduced into tobacco a transgene containing an intron into which an IR of a target promoter was inserted. The intronic hpRNA initiated highly specific cis- and trans-methylation, but did not induce PTGS. No spreading of methylation into sequences flanking the region of homology between the hpRNA and the target DNA was detectable. The efficient methylation-directing activity of the intronic hpRNA may indicate a previously unrecognized role of introns, potentially regulating gene expression at the transcriptional level.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, 67435 Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Zhong X, Archual AJ, Amin AA, Ding B. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. THE PLANT CELL 2008; 20:35-47. [PMID: 18178767 PMCID: PMC2254921 DOI: 10.1105/tpc.107.056606] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 05/19/2023]
Abstract
RNA replication and systemic trafficking play significant roles in developmental regulation and host-pathogen interactions. Viroids are the simplest noncoding eukaryotic RNA pathogens and genetic units that are capable of autonomous replication and systemic trafficking and offer excellent models to investigate the role of RNA structures in these processes. Like other RNAs, the predicted secondary structure of a viroid RNA contains many loops and bulges flanked by double-stranded helices, the biological functions of which are mostly unknown. Using Potato spindle tuber viroid infection of Nicotiana benthamiana as the experimental system, we tested the hypothesis that these loops/bulges are functional motifs that regulate replication in single cells or trafficking in a plant. Through a genome-wide mutational analysis, we identified multiple loops/bulges essential or important for each of these biological processes. Our results led to a genomic map of viroid RNA motifs that mediate single-cell replication and systemic trafficking, respectively. This map provides a framework to enable high-throughput studies on the tertiary structures and functional mechanisms of RNA motifs that regulate viroid replication and trafficking. Our model and approach should also be valuable for comprehensive investigations of the replication and trafficking motifs in other RNAs.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
23
|
Heim F, Lot H, Delecolle B, Bassler A, Krczal G, Wetzel T. Complete nucleotide sequence of a putative new cytorhabdovirus infecting lettuce. Arch Virol 2007; 153:81-92. [PMID: 17943394 DOI: 10.1007/s00705-007-1071-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The full-length nucleotide sequence of the genomic RNA of a new cytorhabdovirus infecting lettuce was determined. Six open reading frames were found in the antigenomic sequence of the 12,926-nt negative-sense viral RNA genome. The genomic organisation was similar to that of lettuce necrotic yellows virus (LNYV), the type member of the genus Cytorhabdovirus: 3'-N-P-3-M-G-L-5', where N is the capsid protein gene, P the putative phosphoprotein gene, 3 a gene coding for a putative protein of unknown function, M the putative matrix protein gene, G the glycoprotein gene, and L the putative polymerase gene. Amino acid sequence comparison with the corresponding sequences of other rhabdoviruses revealed the closest relationship to LNYV, with identities ranging from 41% for the matrix proteins and 65% for the L polymerase proteins. These results indicate that this virus may be a member of a new cytorhabdovirus species, for which the name Lettuce yellow mottle virus (LYMoV) is proposed.
Collapse
Affiliation(s)
- F Heim
- RLP Agroscience, AlPlanta - Institute for Plant Research, Neustadt an der Weinstrasse, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Zhong X, Tao X, Stombaugh J, Leontis N, Ding B. Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 2007; 26:3836-46. [PMID: 17660743 PMCID: PMC1952227 DOI: 10.1038/sj.emboj.7601812] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 07/02/2007] [Indexed: 11/08/2022] Open
Abstract
Vascular entry is a decisive step for the initiation of long-distance movement of infectious and endogenous RNAs, silencing signals and developmental/defense signals in plants. However, the mechanisms remain poorly understood. We used Potato spindle tuber viroid (PSTVd) as a model to investigate the direct role of the RNA itself in vascular entry. We report here the identification of an RNA motif that is required for PSTVd to traffic from nonvascular into the vascular tissue phloem to initiate systemic infection. This motif consists of nucleotides U/C that form a water-inserted cis Watson-Crick/Watson-Crick base pair flanked by short helices that comprise canonical Watson-Crick/Watson-Crick base pairs. This tertiary structural model was inferred by comparison with X-ray crystal structures of similar motifs in rRNAs and is supported by combined mutagenesis and covariation analyses. Hydration pattern analysis suggests that water insertion induces a widened minor groove conducive to protein and/or RNA interactions. Our model and approaches have broad implications to investigate the RNA structural motifs in other RNAs for vascular entry and to study the basic principles of RNA structure-function relationships.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH, USA
| | - Xiaorong Tao
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH, USA
| | - Jesse Stombaugh
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Neocles Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
25
|
Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 2007; 81:2980-94. [PMID: 17202210 PMCID: PMC1865973 DOI: 10.1128/jvi.02339-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022] Open
Abstract
RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.
