1
|
Yao Z, Liang S, Chen J, Dai Y, Zhang H, Li H, Chen W. A Combination of Exercise and Yogurt Intake Protects Mice against Obesity by Synergistic Promotion of Adipose Browning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857171 DOI: 10.1021/acs.jafc.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Exercise exerts many beneficial effects on obesity, but the mechanism remains elusive. Here, we report a previously unidentified role of the lactate receptor GPR81 in exercise. We observed that GPR81 was significantly up-regulated in white adipose tissues (WAT) upon exercise training in both lean and obese mice. Exercise could induce thermogenesis and beige adipocyte development, whereas such an effect was markedly impaired by the deficiency of GPR81. Furthermore, the activation of GPR81 by exercise and lactate supplementation (250 or 500 mg/kg) yielded a synergistic enhancement of WAT browning and thermogenesis. Yogurt is a dairy product enriched with lactate. A combination of exercise and yogurt intake (20 g/kg) synergistically protected mice against high-fat-diet-induced obesity, as evidenced by decreased body weight, ameliorative dyslipidemia, improved glucose tolerance, and reduced hepatic steatosis. Mechanistically, lactate-GPR81 axis might aid in the norepinephrine-stimulated beige adipocyte biogenesis cascade via the Ca2+/CaMK pathway. Together, these findings reveal the critical role of lactate-GPR81 signaling in exercise-induced WAT browning and provide a new strategy for personalized diet and lifestyle interventions for obesity management.
Collapse
Affiliation(s)
- Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Federspiel J, Greier MDC, Ladányi A, Dudas J. p38 Mitogen-Activated Protein Kinase Inhibition of Mesenchymal Transdifferentiated Tumor Cells in Head and Neck Squamous Cell Carcinoma. Biomedicines 2023; 11:3301. [PMID: 38137525 PMCID: PMC10741606 DOI: 10.3390/biomedicines11123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
High mortality in head and neck squamous cell carcinoma (HNSCC) is due to recurrence, metastasis, and radiochemotherapy (RCT) resistance. These phenomena are related to the tumor cell subpopulation undergoing partial epithelial to mesenchymal transition (pEMT). Repeated transforming growth factor-beta (TGF-beta-1) treatment via the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway induces pEMT in SCC-25 HNSCC cells, and activates and stabilizes the pro-EMT transcription factor Slug. We investigated the growth inhibitory, cisplatin-sensitizing, and pro-apoptotic effects of p38 MAPK inhibition in cisplatin-resistant (SCC-25) and -sensitive (UPCI-SCC090) HNSCC cell lines, using two specific p38 MAPK inhibitors, SB202190 and ralimetinib. Cell viability was measured by MTT assay; cell cycle distribution and cell death were evaluated by flow cytometry; p38 MAPK phosphorylation, Slug protein stabilization, and p38 MAPK downstream targets were investigated by Western blot. p-p38 inhibitors achieved sustained phosphorylation of p38 MAPK (Thr180/Tyr182) and inhibition of its function, which resulted in decreased phosphorylation (Thr69/71) of the downstream target pATF2 in pEMT cells. Subsequently, the p-p38 inhibition resulted in reduced Slug protein levels. In accordance, p-p38 inhibition led to sensitization of pEMT cells to cisplatin-induced cell death; moreover, p-p38 inhibitor treatment cycles significantly decreased the viability of cisplatin-surviving cells. In conclusion, clinically relevant p38 inhibitors might be effective for RCT-resistant pEMT cells in HNSCC patients.
Collapse
Affiliation(s)
- Julia Federspiel
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Austria and University Hospital of Tyrol, 6020 Innsbruck, Austria; (J.F.); (M.d.C.G.)
| | - Maria do Carmo Greier
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Austria and University Hospital of Tyrol, 6020 Innsbruck, Austria; (J.F.); (M.d.C.G.)
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Jozsef Dudas
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Austria and University Hospital of Tyrol, 6020 Innsbruck, Austria; (J.F.); (M.d.C.G.)
| |
Collapse
|
4
|
Amarah A, Elsabagh AA, Ouda A, Karen O, Ferih K, Elmakaty I, Malki MI. Emerging roles of activating transcription factor 2 in the development of breast cancer: a comprehensive review. PRECISION CLINICAL MEDICINE 2023; 6:pbad028. [PMID: 37955015 PMCID: PMC10639104 DOI: 10.1093/pcmedi/pbad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA binding proteins that are responsible for regulating various genes that play an essential role in major biological and cellular functions. Since ATF2 plays a vital role in cellular proliferation and apoptosis, it is believed that it greatly affects the development of breast cancers. However, its exact role in breast cancer is incompletely understood. It remains a subject of debate, ambiguity, and continuous research. Several studies have suggested the role of ATF2 as an oncogene, promoting cellular proliferation and worsening the outcome of cancers. In contrast, other studies have postulated that ATF2 plays a tumor suppressive role in estrogen receptor-positive breast cancer. The ambiguity surrounding its role in breast cancer is the reason why there is an influx of recent studies and research in this area. In this narrative review, we investigate several studies that have been published about the role of ATF2 in breast cancer. We also explore studies that have examined the association between ATF2 and endocrine therapy resistance. ATF2 has been suggested to modulate estrogen receptor (ER) expression and activity, potentially affecting tamoxifen sensitivity in breast cancer cells. Therefore, the role of ATF2 in DNA repair mechanisms and drug resistance has been deeply explored in this review. Additionally, there are numerous ongoing clinical trials exploring the effect of targeting ATF2 pathways and mechanisms on the outcome of breast cancers, some of which we have discussed. The studies and clinical trials that are being conducted to understand the multifaceted role of ATF2 and its signaling pathways may provide valuable insight for developing efficient targeted therapeutic solutions to enhance the outcomes of breast cancer and overcome endocrine resistance. We suggest further research to elucidate the dual roles of ATF2 in breast cancer and potential therapeutic therapies for its treatment.
Collapse
Affiliation(s)
- Ahmed Amarah
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed Adel Elsabagh
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omar Karen
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Khaled Ferih
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ibrahim Elmakaty
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
5
|
Zuo H, Xiao Y, Han J, Lin Y, Tian C, Zhang S, Yuan G, Liu H, Chen Z. Phosphorylation of ATF2 promotes odontoblastic differentiation via intrinsic HAT activity. J Genet Genomics 2023:S1673-8527(23)00044-9. [PMID: 36809837 DOI: 10.1016/j.jgg.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023]
Abstract
Mouse dental papilla cells (mDPCs) are cranial neural crest-derived dental mesenchymal cells that give rise to dentin-secreting odontoblasts after the bell stage during odontogenesis. The odontoblastic differentiation of mDPCs is spatiotemporally regulated by transcription factors (TFs). Our previous work revealed that chromatin accessibility was correlated with the occupation of the basic leucine zipper (bZIP) TF family during odontoblastic differentiation. However, the detailed mechanism by which TFs regulate the initiation of odontoblastic differentiation remains elusive. Here, we report that phosphorylation of ATF2 (p-ATF2) is particularly increased during odontoblastic differentiation in vivo and in vitro. ATAC-seq and p-ATF2 CUT&Tag experiments further demonstrate a high correlation between p-ATF2 localization and increased chromatin accessibility of regions near mineralization-related genes. Knockdown of Atf2 inhibits the odontoblastic differentiation of mDPCs, while overexpression of p-ATF2 promotes odontoblastic differentiation. ATAC-seq after overexpression of p-ATF2 reveals that p-ATF2 increases the chromatin accessibility of regions adjacent to genes associated with matrix mineralization. Furthermore, we find that p-ATF2 physically interacts with and promotes H2BK12 acetylation. Taken together, our findings reveal a mechanism that p-ATF2 promotes odontoblastic differentiation at initiation via remodeling chromatin accessibility and emphasize the role of the phosphoswitch model of TFs in cell fate transitions.
