1
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
2
|
Pang J, Huang C, Wang Y, Wen X, Deng P, Li T, Wang C, Liu X, Chen C, Zhao J, Ji W. Molecular Cytological Analysis and Specific Marker Development in Wheat-Psathyrostachys huashanica Keng 3Ns Additional Line with Elongated Glume. Int J Mol Sci 2023; 24:ijms24076726. [PMID: 37047699 PMCID: PMC10094845 DOI: 10.3390/ijms24076726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) is an excellent gene resource for wheat breeding, which is characterized by early maturity, low plant height, and disease resistance. The wheat-P. huashanica derivatives were created by the elite genes of P. huashanica and permeate into common wheat through hybridization. Among them, a long-glume material 20JH1155 was identified, with larger grains and longer spike than its parents. In the present study, the methods of cytological observation, GISH, and sequential FISH analysis showed that 20JH1155 contained 21 pairs of wheat chromosomes and a pair of P. huashanica. There were some differences in 5A and 7B chromosomes between 20JH1155 and parental wheat 7182. Molecular marker, FISH, and sequence cloning indicated 20JH1155 alien chromosomes were 3Ns of P. huashanica. In addition, differentially expressed genes during immature spikelet development of 20JH1155 and 7182 and predicted transcription factors were obtained by transcriptome sequencing. Moreover, a total of 7 makers derived from Ph#3Ns were developed from transcriptome data. Taken together, the wheat-P. huashanica derived line 20JH1155 provides a new horizon on distant hybridization of wheat and accelerates the utilization of genes of P. huashanica.
Collapse
Affiliation(s)
- Jingyu Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Chenxi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Yuesheng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Xinyu Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Jixin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Xianyang 712100, China
| |
Collapse
|
3
|
Liu Y, Lv G, Yang Y, Ma K, Ren X, Li M, Liu Z. Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit. HORTICULTURE RESEARCH 2023; 10:uhac252. [PMID: 36751270 PMCID: PMC9896601 DOI: 10.1093/hr/uhac252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/07/2022] [Indexed: 06/18/2023]
Abstract
In red-fleshed kiwifruit, anthocyanin pigmentation is a crucial commercial trait. The MYB-bHLH-WD40 (MBW) complex and other transcription factors regulate its accumulation. Herein, a new SEP gene, AcMADS68, was identified as a regulatory candidate for anthocyanin biosynthesis in the kiwifruit by transcriptome data and bioinformatic analyses. AcMADS68 alone could not induce the accumulation of anthocyanin both in Actinidia arguta fruit and tobacco leaves. However, in combination with AcMYBF110, AcMYB123, and AcbHLH1, AcMADS68 co-overexpression increased anthocyanin biosynthesis, whereas its silencing reduced anthocyanin accumulation. The results of the dual-luciferase reporter, firefly luciferase complementation, yeast two-hybrid and co-immunoprecipitation assays showed that AcMADS68 could interact with both AcMYBF110 and AcMYB123 but not with AcbHLH1, thereby co-regulating anthocyanin biosynthesis by promoting the activation of the target genes, including AcANS, AcF3GT1, and AcGST1. Moreover, AcMADS68 also could activate the promoter of AcbHLH1 surported by dual-luciferase reporter and yeast one-hybrid assays, thereby further amplifying the regulation signals from the MBW complex, thus resulting in enhanced anthocyanin accumulation in the kiwifruit. These findings may facilitate better elucidation of various regulatory mechanisms underlying anthocyanin accumulation and contribute to the quality enhancement of red-fleshed kiwifruit.
Collapse
Affiliation(s)
| | | | - Yaqi Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shannxi, China
| | | | | |
Collapse
|
4
|
Li H, Li Y, Zhang X, Cai K, Li Y, Wang Q, Qu G, Han R, Zhao X. Genome-wide identification and expression analysis of the MADS-box gene family during female and male flower development in Juglans mandshurica. FRONTIERS IN PLANT SCIENCE 2022; 13:1020706. [PMID: 36388573 PMCID: PMC9664150 DOI: 10.3389/fpls.2022.1020706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The MADS-box gene family plays a crucial role in multiple developmental processes of plants, especially in floral organ specification and the regulation of fruit development and ripening. Juglans mandshurica is a precious fruit material whose quality and yield are determined by floral organ development. The molecular mechanism of J. mandshurica female and male flower development depending on MADS-box genes remains unclear. In our study, 67 JmMADS genes were identified and unevenly distributed on 15 of 16 J. mandshurica chromosomes. These genes were divided into two types [type I (Mα, Mγ, Mδ) and type II (MIKC)]. The gene structure and motif analyses showed that most genes belonging to the same type had similar gene structures and conserved motifs. The analysis of syntenic relationships showed that MADS-box genes in J. mandshurica, J. sigillata, and J. regia exhibited the highest homology and great collinearity. Analysis of cis-acting elements showed that JmMADS gene promoter regions contained light, stress and hormone response cis-acting elements. The gene expression patterns demonstrated that 30 and 26 JmMADS genes were specifically expressed in the female and male flowers, respectively. In addition, 12 selected genes common to J. mandshurica female and male flowers were significantly upregulated at the mature stage and were used to validate the reliability of the transcriptome data using quantitative real-time PCR. This comprehensive and systematic analysis of J. mandshurica MADS-box genes lays a foundation for future studies on MADS-box gene family functions.