Collapse
Affiliation(s)
- Asuka Itaya
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Zhong X, Itaya A, Ding B. Evidence for the existence of the loop E motif of Potato spindle tuber viroid in vivo. J Virol 2006; 81:2074-7. [PMID: 17135317 PMCID: PMC1797592 DOI: 10.1128/jvi.01781-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
RNA motifs comprising nucleotides that interact through non-Watson-Crick base pairing play critical roles in RNA functions, often by serving as the sites for RNA-RNA, RNA-protein, or RNA small ligand interactions. The structures of viral and viroid RNA motifs are studied commonly by in vitro, computational, and mutagenesis approaches. Demonstration of the in vivo existence of a motif will help establish its biological significance and promote mechanistic studies on its functions. By using UV cross-linking and primer extension, we have obtained direct evidence for the in vivo existence of the loop E motif of Potato spindle tuber viroid. We present our findings and discuss their biological implications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Plant Cellular and Molecular Biology, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
27
|
Zhong X, Leontis N, Qian S, Itaya A, Qi Y, Boris-Lawrie K, Ding B. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 2006; 80:8566-81. [PMID: 16912306 PMCID: PMC1563885 DOI: 10.1128/jvi.00837-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 06/19/2006] [Indexed: 02/07/2023] Open
Abstract
RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Fukasawa M, Morita S, Kimura M, Horii T, Ochiya T, Hatada I. Genomic imprinting in Dicer1-hypomorphic mice. Cytogenet Genome Res 2006; 113:138-43. [PMID: 16575173 DOI: 10.1159/000090825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 07/11/2005] [Indexed: 11/19/2022] Open
Abstract
To address the function of RNA interference (RNAi) in transcriptional silencing in mammals, we analyzed genomic imprinting in Dicer1-hypomorphic mice, in which Dicer1 expression was significantly reduced. We did not observe any abnormality in the allelic expression of imprinted genes in these mice or their offspring, suggesting that reduced expression of Dicer1 did not significantly affect the maintenance and reprogramming of imprinting.
Collapse
Affiliation(s)
- M Fukasawa
- Biosignal Genome Resource Center, Department of Molecular and Cellular Biology, Gunma University, Maebashi, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Di Serio F, Daròs JA, Ragozzino A, Flores R. Close structural relationship between two hammerhead viroid-like RNAs associated with cherry chlorotic rusty spot disease. Arch Virol 2006; 151:1539-49. [PMID: 16514498 DOI: 10.1007/s00705-006-0732-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 01/16/2006] [Indexed: 10/25/2022]
Abstract
Analysis of the population of cherry small circular RNAs (cscRNAs) from trees affected by cherry chlorotic rusty spot (CCRS) showed two groups of variants with similar sequence but differing in size (394-415 and 372-377 nt for cscRNA1 and cscRNA2, respectively) because of the presence or absence of a 27-nt fragment folding into a hairpin in their predicted quasi-rod-like secondary structures. These structures were preserved by co-variations and compensatory mutations, as well as by additional complex rearrangements. The variability also preserved the central conserved core and the stability of the helices of the plus and minus hammerhead ribozymes, supporting their role in replication of cscRNAs. The smaller variants most likely derive from the larger through recombination events. Possible functional relationships between cscRNAs and certain mycoviral-like double-stranded RNAs, also associated with CCRS, are discussed.