Collapse
Affiliation(s)
- Huanyan Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiahao Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxiu Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Cheng Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shu Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Kozaki R, Yasuhiro T, Kato H, Murai J, Hotta S, Ariza Y, Sakai S, Fujikawa R, Yoshida T. Investigation of the anti-tumor mechanism of tirabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, by phosphoproteomics and transcriptomics. PLoS One 2023; 18:e0282166. [PMID: 36897912 PMCID: PMC10004634 DOI: 10.1371/journal.pone.0282166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Tirabrutinib is a highly selective Bruton's tyrosine kinase (BTK) inhibitor used to treat hematological malignancies. We analyzed the anti-tumor mechanism of tirabrutinib using phosphoproteomic and transcriptomic methods. It is important to check the drug's selectivity against off-target proteins to understand the anti-tumor mechanism based on the on-target drug effect. Tirabrutinib's selectivity was evaluated by biochemical kinase profiling assays, peripheral blood mononuclear cell stimulation assays, and the BioMAP system. Next, in vitro and in vivo analyses of the anti-tumor mechanisms were conducted in activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) cells followed by phosphoproteomic and transcriptomic analyses. In vitro kinase assays showed that, compared with ibrutinib, tirabrutinib and other second-generation BTK inhibitors demonstrated a highly selective kinase profile. Data from in vitro cellular systems showed that tirabrutinib selectively affected B-cells. Tirabrutinib inhibited the cell growth of both TMD8 and U-2932 cells in correlation with the inhibition of BTK autophosphorylation. Phosphoproteomic analysis revealed the downregulation of ERK and AKT pathways in TMD8. In the TMD8 subcutaneous xenograft model, tirabrutinib showed a dose-dependent anti-tumor effect. Transcriptomic analysis indicated that IRF4 gene expression signatures had decreased in the tirabrutinib groups. In conclusion, tirabrutinib exerted an anti-tumor effect by regulating multiple BTK downstream signaling proteins, such as NF-κB, AKT, and ERK, in ABC-DLBCL.
Collapse
Affiliation(s)
- Ryohei Kozaki
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
- * E-mail:
| | - Tomoko Yasuhiro
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hikaru Kato
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Jun Murai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shingo Hotta
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yuko Ariza
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Shunsuke Sakai
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Ryu Fujikawa
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
7
|
Zhao Y, Li L, Wang X, He S, Shi W, Chen S. Temporal Proteomic and Phosphoproteomic Analysis of EV-A71-Infected Human Cells. J Proteome Res 2022; 21:2367-2384. [DOI: 10.1021/acs.jproteome.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Xinhui Wang
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Sudan He
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, Jiangsu, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
8
|
Kip AM, Valverde JM, Altelaar M, Heeren RMA, Hundscheid IHR, Dejong CHC, Olde Damink SWM, Balluff B, Lenaerts K. Combined Quantitative (Phospho)proteomics and Mass Spectrometry Imaging Reveal Temporal and Spatial Protein Changes in Human Intestinal Ischemia-Reperfusion. J Proteome Res 2021; 21:49-66. [PMID: 34874173 PMCID: PMC8750167 DOI: 10.1021/acs.jproteome.1c00447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Intestinal ischemia–reperfusion
(IR) injury is a severe
clinical condition, and unraveling its pathophysiology is crucial
to improve therapeutic strategies and reduce the high morbidity and
mortality rates. Here, we studied the dynamic proteome and phosphoproteome
in the human intestine during ischemia and reperfusion, using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis to gain
quantitative information of thousands of proteins and phosphorylation
sites, as well as mass spectrometry imaging (MSI) to obtain spatial
information. We identified a significant decrease in abundance of
proteins related to intestinal absorption, microvillus, and cell junction,
whereas proteins involved in innate immunity, in particular the complement
cascade, and extracellular matrix organization increased in abundance
after IR. Differentially phosphorylated proteins were involved in
RNA splicing events and cytoskeletal and cell junction organization.
In addition, our analysis points to mitogen-activated protein kinase
(MAPK) and cyclin-dependent kinase (CDK) families to be active kinases
during IR. Finally, matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) MSI presented peptide alterations in abundance and distribution,
which resulted, in combination with Fourier-transform ion cyclotron
resonance (FTICR) MSI and LC-MS/MS, in the annotation of proteins
related to RNA splicing, the complement cascade, and extracellular
matrix organization. This study expanded our understanding of the
molecular changes that occur during IR in the human intestine and
highlights the value of the complementary use of different MS-based
methodologies.
Collapse
Affiliation(s)
- Anna M Kip
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Juan Manuel Valverde
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Inca H R Hundscheid
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Cornelis H C Dejong
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.,Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Steven W M Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.,Department of General, Visceral- and Transplantation Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Benjamin Balluff
- Maastricht Multimodal Molecular Imaging Institute (M4i), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
9
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Chromatin-embedded reporter genes: Quantification of stimulus-induced gene transcription. Gene 2021; 787:145645. [PMID: 33848575 DOI: 10.1016/j.gene.2021.145645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Receptors and ion channels expressed on the cell surface ensure proper communication between the cells and the environment. In multicellular organism, stimulus-regulated gene transcription is the basis for communication with the environment allowing individual cells to respond to stimuli such as nutrients, chemical stressors and signaling molecules released by other cells of the organism. Hormones, cytokines, and mitogens bind to receptors and ion channels and induce intracellular signaling cascades involving second messengers, kinases, phosphatases, and changes in the concentration of particular ions. Ultimately, the signaling cascades reach the nucleus. Transcription factors are activated that respond to cellular stimulation and induce changes in gene transcription. Investigating stimulus-transcription coupling combines cell biology with genetics. In this review, we discuss the molecular biology of stimulus-induced transcriptional activators and their responsiveness to extracellular and intracellular signaling molecules and to epigenetic regulators. Stimulus-induced gene expression is measured by several methods, including detection of nuclear translocation of transcription factors, phosphorylation or DNA binding. In this article, we emphasize that the most reliable method to directly measure transcriptional activation involves the use of chromatin-embedded reporter genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
10
|
Nakano H, Kawai S, Ooki Y, Chiba T, Ishii C, Nozawa T, Utsuki H, Umemura M, Takahashi S, Takahashi Y. Functional validation of epitope-tagged ATF5 knock-in mice generated by improved genome editing of oviductal nucleic acid delivery (i-GONAD). Cell Tissue Res 2021; 385:239-249. [PMID: 33825962 DOI: 10.1007/s00441-021-03450-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 11/25/2022]
Abstract
Activating transcription factor 5 (ATF5) is a stress-responsive transcription factor that belongs to the cAMP response element-binding protein (CREB)/ATF family, and is essential for the differentiation and survival of sensory neurons in murine olfactory organs. However, the study of associated proteins and target genes for ATF5 has been hampered due to the limited availability of immunoprecipitation-grade ATF5 antibodies. To overcome this issue, we generated hemagglutinin (HA)-tag knock-in mice for ATF5 using CRISPR/Cas9-mediated genome editing with one-step electroporation in oviducts (i-GONAD). ATF5-HA fusion proteins were detected in the nuclei of immature and some mature olfactory and vomeronasal sensory neurons in the main olfactory epithelium and vomeronasal organ, respectively, as endogenous ATF5 proteins were expressed, and some ATF5-HA proteins were found to be phosphorylated. Chromatin immunoprecipitation (ChIP) experiments revealed that ATF5-HA bound to the CCAAT/enhancer-binding protein (C/EBP)-ATF response element site in the promotor region of receptor transporting protein 1 (Rtp1), a chaperone gene responsible for proper olfactory receptor expression. These knock-in mice may be used to examine the expression, localization, and protein-protein/-DNA interactions of endogenous ATF5 and, ultimately, the function of ATF5 in vivo.
Collapse
Affiliation(s)
- Haruo Nakano
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Shiori Kawai
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yusaku Ooki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chiharu Ishii
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takumi Nozawa
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hisako Utsuki
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shigeru Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
11
|
Creb5 establishes the competence for Prg4 expression in articular cartilage. Commun Biol 2021; 4:332. [PMID: 33712729 PMCID: PMC7955038 DOI: 10.1038/s42003-021-01857-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-β and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-β and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-β. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.