Collapse
Affiliation(s)
- Hanxi Li
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yuxi Li
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xinxin Zhang
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yan Li
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Qingcheng Wang
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Rui Han
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- State Key Laboratory of tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
6
|
da Silveira Falavigna V, Severing E, Lai X, Estevan J, Farrera I, Hugouvieux V, Revers LF, Zubieta C, Coupland G, Costes E, Andrés F. Unraveling the role of MADS transcription factor complexes in apple tree dormancy. THE NEW PHYTOLOGIST 2021; 232:2071-2088. [PMID: 34480759 PMCID: PMC9292984 DOI: 10.1111/nph.17710] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Edouard Severing
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - Joan Estevan
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Isabelle Farrera
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | | | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - George Coupland
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Evelyne Costes
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Fernando Andrés
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
7
|
Moschin S, Nigris S, Ezquer I, Masiero S, Cagnin S, Cortese E, Colombo L, Casadoro G, Baldan B. Expression and Functional Analyses of Nymphaea caerulea MADS-Box Genes Contribute to Clarify the Complex Flower Patterning of Water Lilies. FRONTIERS IN PLANT SCIENCE 2021; 12:730270. [PMID: 34630477 PMCID: PMC8492926 DOI: 10.3389/fpls.2021.730270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers.
Collapse
Affiliation(s)
- Silvia Moschin
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Sebastiano Nigris
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| | - Ignacio Ezquer
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simona Masiero
- Department of Biosciences, University of Milan, Milan, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, Padua, Italy
| | - Enrico Cortese
- Department of Biology, University of Padua, Padua, Italy
| | - Lucia Colombo
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Barbara Baldan
- Botanical Garden, University of Padua, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Li J, Yan X, Ahmad M, Yu W, Song Z, Ni J, Yang Q, Teng Y, Zhang H, Bai S. Alternative splicing of the dormancy-associated MADS-box transcription factor gene PpDAM1 is associated with flower bud dormancy in 'Dangshansu' pear (Pyrus pyrifolia white pear group). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1096-1108. [PMID: 34304127 DOI: 10.1016/j.plaphy.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Alternative splicing (AS) plays a crucial role in plant growth, development and response to various environmental changes. However, whether alternative splicing of MADS-box transcription factors contributes to the flower bud dormancy process in fruit trees still remains unknown. In this work, the AS profile of genes in the dormant flower buds of 'Dangshansu' pear tree were examined. A total number of 3661 alternatively spliced genes were identified, and three mRNA isoforms of the dormancy associated MADS box (DAM) gene, PpDAM1, derived by alternative splicing, designated as PpDAM1.1, PpDAM1.2 and PpDAM1.3, were characterized. Bimolecular fluorescence complementation (BiFC) analysis indicated that AS of PpDAM1 didn't affect the nucleus localization and homo-/heterodimerization of PpDAM1.1, PpDAM1.2 and PpDAM1.3 proteins, but disturbed the translocation of PpDAM1.1/PpDAM1.1, PpDAM1.3/PpDAM1.3, PpDAM1.1/PpDAM1.3, and PpDAM1.2/PpDAM1.3 dimers to the nucleus. Constitutive expression of PpDAM1.2, but not PpDAM1.1 and PpDAM1.3, in Arabidopsis retarded the growth and development of transgenic plants. Further comparative expression analyses of PpDAM1.1, PpDAM1.2 and PpDAM1.3 in the flower buds of 'Dangshansu' and a less dormant pear cultivar, 'Cuiguan', exhibited that the expression of all the three isoforms in 'Dangshansu' were significantly higher than in 'Cuiguan', especially PpDAM1.2, which showed a predominantly higher expression than PpDAM1.1 and PpDAM1.3 in both cultivars. Our results suggest that alternative splicing of PpDAM1 could play a crucial role in pear flower bud dormancy process.
Collapse
Affiliation(s)
- Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Xinhui Yan
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Mudassar Ahmad
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Wenjie Yu
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Qinsong Yang
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, 264025, China; The Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in the Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Songling Bai
- Department of Horticulture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
9
|
Adamski NM, Simmonds J, Brinton JF, Backhaus AE, Chen Y, Smedley M, Hayta S, Florio T, Crane P, Scott P, Pieri A, Hall O, Barclay JE, Clayton M, Doonan JH, Nibau C, Uauy C. Ectopic expression of Triticum polonicum VRT-A2 underlies elongated glumes and grains in hexaploid wheat in a dosage-dependent manner. THE PLANT CELL 2021; 33:2296-2319. [PMID: 34009390 PMCID: PMC8364232 DOI: 10.1093/plcell/koab119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
Flower development is an important determinant of grain yield in crops. In wheat (Triticum spp.), natural variation for the size of spikelet and floral organs is particularly evident in Triticum turgidum ssp. polonicum (also termed Triticum polonicum), a tetraploid subspecies of wheat with long glumes, lemmas, and grains. Using map-based cloning, we identified VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), which encodes a MADS-box transcription factor belonging to the SHORT VEGETATIVE PHASE family, as the gene underlying the T. polonicum long-glume (P1) locus. The causal P1 mutation is a sequence rearrangement in intron-1 that results in ectopic expression of the T. polonicum VRT-A2 allele. Based on allelic variation studies, we propose that the intron-1 mutation in VRT-A2 is the unique T. polonicum subspecies-defining polymorphism, which was later introduced into hexaploid wheat via natural hybridizations. Near-isogenic lines differing for the P1 locus revealed a gradient effect of P1 across spikelets and within florets. Transgenic lines of hexaploid wheat carrying the T. polonicum VRT-A2 allele show that expression levels of VRT-A2 are highly correlated with spike, glume, grain, and floral organ length. These results highlight how changes in expression profiles, through variation in cis-regulation, can affect agronomic traits in a dosage-dependent manner in polyploid crops.