Collapse
Affiliation(s)
- F Di Serio
- Instituto di Virologia Vegetale del CNR, Sezione di Bari, Bari, Italy
| | | | | | | |
Collapse
|
30
|
Gago S, De la Peña M, Flores R. A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability. RNA (NEW YORK, N.Y.) 2005; 11:1073-83. [PMID: 15928342 PMCID: PMC1370792 DOI: 10.1261/rna.2230605] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398-401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.
Collapse
Affiliation(s)
- Selma Gago
- UPV-CSIC, Universidad Politécnica de Valencia, Avenida de los Naranjos, Valencia 46022, Spain
| | | | | |
Collapse
|
31
|
Szychowski JA, Vidalakis G, Semancik JS. Host-directed processing of Citrus exocortis viroid. J Gen Virol 2005; 86:473-477. [PMID: 15659768 DOI: 10.1099/vir.0.80699-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prolonged infection of tomato hybrid (Lycopersicon esculentum x Lycopersicon peruvianum) by Citrus exocortis viroid (CEVd) resulted in viroid-like enlarged structures, detected by gel electrophoresis. This population included two new enlarged variants or D-variants, D-87 and D-76, and three transient species or D-forms, D-38, D-40 and D-43. Sequence analyses exposed a locus near the terminal repeat region where major changes appeared consistently. In transmission tests to CEVd hosts, a variety of progeny populations were recovered, including progeny enlargements of and reversions to CEVd, as well as sequence fidelity to the inoculum. Transmission tests to citrus hosts of the genera Citrus, Poncirus or Fortunella were unsuccessful. The importance of host specificity to the recovery and processing of the various CEVd-related structures, as well as the temporal variability of progeny populations, was demonstrated.
Collapse
Affiliation(s)
- J A Szychowski
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | - G Vidalakis
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| | - J S Semancik
- Department of Plant Pathology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
32
|
Tabler M, Tsagris M. Viroids: petite RNA pathogens with distinguished talents. TRENDS IN PLANT SCIENCE 2004; 9:339-348. [PMID: 15231279 DOI: 10.1016/j.tplants.2004.05.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viroids are small, circular, single-stranded RNA molecules that cause several infectious plant diseases. Viroids do not encode any pathogen-specific peptides but nonetheless, the subviral pathogens replicate autonomously and spread in the plant by recruiting host proteins via functional motifs encoded in their RNA genome. During the past couple of years, considerable progress has been made towards comprehending how viroids interact with their hosts. Here, we summarize recent findings on the structure-function relationships of viroids, their strategies and mechanisms of replication and trafficking, and the identification and characterization of interacting host proteins. We also describe the impact of the RNA silencing machinery of plants on viroid RNAs and how this has started to influence our models of viroid replication and pathogenicity.
Collapse
Affiliation(s)
- Martin Tabler
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, PO Box 1527, GR-71110 Heraklion/Crete, Greece.
| | | |
Collapse
|
33
|
Vogt U, Pélissier T, Pütz A, Razvi F, Fischer R, Wassenegger M. Viroid-induced RNA silencing of GFP-viroid fusion transgenes does not induce extensive spreading of methylation or transitive silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:107-18. [PMID: 15053764 DOI: 10.1111/j.1365-313x.2004.02029.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Viroid infection is associated with the production of short interfering RNAs (siRNAs), a hallmark of post-transcriptional gene silencing (PTGS). However, viroid RNAs autonomously replicating in the nucleus have not been shown to trigger the degradation of homologous RNA in the cytoplasm. To investigate the potential of viroids for the induction of gene silencing, non-infectious fragments of potato spindle tuber viroid (PSTVd) cDNA were transcriptionally fused to the 3' end of the green fluorescent protein (GFP)-coding region. Introduction of such constructs into tobacco plants resulted in stable transgene expression. Upon PSTVd infection, transgene expression was suppressed and partial de novo methylation of the transgene was observed. PSTVd-specific siRNA was detected but none was found corresponding to the gfp gene. Methylation was restricted almost entirely to the PSTVd-specific part of the transgene. Neither a gfp transgene construct lacking viroid-specific elements was silenced nor was de novo methylation detected, when it was introduced into the genetic background of the PSTVd-infected plant lines containing silenced GFP:PSTVd transgenes. The absence of gfp-specific siRNAs and of significant methylation within the gfp-coding region demonstrated that neither silencing nor DNA methylation spread from the initiator region into adjacent 5' regions.