Collapse
|
12
|
Wang YT, Hsiao WY, Wang SW. The fission yeast Pin1 peptidyl-prolyl isomerase promotes dissociation of Sty1 MAPK from RNA polymerase II and recruits Ssu72 phosphatase to facilitate oxidative stress induced transcription. Nucleic Acids Res 2021; 49:805-817. [PMID: 33410907 PMCID: PMC7826279 DOI: 10.1093/nar/gkaa1243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Pin1 is a peptidyl-prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II (Pol II) through interaction with the C-terminal domain (CTD) of Rpb1, the largest subunit of Pol II. We demonstrated that this function is important for cellular response to oxidative stress in the fission yeast Schizosaccharomyces pombe. In response to oxidative stress, the Atf1 transcription factor targets Sty1, the mitogen-activated protein kinase (MAPK), to specific stress-responsive promoters. Anchored Sty1 recruits Pol II through direct association with Rpb1-CTD and phosphorylates the reiterated heptad sequence at Serine 5. Pin1 binds phosphorylated CTD to promote dissociation of Sty1 from it, and directly recruits Ssu72 phosphatase to facilitate dephosphorylation of CTD for transcription elongation. In the absence of Pin1, the association of Sty1-Atf1 with Rpb1 persists on stress-responsive promoters failed to generate transcripts of the corresponding genes effectively. The identified characteristic features of the fission yeast Pin1 are conserved in humans. We demonstrated that elevated Pin1 level in cancer cells might help to sustain survival under oxidative stress generated from their altered metabolic pathways. Together, these results suggest a conserved function of Pin1 in cellular response to oxidative stress among eukaryotic cells that might have clinical implication.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Wan-Yi Hsiao
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Shao-Win Wang
- Institute of Molecular & Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
13
|
Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021; 12:771144. [PMID: 34916973 PMCID: PMC8668869 DOI: 10.3389/fpsyt.2021.771144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its treatment difficult. Antipsychotics are not fully effective because they treat psychosis rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms when patients enter the chronic stage of illness. Topical application of niacin showed diminished skin flush in the majority of patients with schizophrenia compared to the general population who showed flushing. The niacin skin flush test is useful for identifying patients with schizophrenia at their ultra-high-risk stage, and understanding this pathology may introduce an effective treatment. This review aims to understand the pathology behind the diminished skin flush response, while linking it back to neurons and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished flush. This review also suggests that there may be increased pro-inflammatory mediators in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished flush pathology. Increased levels of pro-inflammatory markers may induce microglial-activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation, and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished flush response, which might make it a good therapeutic target.
Collapse
Affiliation(s)
- Sabrina H Ansarey
- Department of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Kirsch K, Zeke A, Tőke O, Sok P, Sethi A, Sebő A, Kumar GS, Egri P, Póti ÁL, Gooley P, Peti W, Bento I, Alexa A, Reményi A. Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Nat Commun 2020; 11:5769. [PMID: 33188182 PMCID: PMC7666158 DOI: 10.1038/s41467-020-19582-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023] Open
Abstract
Transcription factor phosphorylation at specific sites often activates gene expression, but how environmental cues quantitatively control transcription is not well-understood. Activating protein 1 transcription factors are phosphorylated by mitogen-activated protein kinases (MAPK) in their transactivation domains (TAD) at so-called phosphoswitches, which are a hallmark in response to growth factors, cytokines or stress. We show that the ATF2 TAD is controlled by functionally distinct signaling pathways (JNK and p38) through structurally different MAPK binding sites. Moreover, JNK mediated phosphorylation at an evolutionarily more recent site diminishes p38 binding and made the phosphoswitch differently sensitive to JNK and p38 in vertebrates. Structures of MAPK-TAD complexes and mechanistic modeling of ATF2 TAD phosphorylation in cells suggest that kinase binding motifs and phosphorylation sites line up to maximize MAPK based co-regulation. This study shows how the activity of an ancient transcription controlling phosphoswitch became dependent on the relative flux of upstream signals.
Collapse
Affiliation(s)
- Klára Kirsch
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - András Zeke
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anna Sebő
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | | | - Péter Egri
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Ádám L Póti
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Paul Gooley
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Isabel Bento
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Anita Alexa
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Attila Reményi
- Biomolecular Interactions Research Group, Institute of Organic Chemistry, Research Center for Natural Sciences, H-1117, Budapest, Hungary.
| |
Collapse
|
15
|
Yang Q, Sun Z, Zhou Y, Tran NT, Zhang X, Lin Q, Zhou C, Zhang Y, Li S. SpATF2 participates in maintaining the homeostasis of hemolymph microbiota by regulating dual oxidase expression in mud crab. FISH & SHELLFISH IMMUNOLOGY 2020; 104:252-261. [PMID: 32497727 DOI: 10.1016/j.fsi.2020.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Activating transcription factors 2 (ATF2) is a transcription factor of the members of ATF/CREB family that is phosphorylated and activated by the mitogen-activated protein kinase (MAPK) in responding to the stimulation of stimuli. In present study, SpATF2 from mud crab (Scylla paramamosain) was identified and studied. The open reading frame of SpATF2 with 2136 bp in length encodes a protein with 711 amino acids. The SpATF2 protein includes the putative zinc finger domain in the N-terminus and bZIP type DNA-binding domain in the C-terminal. Tissue distribution of SpATF2 transcripts showed that SpATF2 was ubiquitously expressed in all examined tissues of the untreated mud crabs, with the highest expression levels in muscle and hepatopancreas. The transcriptional level of SpATF2 was up-regulated in the hemocytes after Vibrio parahemolyticus or WSSV infection. Reporter gene assays indicated that SpATF2 could activate the expression of dual oxidase (SpDuox1) in S. paramamosain. The RNA interference (RNAi) of SpATF2 significantly decreased the expression of SpDuox1, and consequently reduced reactive oxygen species production thereby significantly increased the bacterial load in the hemolymph of mud crabs. Similarly, significant reduction in bacterial clearance of hemolymph was observed after the V. parahemolyticus infection in SpATF2 knockdown mud crabs. This study showed that SpATF2 played a vital role in maintaining homeostasis of the hemolymph microbiota through regulating the expression of dual oxidase of mud crab.
Collapse
Affiliation(s)
- Qiuhua Yang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen, 361021, China
| | - Zaiqiao Sun
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Xusheng Zhang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Qi Lin
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen, 361021, China
| | - Chen Zhou
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen, 361021, China
| | - Yueling Zhang
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
16
|
Schoenherr C, Byron A, Griffith B, Loftus A, Wills JC, Munro AF, von Kriegsheim A, Frame MC. The autophagy protein Ambra1 regulates gene expression by supporting novel transcriptional complexes. J Biol Chem 2020; 295:12045-12057. [PMID: 32616651 PMCID: PMC7443501 DOI: 10.1074/jbc.ra120.012565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Billie Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
17
|
Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis 2020; 34:375-389. [PMID: 31799611 PMCID: PMC6923166 DOI: 10.1093/mutage/gez041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated ‘cancer gene chameleon’ ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
Collapse
Affiliation(s)
- Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Ana C Monteiro
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vijayalakshmi Mahadevan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
18
|
Sridharan DM, Chien LC, Cucinotta FA, Pluth JM. Comparison of signaling profiles in the low dose range following low and high LET radiation. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:28-41. [PMID: 32414491 DOI: 10.1016/j.lssr.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
During space travel astronauts will be exposed to a very low, mixed field of radiation containing different high LET particles of varying energies, over an extended period. Thus, defining how human cells respond to these complex low dose exposures is important in ascertaining risk. In the current study, we have chosen to investigate how low doses of three different ion's at various energies uniquely change the kinetics of three different phospho-proteins. A normal hTERT immortalized fibroblast cell line, 82-6, was exposed to a range of lower doses (0.05-0.5 Gy) of radiation of different qualities and energies (Si 1000 MeV/u, Si 300 MeV/u, Si 173 MeV/u, Si 93 MeV/u, Fe 1000 MeV/u, Fe 600 MeV/u, Fe 300 MeV/u, Ti 300 MeV/u, Ti 326 MeV/u, Ti 386 MeV/u), covering a wide span of LET's. Exposed samples were analyzed for the average intensity of signal as a fold over the geometric mean level of the sham controls. Three phospho-proteins known to localize to DNA DSBs following radiation (γH2AX, pATF2, pSMC1) were studied. The kinetics of their response was quantified by flow cytometery at 2 and 24 h post exposure. These studies reveal unique kinetic patterns based on the ion, energy, fluence and time following exposure. In addition, γH2AX phosphorylation patterns are uniquely different from phospho-proteins known to be primarily phosphorylated by ATM. This latter finding suggests that the activating kinase(s), or the phosphatases deactivating these proteins, exhibit differences in their response to various radiation qualities and/ or doses of exposure. Further studies will be needed to better define what the differing kinetics for the kinases activated by the unique radiation qualities plays in the biological effectiveness of the particle.