Collapse
Affiliation(s)
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Yi Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark Smedley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sadiye Hayta
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tobin Florio
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pamela Crane
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Peter Scott
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alice Pieri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Olyvia Hall
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Myles Clayton
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, UK
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Candida Nibau
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Won SY, Jung JA, Kim JS. Genome-wide analysis of the MADS-Box gene family in Chrysanthemum. Comput Biol Chem 2020; 90:107424. [PMID: 33340990 DOI: 10.1016/j.compbiolchem.2020.107424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
MADS-box family transcription factors play key roles in various developmental processes in plants. Here, we identified 108 MADS-box genes in the genome of chrysanthemum (Chrysanthemum nankingense). We classified these genes based on their phylogenetic relationships with MADS-box genes in Arabidopsis thaliana and lettuce (Lactuca sativa). Type I genes were subdivided into classes Mα (19 genes), Mβ (12 genes), and Mγ (10 genes), and type II genes were subdivided into classes MIKCC (64 genes) and MIKC* (3 genes). The MIKCC class genes were further divided into 16 subclasses that included genes described in the ABCDE flower development model. Each group of MADS-box genes showed a specific pattern of conserved protein motifs and exon-intron structure. We analyzed the expression levels of each MADS-box gene in root, stem, leaf, flower bud, disc floret, and ray floret tissues. Subfamilies AGL18, FLC, and SVP contained more members in chrysanthemum. The asterid-specific TM8 subfamily and eleven Asteraceae Specific-MADS CnMADS genes were present in chrysanthemum. Chrysanthemum is the lacking members of the AGL15 subfamily. Among the genes responsible for the ABCDE model, B-class genes were expanded in chrysanthemum with three AP3 and four PI genes. One AP3 homolog functions in marginal ray floret development, whereas the two other AP3 homologs function in the development of the central disc floret. Two of the four PI genes are expressed in chrysanthemum, specifically in both types of florets. The results of this study lay the foundation for further studies of the roles of MADS-box genes in flower development in chrysanthemum and of the evolution of MADS-box genes in plants.
Collapse
Affiliation(s)
- So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
11
|
Himani, Ramkumar TR, Tyagi S, Sharma H, Upadhyay SK, Sembi JK. Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris(Schauer) Rchb.f. (Orchidaceae). JOURNAL OF PLANT BIOTECHNOLOGY 2019; 46:255-273. [DOI: 10.5010/jpb.2019.46.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 10/09/2024]
Affiliation(s)
- Himani
- Department of Botany, Panjab University, Chandigarh, India
| | - Thakku R. Ramkumar
- Department of Botany, Panjab University, Chandigarh, India
- Agronomy department, IFAS, University of Florida, Gainesville, FL, 32611, USA
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, India
| | - Himanshu Sharma
- Department of Botany, Panjab University, Chandigarh, India
- IKG Punjab Technical University, Jalandhar
| | | | | |
Collapse
|
12
|
Ectopic Expression of Litsea cubeba LcMADS20 Modifies Silique Architecture. G3-GENES GENOMES GENETICS 2019; 9:4139-4147. [PMID: 31615834 PMCID: PMC6893193 DOI: 10.1534/g3.119.400611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Litsea cubeba (Lour.) Pers. (mountain pepper, Lauraceae) is an important woody essential oil crop that produces fragrant oils in its fruits, especially in its peels. Identification of genes involved in the regulation of fruits and peel architecture is of economic significance for L. cubeba industry. It has been well known that the MADS-box genes are essential transcription factors that control flowers and fruits development. Here, we obtained 33 MADS-box genes first from the RNA-seq data in L. cubeba, and 27 of these genes were of the MIKC-type. LcMADS20, an AGAMOUS-like gene, was highly expressed in the developing stages of fruits, particularly at 85 days after full bloom. The ectopic expression of LcMADS20 in Arabidopsis resulted in not only curved leaves, early flowering and early full-opened inflorescences, but also shorter siliques and decreased percentage of peel thickness. Moreover, in the LcMADS20 transgenic Arabidopsis, the expression modes of several intrinsic ABC model class genes were influenced, among which the expression of FUL was significantly reduced and AP3, AG, and STK were significantly increased. This study systematically analyzed the MADS-box genes in L. cubeba at the transcriptional level and showed that LcMADS20 plays important roles in the regulation of fruit architecture.
Collapse
|
13
|
Li S, Li Z, Zhang J, Wei D, Wang Z, Tang Q. Flowering signal integrator AGL24 interacts with K domain of AGL18 in Brassica juncea. Biochem Biophys Res Commun 2019; 518:148-153. [DOI: 10.1016/j.bbrc.2019.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023]
|
14
|
Terry MI, Pérez-Sanz F, Navarro PJ, Weiss J, Egea-Cortines M. The Snapdragon LATE ELONGATED HYPOCOTYL Plays A Dual Role in Activating Floral Growth and Scent Emission. Cells 2019; 8:cells8080920. [PMID: 31426490 PMCID: PMC6721690 DOI: 10.3390/cells8080920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
The plant circadian clock controls a large number of internal processes, including growth and metabolism. Scent emission displays a circadian pattern in many species such as the snapdragon. Here we show that knocking down LATE ELONGATED HYPOCOTYL in Antirrhinum majus affects growth and scent emission. In order to gain an understanding of the growth kinetics, we took a phenomic approach using in-house artificial vision systems, obtaining time-lapse videos. Wild type flowers showed a higher growth speed than knockdown plants. The maximal growth rate was decreased by 22% in plants with lower LHY expression. Floral volatiles were differentially affected as RNAi plants showed advanced emission of compounds synthesized from cinnamic acid and delayed emission of metabolites of benzoic acid. The monoterpenes myrcene and ocimene were delayed, whereas the sesquiterpene farnesene was advanced. Overall, transgenic lines showed an altered volatile emission pattern and displayed a modified scent profile. Our results show that AmLHY plays an important role in the quantitative and qualitative control of floral growth and scent emission.