Collapse
Affiliation(s)
- Ulrike Vogt
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Worringerweg 1, 52074 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Owens RA, Sano T, Feldstein PA, Hu Y, Steger G. Identification of a novel structural interaction in Columnea latent viroid. Virology 2003; 313:604-14. [PMID: 12954225 DOI: 10.1016/s0042-6822(03)00352-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pairwise sequence comparisons suggest that Columnea latent viroid (CLVd) may have originated from a recombination event involving Potato spindle tuber viroid (PSTVd) and Hop stunt viroid (HSVd). To examine the role of specific structural features in determining the host range of CLVd, we constructed a series of interspecific chimeras by replacing increasing portions of its terminal left and pathogenicity domains with the corresponding portions of PSTVd. Exchanges involving the left side of the pathogenicity domain led to lower rates of progeny accumulation in tomato, but one of the resulting chimeras was still able to replicate in cucumber. Exchanges involving the right side of the pathogenicity domain severely inhibited replication in tomato and appeared to abolish replication in cucumber. To identify potential interactions between nucleotides comprising the right side of the pathogenicity domain and other portions of CLVd, melting behaviors of circularized CLVd and PSTVd RNA transcripts were compared using a combination of temperature gradient gel electrophoresis and structural calculations. These analyses revealed an unexpected complementarity between the upper portion of the pathogenicity and terminal right domains of CLVd that facilitates breakdown of the rod-like native structure and formation of secondary hairpin II. Unlike secondary hairpin II, CLVd hairpin IV appears likely to act within the context of the genomic RNA.
Collapse
Affiliation(s)
- R A Owens
- Molecular Plant Pathology Laboratory, Plant Sciences Institute, USDA/ARS, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
36
|
Candresse T, Góra-Sochacka A, Zagórski W. Restoration of secondary hairpin II is associated with restoration of infectivity of a non-viable recombinant viroid. Virus Res 2001; 75:29-34. [PMID: 11311425 DOI: 10.1016/s0168-1702(00)00255-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutagenesis and/or construction of recombinants by exchange of genomic regions between parental molecules constitute powerful tools for the study of viroids. However, a large proportion of such modifications results in molecules, which have lost their infectivity. Such is the case for a recombinant viroid named CECS, obtained by replacing the right half of a citrus exocortis viroid (CEVd) by the same region from chrysanthemum stunt viroid (CSVd). In an effort to recover viable infectious progeny from this recombinant, tomato plants were inoculated with an Agrobacterium strain carrying a dimer of the CECS viroid in positive orientation under the control of the CaMV 35S promoter. About 20% of the plants treated in this way were found to be infected with a replicating viroid, which was further propagated. Sequence analysis of six cloned full-length cDNAs derived from progeny molecules revealed the presence of mutations as compared with the parental CECS sequence. However, only two types of mutations were consistently recovered in all progeny molecules, the addition of a G in a string of four at positions 70-73, a mutation frequently observed in CEVd isolates and mutations leading to the restoration of the correct base pairing in secondary hairpin II. These results show that agro-infection is a suitable technique for the recovery of viable molecules from non-infectious viroid mutants and confirm that the ability to form secondary hairpin II is a prerequisite for viroid infectivity.