Collapse
Affiliation(s)
- Deepa M Sridharan
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, CA 94710, United States
| | - Lung-Chang Chien
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV, 89154, United States
| | - Francis A Cucinotta
- Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, United States
| | - Janice M Pluth
- Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, United States.
| |
Collapse
|
19
|
Geng L, Chen X, Zhang M, Luo Z. Ubiquitin-specific protease 14 promotes prostate cancer progression through deubiquitinating the transcriptional factor ATF2. Biochem Biophys Res Commun 2020; 524:16-21. [DOI: 10.1016/j.bbrc.2019.12.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 10/25/2022]
|
20
|
Deficiency in intestinal epithelial Reg4 ameliorates intestinal inflammation and alters the colonic bacterial composition. Mucosal Immunol 2019; 12:919-929. [PMID: 30953001 PMCID: PMC7744279 DOI: 10.1038/s41385-019-0161-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/04/2023]
Abstract
The regenerating islet-derived family member 4 (Reg4) in the gastrointestinal tract is up-regulated during intestinal inflammation. However, the physiological function of Reg4 in the inflammation is largely unknown. In the current study, the functional roles and involved mechanisms of intestinal epithelial Reg4 in intestinal inflammation were studied in healthy and inflamed states using human intestinal specimens, an intestinal conditional Reg4 knockout mouse (Reg4ΔIEC) model and dextran sulfate sodium (DSS)-induced colitis model. We showed that the elevated serum Reg4 in pediatric intestinal failure (IF) patients were positively correlated with the serum concentrations of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In inflamed intestine of IF patients, the crypt base Reg4 protein was increased and highly expressed towards the luminal face. The Reg4 was indicated as a novel target of activating transcription factor 2 (ATF2) that enhanced Reg4 expression during the intestinal inflammation. In vivo, the DSS-induced colitis was significantly ameliorated in Reg4ΔIEC mice. Reg4ΔIEC mice altered the colonic bacterial composition and reduced the bacteria adhere to the colonic epithelium. In vitro, Reg4 was showed to promote the growth of colonic organoids, and that this occurs through a mechanism involving activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, our findings demonstrated intestinal-epithelial Reg4 deficiency protects against experimental colitis and mucosal injury via a mechanism involving alteration of bacterial homeostasis and STAT3 activation.
Collapse
|
21
|
Howe GA, Kazda K, Addison CL. MicroRNA-30b controls endothelial cell capillary morphogenesis through regulation of transforming growth factor beta 2. PLoS One 2017; 12:e0185619. [PMID: 28977001 PMCID: PMC5627931 DOI: 10.1371/journal.pone.0185619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
The importance of microRNA (miRNA) to vascular biology is becoming increasingly evident; however, the function of a significant number of miRNA remains to be determined. In particular, the effect of growth factor regulation of miRNAs on endothelial cell morphogenesis is incomplete. Thus, we aimed to identify miRNAs regulated by pro-angiogenic vascular endothelial growth factor (VEGF) and determine the effects of VEGF-regulated miRNAs and their targets on processes important for angiogenesis. Human umbilical vein endothelial cells (HUVECs) were thus stimulated with VEGF and miRNA levels assessed using microarrays. We found that VEGF altered expression of many miRNA, and for this study focused on one of the most significantly down-regulated miRNA in HUVECs following VEGF treatment, miR-30b. Using specific miRNA mimics, we found that overexpression of miR-30b inhibited capillary morphogenesis in vitro, while depletion of endogenous miR-30b resulted in increased capillary morphogenesis indicating the potential significance of down-regulation of miR-30b as a pro-angiogenic response to VEGF stimulation. MiR-30b overexpression in HUVEC regulated transforming growth factor beta 2 (TGFβ2) production, which led to increased phosphorylation of Smad2, indicating activation of an autocrine TGFβ signaling pathway. Up-regulation of TGFβ2 by miR-30b overexpression was found to be dependent on ATF2 activation, a transcription factor known to regulate TGFβ2 expression, as miR-30b overexpressing cells exhibited increased levels of phosphorylated ATF2 and depletion of ATF2 inhibited miR-30b-induced TGFβ2 expression. However, miR-30b effects on ATF2 were indirect and found to be via targeting of the known ATF2 repressor protein JDP2 whose mRNA levels were indirectly correlated with miR-30b levels. Increased secretion of TGFβ2 from HUVEC was shown to mediate the inhibitory effects of miR-30b on capillary morphogenesis as treatment with a neutralizing antibody to TGFβ2 restored capillary morphogenesis to normal levels in miR-30b overexpressing cells. These results support that the regulation of miR-30b by VEGF in HUVEC is important for capillary morphogenesis, as increased miR-30b expression inhibits capillary morphogenesis through enhanced expression of TGFβ2.
Collapse
Affiliation(s)
- Grant A. Howe
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kayla Kazda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|
22
|
Tian L, Zhang J, Ren X, Liu X, Gao W, Zhang C, Sun Y, Liu M. Overexpression of miR-26b decreases the cisplatin-resistance in laryngeal cancer by targeting ATF2. Oncotarget 2017; 8:79023-79033. [PMID: 29108284 PMCID: PMC5668017 DOI: 10.18632/oncotarget.20784] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 01/09/2023] Open
Abstract
Cisplatin is a common used chemotherapeutic drug for the treatment of laryngeal cancer. However, drug-resistance is a major obstacle in platinum-based chemotherapy for laryngeal cancer. Recent studies have demonstrated that dysregulation of microRNAs (miRNAs) is responsible for chemoresistance in multiple cancers including laryngeal cancer, but the potential mechanisms are required to be explored. In the present study, we constantly exposed the laryngeal cancer cell line Hep-2 with cisplatin to establish a cisplatin-resistant laryngeal cancer cell model (Hep-2/R). We found that Hep-2/R cells exhibited obvious resistance to cisplatin compared to the Hep-2 cells. However, overexpression of miR-26b significantly decreased the half maximal inhibitory concentration (IC50) of cisplatin to Hep-2/R. Mechanically, miR-26b in Hep-2/R decreased the expression of ATF2, and thus inhibiting the phosphorylation of ATF2 and formation of cellular ATF2-c-Jun complex induced by cisplatin. As the results, Hep-2/R cells failed to overexpress the Bcl-xl which is a key anti-apoptotic protein under the cisplatin treatment. Therefore, overexpression of miR-26b was found to be able to promote mitochondrial apoptosis induced by cisplatin.
Collapse
Affiliation(s)
- Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Xiuxia Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Wei Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Chen Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China, 150086
| |
Collapse
|
23
|
Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae. Genetics 2017; 206:1895-1907. [PMID: 28607146 DOI: 10.1534/genetics.117.201632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
Abstract
Previously expressed inducible genes can remain poised for faster reactivation for multiple cell divisions, a conserved phenomenon called epigenetic transcriptional memory. The GAL genes in Saccharomyces cerevisiae show faster reactivation for up to seven generations after being repressed. During memory, previously produced Gal1 protein enhances the rate of reactivation of GAL1, GAL10, GAL2, and GAL7 These genes also interact with the nuclear pore complex (NPC) and localize to the nuclear periphery both when active and during memory. Peripheral localization of GAL1 during memory requires the Gal1 protein, a memory-specific cis-acting element in the promoter, and the NPC protein Nup100 However, unlike other examples of transcriptional memory, the interaction with NPC is not required for faster GAL gene reactivation. Rather, downstream of Gal1, the Tup1 transcription factor and growth in glucose promote GAL transcriptional memory. Cells only show signs of memory and only benefit from memory when growing in glucose. Tup1 promotes memory-specific chromatin changes at the GAL1 promoter: incorporation of histone variant H2A.Z and dimethylation of histone H3, lysine 4. Tup1 and H2A.Z function downstream of Gal1 to promote binding of a preinitiation form of RNA Polymerase II at the GAL1 promoter, poising the gene for faster reactivation. This mechanism allows cells to integrate a previous experience (growth in galactose, reflected by Gal1 levels) with current conditions (growth in glucose, potentially through Tup1 function) to overcome repression and to poise critical GAL genes for future reactivation.
Collapse
|
24
|
Henry M, Power M, Kaushik P, Coleman O, Clynes M, Meleady P. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. J Proteome Res 2017; 16:2339-2358. [DOI: 10.1021/acs.jproteome.6b00868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Henry
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Power
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Prashant Kaushik
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Orla Coleman
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
25
|
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119:347-357. [PMID: 28212892 PMCID: PMC5457671 DOI: 10.1016/j.phrs.2017.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.