Collapse
Affiliation(s)
- Marta I Terry
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - Fernando Pérez-Sanz
- Biomedical Informatic and Bioinformatic Platform, Biomedical Research Institute of Murcia, University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, 30120 Murcia, Spain
| | - Pedro J Navarro
- Escuela Técnica Superior de Ingeniería de Telecomunicación (DSIE), Campus Muralla del Mar, s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
| |
Collapse
|
15
|
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. Int J Mol Sci 2019; 20:ijms20122961. [PMID: 31216621 PMCID: PMC6627509 DOI: 10.3390/ijms20122961] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/16/2022] Open
Abstract
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Xuhu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
16
|
Ning K, Han Y, Chen Z, Luo C, Wang S, Zhang W, Li L, Zhang X, Fan S, Wang Q. Genome-wide analysis of MADS-box family genes during flower development in lettuce. PLANT, CELL & ENVIRONMENT 2019; 42:1868-1881. [PMID: 30680748 DOI: 10.1111/pce.13523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 05/08/2023]
Abstract
Lettuce (Lactuca sativa L.) is an important leafy vegetable consumed worldwide. Heat-induced bolting and flowering greatly limit lettuce production during the summer. Additionally, MADS-box transcription factors are important for various aspects of plant development and architecture (e.g., flowering and floral patterning). However, there has been no comprehensive study of lettuce MADS-box family genes. In this study, we identified 82 MADS-box family genes in lettuce, including 23 type I genes and 59 type II genes. Transcriptome profiling revealed that LsMADS gene expression patterns differ among the various floral stages and organs. Moreover, heat-responsive cis-elements were detected in the promoter regions of many LsMADS genes. An in situ hybridization assay of 10 homologs of flower-patterning genes and a yeast two-hybrid assay of the encoded proteins revealed that the ABC model is conserved in lettuce. Specifically, the APETALA1 (AP1) homolog in lettuce, LsMADS55, is responsive to heat and is specifically expressed in the inflorescence meristem and pappus bristles. The overexpression of LsMADS55 results in early flowering in Arabidopsis thaliana. Furthermore, we observed that the heat shock factor LsHSFB2A-1 can bind to the LsMADS55 promoter in lettuce. Therefore, a model was proposed for the LsMADS-regulated floral organ specification and heat-induced flowering in lettuce.
Collapse
Affiliation(s)
- Kang Ning
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yingyan Han
- Plant Science and Technology College, Beijing University of Agriculture/New Technological Laboratory in Agriculture Application in Beijing, Beijing, 102206, China
| | - Zijing Chen
- College of Horticulture Science and Engineering/State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huanghuaihai Region, Shan Dong Agricultural University, Taian, Shandong, 271018, China
| | - Chen Luo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shenglin Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wenjing Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ling Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Shuangxi Fan
- Plant Science and Technology College, Beijing University of Agriculture/New Technological Laboratory in Agriculture Application in Beijing, Beijing, 102206, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Wang P, Wang S, Chen Y, Xu X, Guang X, Zhang Y. Genome-wide Analysis of the MADS-Box Gene Family in Watermelon. Comput Biol Chem 2019; 80:341-350. [PMID: 31082717 DOI: 10.1016/j.compbiolchem.2019.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
MADS-box genes comprise a family of transcription factors that function in the growth and development of plants. To obtain insights into their evolution in watermelon (Citrullus lanatus), we carried out a genome-wide analysis and identified 39 MADS-box genes. These genes were classified into MIKCc (25), MIKC*(3), Mα (5), Mβ (3), and Mγ (3) clades according to their phylogenetic relationship with Arabidopsis thaliana and Cucumis sativus; moreover, these 25 genes in the MIKC clade could be classified into 13 subfamilies, and the Flowering Locus C (FLC) subfamily is absent in watermelon. Analysis of the conserved gene motifs showed similar motifs among clades. Continuing chromosomal localizations analysis indicated that MADS-box genes were distributed across 11 chromosomes in watermelon, and these genes were conditioned to be differentially expressed during plant growth and development. This research provides information that will aid further investigations into the evolution of the MADS-box gene family in plants.
Collapse
Affiliation(s)
- Ping Wang
- School of Information & Computer, Anhui Agricultural University, Hefei 230036, China
| | - Songbo Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410000, China
| | - Yong Chen
- Science and Technology Department, State Tobacco Monopoly Administration, Beijing 100045, China
| | - Xiaomin Xu
- Department of Mathematics, University of California, San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xuanmin Guang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youhua Zhang
- School of Information & Computer, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
18
|
Liu M, Fu Q, Ma Z, Sun W, Huang L, Wu Q, Tang Z, Bu T, Li C, Chen H. Genome-wide investigation of the MADS gene family and dehulling genes in tartary buckwheat (Fagopyrum tataricum). PLANTA 2019; 249:1301-1318. [PMID: 30617544 DOI: 10.1007/s00425-019-03089-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/03/2019] [Indexed: 05/23/2023]
Abstract
Genome-wide identification, expression analysis and potential functional characterization of previously uncharacterized MADS family of tartary buckwheat, emphasized the importance of this gene family in plant growth and development. The MADS transcription factor is a key regulatory factor in the development of most plants. The MADS gene in plants controls all aspects of tissue and organ growth and reproduction and can be used to regulate plant seed cracking. However, there has been little research on the MADS genes of tartary buckwheat (Fagopyrum tataricum), which is an important edible and medicinal crop. The recently published whole genome sequence of tartary buckwheat allows us to study the tissue and expression profiles of the MADS gene in tartary buckwheat at a genome-wide level. In this study, 65 MADS genes of tartary buckwheat were identified and renamed according to the chromosomal distribution of the FtMADS genes. Here, we provide a complete overview of the gene structure, gene expression, genomic mapping, protein motif organization, and phylogenetic relationships of each member of the gene family. According to the phylogenetic relationship of MADS genes, the transcription factor family was divided into two subfamilies, the M subfamily (28 genes) and the MIKC subfamily (37 genes). The results showed that the FtMADS genes belonged to related sister pairs and the chromosomal map showed that the replication of FtMADSs was related to the replication of chromosome blocks. In different tissues and at different fruit development stages, the FtMADS genes obtained by real-time quantitative PCR (RT-qPCR) showed obvious expression patterns. A comprehensive analysis of the MADS genes in tartary buckwheat was conducted. Through systematic analysis, the potential genes that may regulate the growth and development of tartary buckwheat and the genes that may regulate the easy dehulling of tartary buckwheat fruit were screened, which laid a solid foundation for improving the quality of tartary buckwheat.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qiankun Fu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Li Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