Collapse
Affiliation(s)
- T Candresse
- Equipe de Virologie, UMR GD2P, IBVM, INRA, BP81, 33883 Cedex, Villenave d'Ornon, France.
| | | | | |
Collapse
|
37
|
Wassenegger M. Advantages and disadvantages of using PCR techniques to characterize transgenic plants. Mol Biotechnol 2001; 17:73-82. [PMID: 11280933 DOI: 10.1385/mb:17:1:73] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polymerase chain reaction (PCR) revolutionized molecular biology to a similar extent as the discovery of plasmids and restriction endonucleases. However, there are some limitations to the use of PCR. Transgenic plants containing potato spindle tuber viroid (PSTVd) cDNA constructs, demonstrated to become de novo methylated upon PSTVd infection, represent a good example to illustrate the advantages of PCR. PSTVd is a 359 nt long autonomously replicating plant pathogenic RNA where all of its enzymatic requirements are entirely provided by the host cell. In addition, viroids that propagate without a DNA intermediate barely tolerate nucleotide substitutions of their RNA genome without losing infectivity. PCR is the method of choice to characterize the sequence context of genome-integrated viroid cDNA or of reverse transcribed PSTVd RNA, and can hardly be replaced by any alternative procedure. Furthermore, the precise examination of DNA methylation patterns (genomic sequencing) is entirely dependent on PCR. In contrast, the use of PCR is critical for the determination of copy number and arrangement of transgene constructs. Here, the advantages and disadvantages of PCR are discussed and protocols for PCR amplification of cDNA, genomic DNA, and bisulfite-treated DNA from transgenic plants are presented.
Collapse
Affiliation(s)
- M Wassenegger
- Molekulare Biotechnologie, Fraunhofer Institut, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| |
Collapse
|
38
|
Gultyaev AP, Franch T, Gerdes K. Coupled nucleotide covariations reveal dynamic RNA interaction patterns. RNA (NEW YORK, N.Y.) 2000; 6:1483-1491. [PMID: 11105748 PMCID: PMC1370018 DOI: 10.1017/s1355838200990708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Evolutionarily conserved structures in related RNA molecules contain coordinated variations (covariations) of paired nucleotides. Analysis of covariations is a very powerful approach to deduce phylogenetically conserved (i.e., functional) conformations, including tertiary interactions. Here we discuss conserved RNA folding pathways that are revealed by covariation patterns. In such pathways, structural requirements for alternative pairings cause some nucleotides to covary with two different partners. Such "coupled" covariations between three or more nucleotides were found in various types of RNAs. The analysis of coupled covariations can unravel important features of RNA folding dynamics and improve phylogeny reconstruction in some cases. Importantly, it is necessary to distinguish between multiple covariations determined by mutually exclusive structures and those determined by tertiary contacts.
Collapse
Affiliation(s)
- A P Gultyaev
- Section Theoretical Biology and Phylogenetics, Institute of Evolutionary and Ecological Sciences of Leiden University, The Netherlands.
| | | | | |
Collapse
|
39
|
Pélissier T, Wassenegger M. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA (NEW YORK, N.Y.) 2000; 6:55-65. [PMID: 10668798 PMCID: PMC1369893 DOI: 10.1017/s135583820099201x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In higher plants, RNA-DNA interactions can trigger de novo methylation of genomic sequences via a process that is termed RNA-directed DNA methylation (RdDM). In potato spindle tuber viroid (PSTVd)-infected tobacco plants, this process can potentially lead to methylation of all C residues at symmetrical and nonsymmetrical sites within chromosomal inserts that consist of multimers of the 359-bp-long PSTVd cDNA. Using PSTVd cDNA subfragments, we found that genomic targets with as few as 30 nt of sequence complementarity to the viroid RNA are detected and methylated. Genomic sequencing analyses of genome-integrated 30- and 60-bp-long PSTVd subfragments demonstrated that de novo cytosine methylation is not limited to the canonical CpG, CpNpG sites. Sixty-base-pair-long PSTVd cDNA constructs appeared to be densely methylated in nearly all tobacco leaf cells. With the 30-bp-long PSTVd-specific construct, the proportion of cells displaying dense transgene methylation was significantly reduced, suggesting that a minimal target size of about 30 bp is necessary for RdDM. The methylation patterns observed for two different 60-bp constructs further suggested that the sequence identity of the target may influence the methylation mechanism. Finally, a link between viroid pathogenicity and PSTVd RNA-directed methylation of host sequences is proposed.