Collapse
Affiliation(s)
- Gregory Watson
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, 3109601, Israel
| | - Eric Lau
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
26
|
Thiel G, Rössler OG. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors. Pharmacol Res 2017; 117:166-176. [DOI: 10.1016/j.phrs.2016.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/10/2023]
|
27
|
Su AR, Qiu M, Li YL, Xu WT, Song SW, Wang XH, Song HY, Zheng N, Wu ZW. BX-795 inhibits HSV-1 and HSV-2 replication by blocking the JNK/p38 pathways without interfering with PDK1 activity in host cells. Acta Pharmacol Sin 2017; 38:402-414. [PMID: 28112176 PMCID: PMC5342671 DOI: 10.1038/aps.2016.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/31/2016] [Indexed: 11/23/2022] Open
Abstract
BX-795 is an inhibitor of 3-phosphoinositide-dependent kinase 1 (PDK1), but also a potent inhibitor of the IKK-related kinase, TANKbinding kinase 1 (TBK1) and IKKɛ. In this study we attempted to elucidate the molecular mechanism(s) underlying the inhibition of BX-795 on Herpes simplex virus (HSV) replication. HEC-1-A or Vero cells were treated with BX-795 and infected with HSV-1 or HSV-2 for different periods. BX-795 (3.125-25 μmol/L) dose-dependently suppressed HSV-2 replication, and displayed a low cytotoxicity to the host cells. BX-795 treatment dose-dependently suppressed the expression of two HSV immediate-early (IE) genes (ICP0 and ICP27) and the late gene (gD) at 12 h postinfection. HSV-2 infection resulted in the activation of PI3K and Akt in the host cells, and BX-795 treatment inhibited HSV-2-induced Akt phosphorylation and activation. However, the blockage of PI3K/Akt/mTOR with LY294002 and rapamycin did not affect HSV-2 replication. HSV-2 infection increased the phosphorylation of JNK and p38, and reduced ERK phosphorylation at 8 h postinfection in the host cells; BX-795 treatment inhibited HSV-2-induced activation of JNK and p38 MAP kinase as well as the phosphorylation of c-Jun and ATF-2, the downstream targets of JNK and p38 MAP kinase. Furthermore, SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) dose-dependently inhibited the viral replication in the host cells, whereas PD98059 (an ERK inhibitor) was not effective. Moreover, BX-795 blocked PMA-stimulated c-Jun activation as well as HSV-2-mediated c-Jun nuclear translocation. BX-795 dose-dependently inhibited HSV-2, PMA, TNF-α-stimulated AP-1 activation, but not HSV-induced NF-κB activation. Overexpression of p38/JNK attenuated the inhibitory effect of BX-795 on HSV replication. BX-795 completely blocked HSV-2-induced MKK4 phosphorylation, suggesting that BX-795 acting upstream of JNK and p38 MAP kinase. In conclusion, this study identifies the anti-HSV activity of BX-795 and its targeting of the JNK/p38 MAP kinase pathways in host cells.
Collapse
|
28
|
Li Q, Gao WQ, Dai WY, Yu C, Zhu RY, Jin J. ATF2 translation is induced under chemotherapeutic drug-mediated cellular stress via an IRES-dependent mechanism in human hepatic cancer Bel7402 cells. Oncol Lett 2016; 12:4795-4802. [PMID: 28105187 DOI: 10.3892/ol.2016.5274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
Activating transcription factor (ATF) 2 is a member of the ATF/cyclic AMP-responsive element binding protein family, which exhibits both oncogenic and tumor-suppressor functions. In our preliminary experiments, it was observed that the expression of the ATF2 protein was induced following treatment with adriamycin (ADR) and paclitaxel (PTX), which may be regulated by internal ribosome entry segment (IRES)-mediated translation. By constructing a bicistronic vector containing the ATF2 5'-untranslated region (UTR), it was demonstrated that the ATF2 5'-UTR contains an IRES and maps a 30-nucleotide (nt) sequence (from nt 299 to nt ~269), which was essential for the IRES activity. The ATF2 IRES activity exhibited significant variation in different cell lines. In addition, it was observed that ADR and PTX also induced ATF2 IRES activity in Bel7402 cells. The present study has demonstrated that ATF2 translation is initiated via IRES, which is upregulated by ADR and PTX, thus suggesting that the regulation of the IRES-dependent translation of ATF2 may be involved in effecting the cancer cell response to chemotherapeutic drugs-mediated cellular stress.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wen-Qing Gao
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wen-Yan Dai
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chuang Yu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Rui-Yu Zhu
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- Laboratory of Molecular Pharmacology, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
29
|
Kim YJ, Kim HJ, Kim HL, Kim HJ, Kim HS, Lee TR, Shin DW, Seo YR. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity. J Invest Dermatol 2016; 137:466-474. [PMID: 27729279 DOI: 10.1016/j.jid.2016.07.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 01/21/2023]
Abstract
The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hye Lim Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
30
|
Norwitz ER, Jeong KH, Chin WW. Molecular Mechanisms of Gonadotropin-Releasing Hormone Receptor Gene Regulation. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769900600402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Errol R. Norwitz
- Division of Maternal-Fetal Medicine, Department of Obstetries & Gynecology, and Division of Molecular Genetics. Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - William W. Chin
- Division of Maternal-Fetal Medicine, Department of Obstetries & Gynecology, and Division of Molecular Genetics. Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Wu DS, Chen C, Wu ZJ, Liu B, Gao L, Yang Q, Chen W, Chen JM, Bao Y, Qu L, Wang LH. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:108. [PMID: 27377902 PMCID: PMC4932740 DOI: 10.1186/s13046-016-0383-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023]
Abstract
Background Activating transcription factor 2 (ATF2) is a basic helix-loop-helix transcription factor, which has been shown to participate in the pathobiology of numerous cancers. However, the role of ATF2 in renal cell carcinoma (RCC) remains unclear. Methods ATF2 knockdown and overexpression studies were performed in RCC cells to evaluate changes in cell viability, cell cycle, apoptosis, migration and invasion. Xenograft models were used to examine the tumorigenic and metastatic capability of RCC cells upon ATF2 suppression. The expression of ATF2 in human RCC samples was determined using immunohistochemistry on a tissue microarray. Results ATF2 knockdown in RCC cells reduced their proliferative and metastatic potentials, whereas ATF2 overexpression enhanced these properties. Mechanistic studies revealed that the transcription of CyclinB1, CyclinD1, Snail and Vimentin was directly regulated by ATF2 in RCC cells. Moreover, ATF2 was shown to be highly expressed in RCC tissues, especially in tumors with metastases. High expression of ATF2 correlated with aggressive clinico-pathological characteristics and predicted poor prognosis of RCC patients. Conclusions ATF2 exerts an oncogenic role in RCC and could serve as an important prognostic biomarker. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0383-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deng-Shuang Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing University Clinical School of Medicine, Nanjing, 210002, China
| | - Zhen-Jie Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Li Gao
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qing Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wei Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Department of Urology, No. 203 Hospital of People's Liberation Army, Qiqihaer, 161000, Heilongjiang, China
| | - Jun-Ming Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Department of Urology, Henan Provincial Corps Hospital of Chinese People's Armed Police Force, Zhengzhou, 450052, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Le Qu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China. .,Department of Urology, Jinling Hospital, Nanjing University Clinical School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Lin-Hui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
32
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
33
|
Dierks S, von Hardenberg S, Schmidt T, Bremmer F, Burfeind P, Kaulfuß S. Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon. Oncotarget 2016; 6:13591-606. [PMID: 26079947 PMCID: PMC4537036 DOI: 10.18632/oncotarget.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/18/2015] [Indexed: 12/15/2022] Open
Abstract
The focal adhesion protein leupaxin (LPXN) is overexpressed in a subset of prostate cancers (PCa) and is involved in the progression of PCa. In the present study, we analyzed the LPXN-mediated adhesive and cytoskeletal changes during PCa progression. We identified an interaction between the actin-binding protein caldesmon (CaD) and LPXN and this interaction is increased during PCa cell migration. Furthermore, knockdown of LPXN did not affect CaD expression but reduced CaD phosphorylation. This is known to destabilize the affinity of CaD to F-actin, leading to dynamic cell structures that enable cell motility. Thus, downregulation of CaD increased migration and invasion of PCa cells. To identify the kinase responsible for the LPXN-mediated phosphorylation of CaD, we used data from an antibody array, which showed decreased expression of TGF-beta-activated kinase 1 (TAK1) after LPXN knockdown in PC-3 PCa cells. Subsequent analyses of the downstream kinases revealed the extracellular signal-regulated kinase (ERK) as an interaction partner of LPXN that facilitates CaD phosphorylation during LPXN-mediated PCa cell migration. In conclusion, we demonstrate that LPXN directly influences cytoskeletal dynamics via interaction with the actin-binding protein CaD and regulates CaD phosphorylation by recruiting ERK to highly dynamic structures within PCa cells.