19
|
Peréz-Mesa P, Suárez-Baron H, Ambrose BA, González F, Pabón-Mora N. Floral MADS-box protein interactions in the early diverging angiosperm Aristolochia fimbriata Cham. (Aristolochiaceae: Piperales). Evol Dev 2019; 21:96-110. [PMID: 30734997 DOI: 10.1111/ede.12282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Floral identity MADS-box A, B, C, D, E, and AGL6 class genes are predominantly single copy in Magnoliids, and predate the whole genome duplication (WGD) events in monocots and eudicots. By comparison with the model species Arabidopsis thaliana, the expression patterns of B-, C-, and D-class genes in stamen, carpel, and ovules are conserved in Aristolochia fimbriata, whereas A-, E-class, and AGL6 genes have different expression patterns. Nevertheless, the interactions of these proteins that act through multimeric complexes remain poorly known in early divergent angiosperms. This study evaluates protein interactions among all floral MADS-box A. fimbriata proteins using the Yeast Two Hybrid System (Y2H). We found no homodimers and less heterodimers formed by AfimFUL when compared to AfimAGL6, which allowed us to suggest AGL6 homodimers in combination with AfimSEP2 as the most likely tetramer in sepal identity. We found AfimAP3-AfimPI obligate heterodimers and AfimAG-AfimSEP2 protein interactions intact suggesting conserved stamen and carpel tetrameric complexes in A. fimbriata. We observed a broader interaction partner set for AfimSEP2 than for its paralog AfimSEP1. We show conserved and exclusive MADS-box protein interactions in A. fimbriata in comparison with other eudicot and monocot model species in order to establish plesiomorphic MADS-box protein floral networks in angiosperms.
Collapse
Affiliation(s)
- Pablo Peréz-Mesa
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| | | |
Collapse
|
20
|
Castelán-Muñoz N, Herrera J, Cajero-Sánchez W, Arrizubieta M, Trejo C, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. MADS-Box Genes Are Key Components of Genetic Regulatory Networks Involved in Abiotic Stress and Plastic Developmental Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:853. [PMID: 31354752 PMCID: PMC6636334 DOI: 10.3389/fpls.2019.00853] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/13/2019] [Indexed: 05/05/2023]
Abstract
Plants, as sessile organisms, adapt to different stressful conditions, such as drought, salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and growth responses. Depending on the intensity and the developmental phase in which it is imposed, a stress condition may lead to a broad range of responses at the morphological, physiological, biochemical, and molecular levels. Transcription factors are key components of regulatory networks that integrate environmental cues and concert responses at the cellular level, including those that imply a stressful condition. Despite the fact that several studies have started to identify various members of the MADS-box gene family as important molecular components involved in different types of stress responses, we still lack an integrated view of their role in these processes. In this review, we analyze the function and regulation of MADS-box gene family members in response to drought, salt, cold, heat, and oxidative stress conditions in different developmental processes of several plants. In addition, we suggest that MADS-box genes are key components of gene regulatory networks involved in plant responses to stress and plant developmental plasticity in response to seasonal changes in environmental conditions.
Collapse
Affiliation(s)
- Natalia Castelán-Muñoz
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Postgrado en Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, Mexico
| | - Joel Herrera
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wendy Cajero-Sánchez
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maite Arrizubieta
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Trejo
- Postgrado en Botánica, Colegio de Postgraduados, Texcoco, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética y Desarrollo de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Adriana Garay-Arroyo
| |
Collapse
|
21
|
Wu Y, Ke Y, Wen J, Guo P, Ran F, Wang M, Liu M, Li P, Li J, Du H. Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLoS One 2018; 13:e0200762. [PMID: 30024950 PMCID: PMC6053192 DOI: 10.1371/journal.pone.0200762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
MADS-box transcription factors are important for plant growth and development, and hundreds of MADS-box genes have been functionally characterized in plants. However, less is known about the functions of these genes in the economically important allopolyploid oil crop, Brassica napus. We identified 307 potential MADS-box genes (BnMADSs) in the B. napus genome and categorized them into type I (Mα, Mβ, and Mγ) and type II (MADS DNA-binding domain, intervening domain, keratin-like domain, and C-terminal domain [MIKC]c and MIKC*) based on phylogeny, protein motif structure, and exon-intron organization. We identified one conserved intron pattern in the MADS-box domain and seven conserved intron patterns in the K-box domain of the MIKCc genes that were previously ignored and may be associated with function. Chromosome distribution and synteny analysis revealed that hybridization between Brassica rapa and Brassica oleracea, segmental duplication, and homologous exchange (HE) in B. napus were the main BnMADSs expansion mechanisms. Promoter cis-element analyses indicated that BnMADSs may respond to various stressors (drought, heat, hormones) and light. Expression analyses showed that homologous genes in a given subfamily or sister pair are highly conserved, indicating widespread functional conservation and redundancy. Analyses of BnMADSs provide a basis for understanding their functional roles in plant development.