Collapse
Affiliation(s)
- T Pélissier
- Fraunhofer IUCT, Abteilung für Molekulare Biotechnologie, Grafschaft, Schmallenberg, Germany
| | | |
Collapse
|
40
|
Singh RP, Nie X, Singh M. Tomato chlorotic dwarf viroid: an evolutionary link in the origin of pospiviroids. J Gen Virol 1999; 80 ( Pt 11):2823-2828. [PMID: 10580043 DOI: 10.1099/0022-1317-80-11-2823] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Over 40 isolates of potato spindle tuber viroid (PSTVd) have been reported from potato, other Solanum species and greenhouse tomato. These isolates have sequence similarities in the range 95-99%. A viroid which caused chlorotic leaves and severe dwarfing of plants in greenhouse tomato crops was detected. The viroid was found to hybridize readily with PSTVd probes. It migrated faster than PSTVd in return-polyacrylamide gel electrophoresis and was not amplified in RT-PCR by a primer pair based on the lower strand of the central conserved region of PSTVd. Nucleotide sequencing of the viroid indicated that it is a circular RNA of 360 nt, with less than 90% sequence similarities with PSTVd isolates. The Variable domain (V) has less than 60% and the Terminal Right domain less than 90% sequence similarity, while the remainder of the molecule has greater than 97% similarity with PSTVd. Because of its less-than 90% sequence similarities, unique V domain, lack of seed-transmission and lack of cross-protection by PSTVd, the viroid from tomato is proposed to be a distinct viroid species (tomato chlorotic dwarf viroid; TCDVd) which also differs from two viroids infecting tomato in nature. TCDVd may be an evolutionary link in the development of crop viroids, with Mexican papita viroid as the ancestral viroid.
Collapse
Affiliation(s)
- Rudra P Singh
- Agriculture and Agri-Food Canada, Potato Research Centre, PO Box 20280, Fredericton, New Brunswick, Canada E3B 4Z71
| | - Xianzhou Nie
- Agriculture and Agri-Food Canada, Potato Research Centre, PO Box 20280, Fredericton, New Brunswick, Canada E3B 4Z71
| | - Mathuresh Singh
- Agricultural Certification Services, NB Potato Agency, 245 Hilton Road, Unit 25, Fredericton, New Brunswick, Canada E3B 5N6 2
| |
Collapse
|
41
|
Singh RP. Development of the molecular methods for potato virus and viroid detection and prevention. Genome 1999. [DOI: 10.1139/g99-047] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potato is the fourth most important food crop in the world and it forms the diet of a billion consumers in developing countries, where potato production is increasing rapidly. However, potato virus diseases in developing countries are one of the major causes of lower yields. Their control requires the development of appropriate virus-detection and seed-production technologies for the region. Recent progress in developing nucleic acid based virus detection methods are reviewed. Refinements of the protocols applicable to the laboratories located in seed producing areas are discussed. Nucleic acid spot hybridization (NASH) and reverse transcription polymerase chain reaction (RT-PCR) methods are described for the detection of viruses and viroids in dormant seed tubers and insect vectors. Although the potato crop is susceptible to over 25 virus and viroid diseases, only universally economically important viruses have been dealt with here. The progress of pathogen-derived resistance for the control of potato virus diseases is elaborated, and the results of field tests indicate their feasibility in virus control.Key words: dot-blot, spot-hybridization, reverse transcription, polymerase chain reaction, transgenic plants.