Collapse
Affiliation(s)
- Sascha Dierks
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Sandra von Hardenberg
- Institute of Human Genetics, University Medical Center Göttingen, Germany.,Center of Pharmacology and Toxicology, Hannover Medical School, Germany
| | - Thomas Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Germany.,Department of Anatomy, University of Witten/Herdecke, Witten, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Germany
| |
Collapse
|
34
|
Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 2015; 11:837. [PMID: 26538579 PMCID: PMC4670726 DOI: 10.15252/msb.20156269] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitogen‐activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less‐characterized disordered regions. We used a structurally consistent model on kinase‐docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under‐explored part of the human proteome and applied experimental tools specifically tailored to detect low‐affinity protein–protein interactions for their validation in vitro and in cell‐based assays. The combined computational and experimental approach enabled the identification of many novel MAPK‐docking motifs that were elusive for other large‐scale protein–protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase‐mediated partnerships evolved over time. The analysis suggests that most human MAPK‐binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK‐binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.
Collapse
Affiliation(s)
- András Zeke
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Tomas Bastys
- Max Planck Institute for Informatics, Saarbrücken, Germany Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anita Alexa
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Garai
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Mészáros
- Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Klára Kirsch
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Attila Reményi
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
35
|
Chen D, Su A, Fu Y, Wang X, Lv X, Xu W, Xu S, Wang H, Wu Z. Harmine blocks herpes simplex virus infection through downregulating cellular NF-κB and MAPK pathways induced by oxidative stress. Antiviral Res 2015; 123:27-38. [DOI: 10.1016/j.antiviral.2015.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/16/2022]
|
36
|
Dong Y, Kimura Y, Ito T, Velayo C, Sato T, Sugibayashi R, Funamoto K, Hitomi K, Iida K, Endo M, Sato N, Yaegashi N. Vaginal LPS changed gene transcriptional regulation response to ischemic reperfusion and increased vulnerability of fetal brain hemorrhage. Biochem Biophys Res Commun 2015; 468:228-33. [PMID: 26523514 DOI: 10.1016/j.bbrc.2015.10.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 01/09/2023]
Abstract
During pregnancy, both ischemic reperfusion and bacterial agent LPS are known risk factors for fetal brain damage. However, there is a lack of evidence to explain whether vaginal LPS affects the fetus response to ischemic reperfusion. Here we reported that there was more than 2 folds higher vulnerability of fetal brain hemorrhage response to ischemic reperfusion when mother mouse was treated with vaginal LPS. As our previously reported, ischemic reperfusion induces P53-dependent fetal brain damage was based on a molecular mechanism: the transcriptional pattern was changed from HIF-1alpha-dependent to P53-dependent immediately. In the present work, only with vaginal LPS precondition, phosphorylation of activated transcriptional factor (ATF) 2 at Thr71 appeared in response to ischemic reperfusion. Moreover, this phosphorylation was completely blocked by pre-treatment with a P53 inhibitor, pifithrin-α. We concluded that vaginal LPS precondition trigged the p53-dependent phosphorylation of ATF2 in response to ischemic reperfusion, which played an important role of increasing vulnerability to hemorrhage in fetus.
Collapse
Affiliation(s)
- Yupeng Dong
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshitaka Kimura
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics & Gynecology, Tohoku University Hospital, Sendai, Japan
| | - Takuya Ito
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Clarissa Velayo
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Sato
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rika Sugibayashi
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoe Funamoto
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kudo Hitomi
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keita Iida
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Endo
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoaki Sato
- Advanced Interdisciplinary Biomedical Engineering, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics & Gynecology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
37
|
Huang Q, Du X, He X, Yu Q, Hu K, Breitwieser W, Shen Q, Ma S, Li M. JNK-mediated activation of ATF2 contributes to dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease. Exp Neurol 2015; 277:296-304. [PMID: 26515688 DOI: 10.1016/j.expneurol.2015.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/02/2015] [Accepted: 10/24/2015] [Indexed: 12/29/2022]
Abstract
The c-Jun N-terminal kinase (JNK)/c-Jun pathway is a known critical regulator of dopaminergic neuronal death in Parkinson's disease (PD) and is considered a potential target for neuroprotective therapy. However, whether JNK is activated within dopaminergic neurons remains controversial, and whether JNK acts through downstream effectors other than c-Jun to promote dopaminergic neuronal death remains unclear. In this study, we confirm that JNK but not p38 is activated in dopaminergic neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxication. Furthermore, within the dopaminergic neurons of the substantia nigra in MPTP-treated mice, JNK2/3 phosphorylates threonine 69 (Thr69) of Activating transcription factor-2 (ATF2), a transcription factor of the ATF/CREB family, whereas the phosphorylation of Thr71 is constitutive and remains unchanged. The increased phosphorylation of ATF2 on Thr69 by JNK in the MPTP mouse model suggests a functional relationship between the transcriptional activation of ATF2 and dopaminergic neuron death. By using dopaminergic neuron-specific conditional ATF2 mutant mice, we found that either partial or complete deletion of the ATF2 DNA-binding domain in dopaminergic neurons markedly alleviates the MPTP-induced dopaminergic neurodegeneration, indicating that the activation of ATF2 plays a detrimental role in neuropathogenesis in PD. Taken together, our findings demonstrate that JNK-mediated ATF2 activation contributes to dopaminergic neuronal death in an MPTP model of PD.
Collapse
Affiliation(s)
- Qiaoying Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xiaoxiao Du
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Xin He
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qing Yu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Wolfgang Breitwieser
- Cell Regulation Department, CRUK Manchester Institute, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - Qingyu Shen
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou 510120, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Mingtao Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
38
|
Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress. Proc Natl Acad Sci U S A 2015; 112:E2366-75. [PMID: 25897023 DOI: 10.1073/pnas.1422858112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting in opposition to let-7-Fam miRNA activity, possibly via the downstream Activating Transcription Factor-7 (ATF-7). Furthermore, let-7-Fam miRNAs appear to exert negative regulation on the worm's resistance to P. aeruginosa infection. Our results show that the inhibition of pathogen resistance by let-7 involves downstream heterochronic genes and the p38 MAPK pathway. These findings suggest that let-7-Fam miRNAs are integrated into innate immunity gene regulatory networks, such that this family of miRNAs modulates immune responses while also ensuring robust timing of developmental events under pathogen stress.
Collapse
|
39
|
Romanov VS, Brichkina AI, Morrison H, Pospelova TV, Pospelov VA, Herrlich P. Novel mechanism of JNK pathway activation by adenoviral E1A. Oncotarget 2015; 5:2176-86. [PMID: 24742962 PMCID: PMC4039154 DOI: 10.18632/oncotarget.1860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The adenoviral oncoprotein E1A influences cellular regulation by interacting with a number of cellular proteins. In collaboration with complementary oncogenes, E1A fully transforms primary cells. As part of this action, E1A inhibits transcription of c-Jun:Fos target genes while promoting that of c-Jun:ATF2-dependent genes including jun. Both c-Jun and ATF2 are hyperphosphorylated in response to E1A. In the current study, E1A was fused with the ligand binding domain of the estrogen receptor (E1A-ER) to monitor the immediate effect of E1A activation. With this approach we now show that E1A activates c-Jun N-terminal kinase (JNK), the upstream kinases MKK4 and MKK7, as well as the small GTPase Rac1. Activation of the JNK pathway requires the N-terminal domain of E1A, and, importantly, is independent of transcription. In addition, it requires the presence of ERM proteins. Downregulation of signaling components upstream of JNK inhibits E1A-dependent JNK/c-Jun activation. Taking these findings together, we show that E1A activates the JNK/c-Jun signaling pathway upstream of Rac1 in a transcription-independent manner, demonstrating a novel mechanism of E1A action.