Collapse
Affiliation(s)
- Yunwen Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yunzhuo Ke
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Pengcheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mangmang Wang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Ma J, Shen X, Liu Z, Zhang D, Liu W, Liang H, Wang Y, He Z, Chen F. Isolation and Characterization of AGAMOUS-Like Genes Associated With Double-Flower Morphogenesis in Kerria japonica (Rosaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:959. [PMID: 30050547 PMCID: PMC6052346 DOI: 10.3389/fpls.2018.00959] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/14/2018] [Indexed: 05/30/2023]
Abstract
Double-flower phenotype is more popular and attractive in garden and ornamental plants. There is great interest in exploring the molecular mechanisms underlying the double-flower formation for further breeding and selection. Kerria japonica, a commercial ornamental shrub of the Rosaceae family, is considered an excellent system to determine the mechanisms of morphological alterations, because it naturally has a single-flower form and double-flower variant with homeotic conversion of stamens into petals and carpels into leaf-like carpels. In this study, Sf-KjAG (AGAMOUS homolog of single-flower K. japonica) and Df-KjAG (AGAMOUS homolog of double-flower K. japonica) were isolated and characterized as two AGAMOUS (AG) homologs that occur strictly in single- and double-flower K. japonica, respectively. Our sequence comparison showed that Df-KjAG is derived from ectopic splicing with the insertion of a 2411 bp transposon-like fragment, which might disrupt mRNA accumulation and protein function, into intron 1. Ectopic expression analysis in Arabidopsis revealed that Sf-KjAG is highly conserved in specifying carpel and stamen identities. However, Df-KjAG did not show any putative C-class function in floral development. Moreover, yeast-two-hybrid assays showed that Sf-KjAG can interact with KjAGL2, KjAGL9, and KjAP1, whereas Df-KjAG has lost interactions with these floral identity genes. In addition, loss-of-function of Df-KjAG affected not only its own expression, but also that of other putative floral organ identity genes such as KjAGL2, KjAGL9, KjAP1, KjAP2, KjAP3, and KjPI. In conclusion, our findings suggest that double-flower formation in K. japonica can be attributed to Df-KjAG, which appears to be a mutant produced by the insertion of a transposon-like fragment in the normal AG homolog (Sf-KjAG) of single-flower K. japonica. Highlights:Sf-KjAG and Df-KjAG are different variations only distinguished by a transposon-like fragment insertion which lead to the evolutionary transformation from single-flower to double-flowers morphogenesis in Kerria japonica.
Collapse
Affiliation(s)
- Jiang Ma
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
- Forestry College, Beijing Forestry University, Beijing, China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Zhixiong Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Hongwei Liang
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Yubing Wang
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| |
Collapse
|
23
|
Nardeli SM, Artico S, Aoyagi GM, de Moura SM, da Franca Silva T, Grossi-de-Sa MF, Romanel E, Alves-Ferreira M. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:169-184. [PMID: 29604523 DOI: 10.1016/j.plaphy.2018.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/27/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species.
Collapse
Affiliation(s)
- Sarah Muniz Nardeli
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| | - Sinara Artico
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Mitsunori Aoyagi
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CEP 12602-810, Lorena, SP, Brazil.
| | - Stéfanie Menezes de Moura
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| | - Tatiane da Franca Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CEP 12602-810, Lorena, SP, Brazil.
| | | | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CEP 12602-810, Lorena, SP, Brazil.
| | - Marcio Alves-Ferreira
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Callens C, Tucker MR, Zhang D, Wilson ZA. Dissecting the role of MADS-box genes in monocot floral development and diversity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2435-2459. [PMID: 29718461 DOI: 10.1093/jxb/ery086] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/16/2018] [Indexed: 05/05/2023]
Abstract
Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield. MADS-box proteins are a family of transcription factors that contain a conserved 60 amino acid MADS-box motif. In plants, attention has been devoted to characterization of this family due to their roles in inflorescence and flower development, which holds promise for the modification of floral architecture for plant breeding. This has been explored in diverse angiosperms, but particularly the dicot model Arabidopsis thaliana. The focus of this review is on the less well characterized roles of the MADS-box proteins in monocot flower development and how changes in MADS-box proteins throughout evolution may have contributed to creating a diverse range of flowers. Examining these changes within the monocots can identify the importance of certain genes and pinpoint those which might be useful in future crop improvement and breeding strategies.
Collapse
Affiliation(s)
- Cindy Callens
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, Australia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
25
|
Galimba KD, Martínez-Gómez J, Di Stilio VS. Gene Duplication and Transference of Function in the paleo AP3 Lineage of Floral Organ Identity Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:334. [PMID: 29628932 PMCID: PMC5876318 DOI: 10.3389/fpls.2018.00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 06/01/2023]
Abstract
The floral organ identity gene APETALA3 (AP3) is a MADS-box transcription factor involved in stamen and petal identity that belongs to the B-class of the ABC model of flower development. Thalictrum (Ranunculaceae), an emerging model in the non-core eudicots, has AP3 homologs derived from both ancient and recent gene duplications. Prior work has shown that petals have been lost repeatedly and independently in Ranunculaceae in correlation with the loss of a specific AP3 paralog, and Thalictrum represents one of these instances. The main goal of this study was to conduct a functional analysis of the three AP3 orthologs present in Thalictrum thalictroides, representing the paleoAP3 gene lineage, to determine the degree of redundancy versus divergence after gene duplication. Because Thalictrum lacks petals, and has lost the petal-specific AP3, we also asked whether heterotopic expression of the remaining AP3 genes contributes to the partial transference of petal function to the first whorl found in insect-pollinated species. To address these questions, we undertook functional characterization by virus-induced gene silencing (VIGS), protein-protein interaction and binding site analyses. Our results illustrate partial redundancy among Thalictrum AP3s, with deep conservation of B-class function in stamen identity and a novel role in ectopic petaloidy of sepals. Certain aspects of petal function of the lost AP3 locus have apparently been transferred to the other paralogs. A novel result is that the protein products interact not only with each other, but also as homodimers. Evidence presented here also suggests that expression of the different ThtAP3 paralogs is tightly integrated, with an apparent disruption of B function homeostasis upon silencing of one of the paralogs that codes for a truncated protein. To explain this result, we propose two testable alternative scenarios: that the truncated protein is a dominant negative mutant or that there is a compensational response as part of a back-up circuit. The evidence for promiscuous protein-protein interactions via yeast two-hybrid combined with the detection of AP3 specific binding motifs in all B-class gene promoters provide partial support for these hypotheses.