Collapse
|
42
|
Ambrós S, Hernández C, Flores R. Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. J Gen Virol 1999; 80 ( Pt 8):2239-2252. [PMID: 10466824 DOI: 10.1099/0022-1317-80-8-2239] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viroids, small single-stranded circular RNAs endowed with autonomous replication, are unique systems to conduct evolutionary studies of complete RNA genomes. The primary structure of 36 progeny variants of peach latent mosaic viroid (PLMVd), evolved from inoculations of the peach indicator GF-305 with four individual PLMVd cDNAs differing in their pathogenicity, has been determined. Most progeny variants had unique sequences, revealing that the extremely heterogeneous character of PLMVd natural isolates most probably results from the intrinsic ability of this RNA to accumulate changes, rather than from repeated inoculations of the same individual trees under field conditions. The structure of the populations derived from single PLMVd sequences differed according to the observed phenotype. Variant gds6 induced a reproducible symptomatic infection and gave rise to a more uniform progeny that preserves some parental features, whereas variant gds15, which induced a variable phenotype, showed a more complex behaviour, generating two distinct progenies in symptomatic and asymptomatic individual plants. Progenies derived from variants esc10 and Is11, which incited latent infections, followed a similar evolutionary pattern, leading to a population structure consisting of two main groups of variants, one of which was formed by variants closely related to the parental sequence. The evolution rate exhibited by PLMVd, considerably higher than that reported for potato spindle tuber viroid, may contribute to the fluctuating symptomatology of the severe PLMVd natural isolates. However, the polymorphism observed in PLMVd progenies does preserve some structural and functional elements previously proposed for this viroid, supporting the fact that they act as constraints limiting the genetic divergence of PLMVd quasispecies generated de novo.
Collapse
Affiliation(s)
- S Ambrós
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia 46022, Spain1
| | - C Hernández
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia 46022, Spain1
| | - R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia 46022, Spain1
| |
Collapse
|
43
|
Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. THE PLANT CELL 1998; 10:2087-101. [PMID: 9836747 PMCID: PMC143969 DOI: 10.1105/tpc.10.12.2087] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.
Collapse
Affiliation(s)
- W Schiebel
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Schiebel W, Pélissier T, Riedel L, Thalmeir S, Schiebel R, Kempe D, Lottspeich F, Sänger HL, Wassenegger M. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. THE PLANT CELL 1998. [PMID: 9836747 DOI: 10.2307/3870786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.
Collapse
Affiliation(s)
- W Schiebel
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gast FU, Kempe D, Sänger HL. The dimerization domain of potato spindle tuber viroid, a possible hallmark for infectious RNA. Biochemistry 1998; 37:14098-107. [PMID: 9760245 DOI: 10.1021/bi980830d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalently closed circular (+) RNA of the potato spindle tuber viroid (PSTVd) can efficiently dimerize noncovalently upon heating and slow cooling in the presence of monovalent cations or Mg2+. In vitro transcription of subgenomic fragments reveals that the ability to dimerize resides in the "upper strand" of its self-complementary rod-like structure. Nuclease probing of these fragments, namely, molecules spanning either the upper or the lower strand of PSTVd, confirms the existence of the previously proposed hairpins I-III, of which hairpin I might contain noncanonical G.A and A.A base pairs. In addition, the upper and lower (+) strands contain large hairpin loops consisting of stretches rich in either adenosine or uridine. Dimerization of the upper (+) strand results in a nuclease-resistant core encompassing hairpin I and is inhibited by an antisense oligonucleotide spanning the entire hairpin; this palindromic domain thus represents the dimerization site. When upper and lower strands were heated and cooled together, no annealing to a viroid-like duplex of both molecules occurs, only dimerization of the upper strand. Therefore, the dimerization hairpin of viroid RNA represents a unique conformational signal that is homologous to similar regions in the human immunodeficiency virus and other retroviruses.
Collapse
Affiliation(s)
- F U Gast
- Institut für Biochemie, Justus-Liebig-Universität Giessen, Germany.
| | | | | |
Collapse
|
46
|
Gultyaev AP, van Batenburg FH, Pleij CW. Dynamic competition between alternative structures in viroid RNAs simulated by an RNA folding algorithm. J Mol Biol 1998; 276:43-55. [PMID: 9514713 DOI: 10.1006/jmbi.1997.1384] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding pathways of viroid RNAs were studied using computer simulations by the genetic algorithm for RNA folding. The folding simulations were performed for PSTVd RNAs of both polarities, using the wild-type sequence and some previously known mutants with suggested changes in the stable or metastable structures. It is shown that metastable multihairpin foldings in the minus strand replicative intermediates are established due to the specific folding pathway that ensures the absence of the most stable rod-like structure. Simulations of the PSTVd minus strand folding during transcription reveal a metastable hairpin, formed in the left terminal domain region of the PSTVd. Despite high sequence variability, this hairpin is conserved in all known large viroids of both subgroups of PSTVd type, and is presumably necessary to guide the folding of the HPII hairpin which is functional in the minus strand. The folding simulations are able to demonstrate the changes in the balance between metastable and stable structures in mutant PSTVd RNAs. The stable rod-like structure of the circular viroid (+) RNA is also folded via a dynamic folding pathway. Furthermore, the simulations show that intermediate steps in the forced evolution of a shortened PSTVd replicon may be reconstructed by a mechanistic model of different folding pathway requirements in plus- and minus-strand RNAs. Thus the formation of viroid RNA structure strongly depends on dynamics of competition between alternative RNA structures. This also suggests that the replication efficiency of viroid sequences may be estimated by a simulation of the folding process.