Collapse
Affiliation(s)
- Vasily S Romanov
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS One 2014; 9:e116048. [PMID: 25545367 PMCID: PMC4278844 DOI: 10.1371/journal.pone.0116048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/22/2022] Open
Abstract
Activating transcription factor 2 (ATF2) and its homolog ATF7 are phosphorylated at Thr-69/Thr-71 and at Thr-51/Thr-53, respectively, by stress-activated MAPKs regulating their transcriptional functions in G1 and S phases. However, little is known about the role of ATF2 and ATF7 in G2/M phase. Here, we show that Cdk1-cyclin B1 phosphorylates ATF2 at Thr-69/Thr-71 and ATF7 at Thr-51/Thr-53 from early prophase to anaphase in the absence of any stress stimulation. Knockdown of ATF2 or ATF7 decreases the rate of cell proliferation and the number of cells in M-phase. In particular, the knockdown of ATF7 severely inhibits cell proliferation and G2/M progression. The inducible expression of a mitotically nonphosphorylatable version of ATF7 inhibits G2/M progression despite the presence of endogenous ATF7. We also show that mitotic phosphorylation of ATF7 promotes the activation of Aurora kinases, which are key enzymes for early mitotic events. These results suggest that the Cdk1-mediated phosphorylation of ATF7 facilitates G2/M progression, at least in part, by enabling Aurora signaling.
Collapse
|
41
|
Choi Y, Mango SE. Hunting for Darwin's gemmules and Lamarck's fluid: Transgenerational signaling and histone methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1440-53. [DOI: 10.1016/j.bbagrm.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/22/2023]
|
42
|
Lo Iacono M, Monica V, Vavalà T, Gisabella M, Saviozzi S, Bracco E, Novello S, Papotti M, Scagliotti GV. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer 2014; 136:2598-609. [PMID: 25359574 DOI: 10.1002/ijc.29302] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
ATF2 is a transcription factor involved in stress and DNA damage. A correlation between ATF2 JNK-mediated activation and resistance to damaging agents has already been reported. The purpose of the present study was to investigate whether ATF2 may have a role in acquired resistance to cisplatin in non-small cell lung cancer (NSCLC). mRNA and protein analysis on matched cancer and corresponding normal tissues from surgically resected NSCLC have been performed. Furthermore, in NSCLC cell lines, ATF2 expression levels were evaluated and correlated to platinum (CDDP) resistance. Celastrol-mediated ATF2/cJUN activity was measured. High expression levels of both ATF2 transcript and proteins were observed in lung cancer specimens (p << 0.01, Log2 (FC) = +4.7). CDDP-resistant NSCLC cell lines expressed high levels of ATF2 protein. By contrast, Celastrol-mediated ATF2/cJUN functional inhibition restored the response to CDDP. Moreover, ATF2 protein activation correlates with worse outcome in advanced CDDP-treated patients. For the first time, it has been shown NSCLC ATF2 upregulation at both mRNA/protein levels in NSCLC. In addition, we reported that in NSCLC cell lines a correlation between ATF2 protein expression and CDDP resistance occurs. Altogether, our results indicate a potential increase in CDDP sensitivity, on Celastrol-mediated ATF2/cJUN inhibition. These data suggest a possible involvement of ATF2 in NSCLC CDDP-resistance.
Collapse
Affiliation(s)
- Marco Lo Iacono
- Department of Oncology, University of Turin, S. Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shatanawi A, Lemtalsi T, Yao L, Patel C, Caldwell RB, Caldwell RW. Angiotensin II limits NO production by upregulating arginase through a p38 MAPK-ATF-2 pathway. Eur J Pharmacol 2014; 746:106-14. [PMID: 25446432 DOI: 10.1016/j.ejphar.2014.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 01/11/2023]
Abstract
Enhanced vascular arginase activity can impair endothelium-dependent vasorelaxation by decreasing l-arginine availability to endothelial nitric oxide (NO) synthase, thereby reducing NO production and uncoupling NOS function. Elevated angiotensin II (Ang II) is a key component of endothelial dysfunction in many cardiovascular diseases and has been linked to elevated arginase activity. In this study we explored the signaling pathway leading to increased arginase expression/activity in response to Ang II in bovine aortic endothelial cells (BAEC). Our previous studies indicate involvement of p38 mitogen activated protein kinase (MAPK) in Ang II-induced arginase upregulation and reduced NO production. In this study, we further investigated the Ang II-transcriptional regulation of arginase 1 in endothelial cells. Our results indicate the involvement of ATF-2 transcription factor of the AP1 family in arginase 1 upregulation and in limiting NO production. Using small interfering RNA (siRNA) targeting ATF-2, we showed that this transcription factor is required for Ang II-induced arginase 1 gene upregulation and increased arginase 1 expression and activity, leading to reduced NO production. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay further confirmed the involvement of ATF-2. Moreover, our data indicate that p38 MAPK phosphorylates ATF-2 in response to Ang II. Collectively, our results indicate that Ang II increases endothelial arginase activity/expression through a p38 MAPK/ATF-2 pathway leading to reduced endothelial NO production. These signaling steps might be therapeutic targets for preventing vascular endothelial dysfunction associated with elevated arginase activity/expression.
Collapse
Affiliation(s)
- Alia Shatanawi
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| | - Tahira Lemtalsi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Lin Yao
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Chintan Patel
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; VA Medical Center, Augusta, GA 30912, USA
| | - R William Caldwell
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
44
|
Rudraraju B, Droog M, Abdel-Fatah TMA, Zwart W, Giannoudis A, Malki MI, Moore D, Patel H, Shaw J, Ellis IO, Chan S, Brooke GN, Nevedomskaya E, Lo Nigro C, Carroll J, Coombes RC, Bevan C, Ali S, Palmieri C. Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Res Treat 2014; 147:295-309. [PMID: 25141981 DOI: 10.1007/s10549-014-3098-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
Abstract
Activating transcription factor-2 (ATF-2) has been implicated as a tumour suppressor in breast cancer (BC). c-JUN N-terminal kinase (JNK) and p38 MAPK phosphorylate ATF-2 within the activation domain (AD), which is required for its transcriptional activity. To date, the role of ATF-2 in determining response to endocrine therapy has not been explored. Effects of ATF-2 loss in the oestrogen receptor (ER)-positive luminal BC cell line MCF7 were explored, as well as its role in response to tamoxifen treatment. Genome-wide chromatin binding patterns of ATF-2 when phosphorylated within the AD in MCF-7 cells were determined using ChIP-seq. The expression of ATF-2 and phosphorylated ATF-2 (pATF-2-Thr71) was determined in a series of 1,650 BC patients and correlated with clinico-pathological features and clinical outcome. Loss of ATF-2 diminished the growth-inhibitory effects of tamoxifen, while tamoxifen treatment induced ATF-2 phosphorylation within the AD, to regulate the expression of a set of 227 genes for proximal phospho-ATF-2 binding, involved in cell development, assembly and survival. Low expression of both ATF-2 and pATF-2-Thr71 was significantly associated with aggressive pathological features. Furthermore, pATF-2 was associated with both p-p38 and pJNK1/2 (< 0.0001). While expression of ATF-2 is not associated with outcome, pATF-2 is associated with longer disease-free (p = 0.002) and BC-specific survival in patients exposed to tamoxifen (p = 0.01). Furthermore, multivariate analysis confirmed pATF-2-Thr71 as an independent prognostic factor. ATF-2 is important for modulating the effect of tamoxifen and phosphorylation of ATF-2 within the AD at Thr71 predicts for improved outcome for ER-positive BC receiving tamoxifen.
Collapse
Affiliation(s)
- Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm 2014; 2014:950472. [PMID: 25049453 PMCID: PMC4090481 DOI: 10.1155/2014/950472] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs.