Collapse
|
26
|
Sun CH, Yu JQ, Wen LZ, Guo YH, Sun X, Hao YJ, Hu DG, Zheng CS. Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:27-36. [PMID: 29241564 DOI: 10.1016/j.plantsci.2017.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Root system architecture is an important agronomic trait by which plants both acquire water and nutrients from the soil and adapt to survive in a complex environment. The adaptation of plant root systems to environmental constraints largely depends on the growth and development of lateral roots (LRs). MADS-box transcription factors (TFs) are important known regulators of plant growth, development, and response to environmental stimuli. However, the potential mechanisms by which they regulate LRs development remain poorly understood. Here, we identified a MADS-box chrysanthemum gene CmANR1, homologous to the Arabidopsis gene AtANR1, which plays a key role in the regulation of LR development. qRT-PCR assays indicated that CmANR1 was primarily expressed in chrysanthemum roots and was rapidly induced by exposure to high nitrate concentrations. Ectopic expression of CmANR1 in Arabidopsis significantly increased the number and length of emerged LRs compared to the wild-type (col) control, but had no obvious affect on primary root (PR) development. We also found that CmANR1 positively influenced auxin accumulation in LRs at least partly by improving auxin biosynthesis and transport, thereby promoting LR development. Furthermore, we found that ANR1 formed homo- and heterodimers through interactions with itself and AGL21 at its C-terminal domain. Overall, our findings provide considerable new information about the mechanisms by which the chrysanthemum MADS-box TF CmANR1 mediates LR development by directly altering auxin accumulation.
Collapse
Affiliation(s)
- Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Li-Zhu Wen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yun-Hui Guo
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xia Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
27
|
Wang R, Ming M, Li J, Shi D, Qiao X, Li L, Zhang S, Wu J. Genome-wide identification of the MADS-box transcription factor family in pear ( Pyrus bretschneideri) reveals evolution and functional divergence. PeerJ 2017; 5:e3776. [PMID: 28924499 PMCID: PMC5598432 DOI: 10.7717/peerj.3776] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/17/2017] [Indexed: 11/21/2022] Open
Abstract
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.
Collapse
Affiliation(s)
- Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meiling Ming
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Shi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Scorza LCT, Hernandes-Lopes J, Melo-de-Pinna GFA, Dornelas MC. Expression patterns of Passiflora edulis APETALA1/ FRUITFULL homologues shed light onto tendril and corona identities. EvoDevo 2017; 8:3. [PMID: 28174623 PMCID: PMC5290658 DOI: 10.1186/s13227-017-0066-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Passiflora (passionflowers) makes an excellent model for studying plant evolutionary development. They are mostly perennial climbers that display axillary tendrils, which are believed to be modifications of the inflorescence. Passionflowers are also recognized by their unique flower features, such as the extra whorls of floral organs composed of corona filaments and membranes enclosing the nectary. Although some work on Passiflora organ ontogeny has been done, the developmental identity of both Passiflora tendrils and the corona is still controversial. Here, we combined ultrastructural analysis and expression patterns of the flower meristem and floral organ identity genes of the MADS-box AP1/FUL clade to reveal a possible role for these genes in the generation of evolutionary novelties in Passiflora. RESULTS We followed the development of structures arising from the axillary meristem from juvenile to adult phase in P. edulis. We further assessed the expression pattern of P. edulis AP1/FUL homologues (PeAP1 and PeFUL), by RT-qPCR and in situ hybridization in several tissues, correlating it with the developmental stages of P. edulis. PeAP1 is expressed only in the reproductive stage, and it is highly expressed in tendrils and in flower meristems from the onset of their development. PeAP1 is also expressed in sepals, petals and in corona filaments, suggesting a novel role for PeAP1 in floral organ diversification. PeFUL presented a broad expression pattern in both vegetative and reproductive tissues, and it is also expressed in fruits. CONCLUSIONS Our results provide new molecular insights into the morphological diversity in the genus Passiflora. Here, we bring new evidence that tendrils are part of the Passiflora inflorescence. This points to the convergence of similar developmental processes involving the recruitment of genes related to flower identity in the origin of tendrils in different plant families. The data obtained also support the hypothesis that the corona filaments are likely sui generis floral organs. Additionally, we provide an indication that PeFUL acts as a coordinator of passionfruit development.
Collapse
Affiliation(s)
- Livia C. T. Scorza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP Brazil
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, King’s Buildings, Edinburgh, EH9 3BF UK
| | - Jose Hernandes-Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, SP Brazil
| | - Gladys F. A. Melo-de-Pinna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, SP Brazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP Brazil
| |
Collapse
|
29
|
Pfannebecker KC, Lange M, Rupp O, Becker A. An Evolutionary Framework for Carpel Developmental Control Genes. Mol Biol Evol 2017; 34:330-348. [PMID: 28049761 DOI: 10.1093/molbev/msw229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carpels are the female reproductive organs of flowering plants (angiosperms), enclose the ovules, and develop into fruits. The presence of carpels unites angiosperms, and they are suggested to be the most important autapomorphy of the angiosperms, e.g., they prevent inbreeding and allow efficient seed dispersal. Many transcriptional regulators and coregulators essential for carpel development are encoded by diverse gene families and well characterized in Arabidopsis thaliana. Among these regulators are AGAMOUS (AG), ETTIN (ETT), LEUNIG (LUG), SEUSS (SEU), SHORT INTERNODE/STYLISH (SHI/STY), and SEPALLATA1, 2, 3, 4 (SEP1, 2, 3, 4). However, the timing of the origin and their subsequent molecular evolution of these carpel developmental regulators are largely unknown. Here, we have sampled homologs of these carpel developmental regulators from the sequenced genomes of a wide taxonomic sampling of the land plants, such as Physcomitrella patens, Selaginella moellendorfii, Picea abies, and several angiosperms. Careful phylogenetic analyses were carried out that provide a phylogenetic background for the different gene families and provide minimal estimates for the ages of these developmental regulators. Our analyses and published work show that LUG-, SEU-, and SHI/STY-like genes were already present in the Most Recent Common Ancestor (MRCA) of all land plants, AG- and SEP-like genes were present in the MRCA of seed plants and their origin may coincide with the ξ Whole Genome Duplication. Our work shows that the carpel development regulatory network was, in part, recruited from preexisting network components that were present in the MRCA of angiosperms and modified to regulate gynoecium development.