Collapse
Affiliation(s)
- A P Gultyaev
- Leiden Institute of Chemistry Department of Biochemistry Leiden University, The Netherlands
| | | | | |
Collapse
|
47
|
Wang HW, Wu HL, Chen DS, Chen PJ. Identification of the functional regions required for hepatitis D virus replication and transcription by linker-scanning mutagenesis of viral genome. Virology 1997; 239:119-31. [PMID: 9426452 DOI: 10.1006/viro.1997.8818] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To define the important cis-elements in hepatitis delta virus (HDV) RNA, the viral genome was mutated by a linker-scanning mutagenesis strategy that maintained the native rod-like structure of HDV RNA. Mutant HDV cDNAs or their corresponding RNA transcripts were transfected into a Huh-7-derived cell line which continuously expressed small hepatitis delta antigen to study the viral replication and transcription. Here we report the following findings. (i) Although most of the mutant RNAs could self-process to generate the 1.7-kb genomic RNA and all their stabilities were similar, positions which surround the genomic ribozyme domain were found to be important for the self-processing of the dimeric RNA. (ii) The replication of viral RNA was greatly diminished in many mutants, suggesting that multiple regions in HDV RNA were required for replication. (iii) In certain mutants, replication of the HDV antigenomic RNA was selectively abolished but that of the genomic RNA was not. Therefore, this was the first report to show that the cis-elements needed for the replication of genomic or antigenomic HDV RNA could be different. (iv) A continuous region (nt 1625 to nt 431), spanning the HDAg mRNA initiation site and containing the in vitro identified RNA promoter, was found to be important for mRNA production in vivo. (v) The HDV RNA replication and transcription was previously proposed to be governed by a single "double-acting promoter." However, two mutants which were deficient in mRNA synthesis still retained active viral RNA replication. It suggested that the HDV replication could initiate from sites other than this single promoter. This study therefore provided an insight into the cis-elements required for HDV RNA replication and transcription and further contributed to our understanding of HDV life cycle.
Collapse
Affiliation(s)
- H W Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei
| | | | | | | |
Collapse
|
48
|
|
49
|
Góra-Sochacka A, Kierzek A, Candresse T, Zagórski W. The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA (NEW YORK, N.Y.) 1997; 3:68-74. [PMID: 8990400 PMCID: PMC1369463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA viruses propagate as a population of genetically related entities composing a quasi-species. Specific representatives are the result of both a high mutation rate during replication and competition between the continuously arising sequence variants. Similar to other RNA pathogens, potato spindle tuber viroid (PSTVd) propagates as a population of similar but nonidentical sequences. The sequence of progeny molecules derived from cloned molecular variants of PSTVd were studied after one and six consecutive plant passages. Although the severe parental sequence S23 was found to be genetically stable, all five other parental sequences analyzed, irrespective of their pathogenicity, led to the appearance of complex populations. Divergence of the progeny was observed at the sequence level, but also, more surprisingly, at the level of the pathogenicity of individual progeny molecules. In two cases, the parental sequence was retained in the progeny population. In the other cases, it was completely out-competed and eliminated, sometimes in as little as one plant passage. Although it has been observed previously that artificially mutated PSTVd molecules may revert rapidly to the wild-type sequence, this study presents direct evidence for the rapid evolution of naturally occurring PSTVd sequence variants.
Collapse
Affiliation(s)
- A Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | |
Collapse
|