Collapse
|
46
|
D'Urso A, Brickner JH. Mechanisms of epigenetic memory. Trends Genet 2014; 30:230-6. [PMID: 24780085 DOI: 10.1016/j.tig.2014.04.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/20/2022]
Abstract
Although genetics has an essential role in defining the development, morphology, and physiology of an organism, epigenetic mechanisms have an essential role in modulating these properties by regulating gene expression. During development, epigenetic mechanisms establish stable gene expression patterns to ensure proper differentiation. Such mechanisms also allow organisms to adapt to environmental changes and previous experiences can impact the future responsiveness of an organism to a stimulus over long timescales and even over generations. Here, we discuss the concept of epigenetic memory, defined as the stable propagation of a change in gene expression or potential induced by developmental or environmental stimuli. We highlight three distinct paradigms of epigenetic memory that operate on different timescales.
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
47
|
Mamrosh JL, Lee JM, Wagner M, Stambrook PJ, Whitby RJ, Sifers RN, Wu SP, Tsai MJ, Demayo FJ, Moore DD. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. eLife 2014; 3:e01694. [PMID: 24737860 PMCID: PMC3987120 DOI: 10.7554/elife.01694] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic endoplasmic reticulum (ER) stress results in toxicity that contributes to multiple human disorders. We report a stress resolution pathway initiated by the nuclear receptor LRH-1 that is independent of known unfolded protein response (UPR) pathways. Like mice lacking primary UPR components, hepatic Lrh-1-null mice cannot resolve ER stress, despite a functional UPR. In response to ER stress, LRH-1 induces expression of the kinase Plk3, which phosphorylates and activates the transcription factor ATF2. Plk3-null mice also cannot resolve ER stress, and restoring Plk3 expression in Lrh-1-null cells rescues ER stress resolution. Reduced or heightened ATF2 activity also sensitizes or desensitizes cells to ER stress, respectively. LRH-1 agonist treatment increases ER stress resistance and decreases cell death. We conclude that LRH-1 initiates a novel pathway of ER stress resolution that is independent of the UPR, yet equivalently required. Targeting LRH-1 may be beneficial in human disorders associated with chronic ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.001 A protein can only work properly if it has been folded into the correct shape. However, it is estimated that about one third of new proteins have the wrong shape. This is a major challenge for cells because misfolded proteins are often toxic, and cause many neurodegenerative and metabolic disorders. In eukaryotic cells, most protein folding takes place inside a part of the cell called the endoplasmic reticulum (ER). If an incorrectly folded protein is detected, it is prevented from leaving the ER until it is refolded correctly, or destroyed. If too many proteins are misfolded, a process called the unfolded protein response helps the cell to cope with this ‘ER stress’ by expanding the ER and producing more of the molecules that assist protein folding. If this does not relieve the ER stress, the cell self-destructs. Neighboring cells then have to increase protein production to compensate for what would have been produced by the dead cell, thereby increasing the chance that they will also experience ER stress. Activation of a protein called LRH-1 (short for liver receptor homolog-1) that is produced in the liver, pancreas and intestine can relieve the symptoms of the various metabolic diseases that are associated with chronic ER stress, including type II diabetes and fatty liver disease. However, researchers have been puzzled by the fact that although LRH-1 performs many different roles, its molecular structure provides few clues as to how it can do this. Mamrosh et al. now confirm the speculated link between LRH-1 and ER stress relief in mice. LRH-1 triggers a previously unknown pathway that can relieve ER stress and is completely independent of the unfolded protein response. Targeting LRH-1 with certain chemical compounds alters its activity, suggesting that drug treatments could be developed to relieve ER stress. As similar targets for drugs have not been found in the unfolded protein response, the discovery of the LRH-1 pathway could lead to new approaches to the treatment of the diseases that result from ER stress. DOI:http://dx.doi.org/10.7554/eLife.01694.002
Collapse
Affiliation(s)
- Jennifer L Mamrosh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hagihara K, Mizukura A, Kitai Y, Yao M, Ishida K, Kita A, Kunoh T, Masuko T, Matzno S, Chiba K, Sugiura R. FTY720 stimulated ROS generation and the Sty1/Atf1 signaling pathway in the fission yeast Schizosaccharomyces pombe. Genes Cells 2014; 19:325-37. [PMID: 24506481 DOI: 10.1111/gtc.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/16/2013] [Indexed: 11/27/2022]
Abstract
Fingolimod hydrochloride (FTY720) is the first-in-class immune modulator known as sphingosine 1-phosphate (S1P) receptor agonists. FTY720 has also been reported to exert a variety of physiological functions such as antitumor effect, angiogenesis inhibition, and Ca2+ mobilization. Here, we show that FTY720 treatment induced reactive oxygen species (ROS) accumulation, and investigated the effect of FTY720 on the stress-activated MAP kinase Spc1/Sty1, a functional homologue of p38 MAPK, using a Renilla luciferase reporter construct fused to the CRE, which gives an accurate measure of the transcriptional activity of Atf1 and thus serves as a faithful readout of the Spc1/Sty1 MAPK signaling in response to oxidative stresses. FTY720 stimulated the CRE responses in a concentration-dependent manner, which was markedly reduced by deletion of the components of the Spc1/Sty1 MAPK pathway. The blockade of ROS production by NAC (N-acetyl-L-cysteine) significantly reversed the FTY720-induced ROS accumulation, subsequent activation of the Spc1/Sty1 MAPK pathway, and inhibition of cell proliferation. Cells lacking the components of the Spc1/Sty1 MAPK exhibited higher sensitivity to FTY720 and higher ROS levels upon FTY720 treatment than in wild-type cells. Thus, our results demonstrate the usefulness of fission yeast for elucidating the FTY720-mediated signaling pathways involving ROS.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan; Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo, 102-8472, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang YB, Leroy V, Maunsbach AB, Doucet A, Hasler U, Dizin E, Ernandez T, de Seigneux S, Martin PY, Féraille E. Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells. J Am Soc Nephrol 2013; 25:250-9. [PMID: 24179170 DOI: 10.1681/asn.2013040429] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and minimize fluctuations in intracellular Na(+) concentration. We hypothesized that, independent of hormonal stimulus, cross-talk between ENaC and Na,K-ATPase coordinates Na(+) transport across apical and basolateral membranes. By varying Na(+) intake in aldosterone-clamped rats and overexpressing γ-ENaC or modulating apical Na(+) availability in cultured mouse collecting duct cells, enhanced apical Na(+) entry invariably led to increased basolateral Na,K-ATPase expression and activity. In cultured collecting duct cells, enhanced apical Na(+) entry increased the basolateral cell surface expression of Na,K-ATPase by inhibiting p38 kinase-mediated endocytosis of Na,K-ATPase. Our results reveal a new role for p38 kinase in mediating cross-talk between apical Na(+) entry via ENaC and its basolateral exit via Na,K-ATPase, which may allow principal cells to maintain intracellular Na(+) concentrations within narrow limits.
Collapse
Affiliation(s)
- Yu-Bao Wang
- Service of Nephrology, Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, Said HM, Ma TY. Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:6596-606. [PMID: 23656735 DOI: 10.4049/jimmunol.1201876] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The defective intestinal epithelial tight junction (TJ) barrier has been postulated to be an important pathogenic factor contributing to intestinal inflammation. It has been shown that the proinflammatory cytokine IL-1β causes an increase in intestinal permeability; however, the signaling pathways and the molecular mechanisms involved remain unclear. The major purpose of this study was to investigate the role of the p38 kinase pathway and the molecular processes involved. In these studies, the in vitro intestinal epithelial model system (Caco-2 monolayers) was used to delineate the cellular and molecular mechanisms, and a complementary in vivo mouse model system (intestinal perfusion) was used to assess the in vivo relevance of the in vitro findings. Our data indicated that the IL-1β increase in Caco-2 TJ permeability correlated with an activation of p38 kinase. The activation of p38 kinase caused phosphorylation and activation of p38 kinase substrate, activating transcription factor (ATF)-2. The activated ATF-2 translocated to the nucleus where it attached to its binding motif on the myosin L chain kinase (MLCK) promoter region, leading to the activation of MLCK promoter activity and gene transcription. Small interfering RNA induced silencing of ATF-2, or mutation of the ATF-2 binding motif prevented the activation of MLCK promoter and MLCK mRNA transcription. Additionally, in vivo intestinal perfusion studies also indicated that the IL-1β increase in mouse intestinal permeability required p38 kinase-dependent activation of ATF-2. In conclusion, these studies show that the IL-1β-induced increase in intestinal TJ permeability in vitro and in vivo was regulated by p38 kinase activation of ATF-2 and by ATF-2 regulation of MLCK gene activity.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|