Collapse
Affiliation(s)
- Kai C Pfannebecker
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| | - Matthias Lange
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| | - Oliver Rupp
- Department of Biology and Chemistry, Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Annette Becker
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| |
Collapse
|
30
|
Suárez-Baron H, Pérez-Mesa P, Ambrose BA, González F, Pabón-Mora N. Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes in Aristolochia fimbriata (Aristolochiaceae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:55-71. [PMID: 27507740 DOI: 10.1002/jez.b.22686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 02/02/2023]
Abstract
Aristolochia fimbriata (Aristolochiaceae) is a member of an early diverging lineage of flowering plants and a promising candidate for evo-devo studies. Aristolochia flowers exhibit a unique floral synorganization that consists of a monosymmetric and petaloid calyx formed by three congenitally fused sepals, and a gynostemium formed by the congenital fusion between stamens and the stigmatic region of the carpels. This floral ground plan atypical in the magnoliids can be used to evaluate the role of floral organ identity MADS-box genes during early flower evolution. In this study, we present in situ hybridization experiments for the homologs of the canonical C-, D-, and E-class genes. Spatiotemporal expression of the C-class gene AfimAG is restricted to stamens, ovary, and ovules, suggesting a conserved stamen and carpel identity function, consistent with that reported in core-eudicots and monocots. The D-class gene AfimSTK is detected in the anthers, the stigmas, the ovary, the ovules, the fruit, and the seeds, suggesting conserved roles in ovule and seed identity and unique roles in stamens, ovary, and fruit development. In addition, AfimSTK expression patterns in areas of organ abscission and dehiscence zones suggest putative roles linked to senescence processes. We found that both E-class genes are expressed in the anthers and the ovary; however, AfimSEP2 exhibits higher expression compared to AfimSEP1. These findings provide a comprehensive picture of the ancestral expression patterns of the canonical MADS-box floral organ identity genes and the foundations for further comparative analyses in other magnoliids.
Collapse
Affiliation(s)
| | - Pablo Pérez-Mesa
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - Favio González
- Universidad Nacional de Colombia, Facultad de Ciencias, Instituto de Ciencias Naturales, Sede Bogotá, Colombia
| | - Natalia Pabón-Mora
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.,The New York Botanical Garden, Bronx, NY, USA
| |
Collapse
|
31
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
32
|
Liu Y, Zhang D, Ping J, Li S, Chen Z, Ma J. Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean. PLoS Genet 2016; 12:e1005818. [PMID: 26807727 PMCID: PMC4726468 DOI: 10.1371/journal.pgen.1005818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/28/2015] [Indexed: 11/27/2022] Open
Abstract
It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1) in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1) Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean.
Collapse
Affiliation(s)
- Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qiangdao, Shandong, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
33
|
Nakatsuka T, Saito M, Yamada E, Fujita K, Yamagishi N, Yoshikawa N, Nishihara M. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian. BMC PLANT BIOLOGY 2015; 15:182. [PMID: 26183329 PMCID: PMC4504037 DOI: 10.1186/s12870-015-0569-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/07/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Generally, double-flowered varieties are more attractive than single-flowered varieties in ornamental plants. Japanese gentian is one of the most popular floricultural plants in Japan, and it is desirable to breed elite double-flowered cultivars. In this study, we attempted to characterize a doubled-flower mutant of Japanese gentian. To identify the gene that causes the double-flowered phenotype in Japanese gentian, we isolated and characterized MADS-box genes. RESULTS Fourteen MADS-box genes were isolated, and two of them were C-class MADS-box genes (GsAG1 and GsAG2). Both GsAG1 and GsAG2 were categorized into the PLE/SHP subgroup, rather than the AG/FAR subgroup. In expression analyses, GsAG1 transcripts were detected in the second to fourth floral whorls, while GsAG2 transcripts were detected in only the inner two whorls. Transgenic Arabidopsis expressing GsAG1 lacked petals and formed carpeloid organs instead of sepals. Compared with a single-flowered gentian cultivar, a double-flowered gentian mutant showed decreased expression of GsAG1 but unchanged expression of GsAG2. An analysis of the genomic structure of GsAG1 revealed that the gene had nine exons and eight introns, and that a 5,150-bp additional sequence was inserted into the sixth intron of GsAG1 in the double-flowered mutant. This insert had typical features of a Ty3/gypsy-type LTR-retrotransposon, and was designated as Tgs1. Virus-induced gene silencing of GsAG1 by the Apple latent spherical virus vector resulted in the conversion of the stamen to petaloid organs in early flowering transgenic gentian plants expressing an Arabidopsis FT gene. CONCLUSIONS These results revealed that GsAG1 plays a key role as a C-functional gene in stamen organ identity. The identification of the gene responsible for the double-flowered phenotype will be useful in further research on the floral morphogenesis of Japanese gentian.
Collapse
Affiliation(s)
- Takashi Nakatsuka
- Graduate School of Agriculture, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Misa Saito
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | - Eri Yamada
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | - Kohei Fujita
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | - Noriko Yamagishi
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| |
Collapse
|
34
|
Asbe A, Matsushita SC, Gordon S, Kirkpatrick HE, Madlung A. Floral Reversion in Arabidopsis suecica Is Correlated with the Onset of Flowering and Meristem Transitioning. PLoS One 2015; 10:e0127897. [PMID: 26011630 PMCID: PMC4444321 DOI: 10.1371/journal.pone.0127897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022] Open
Abstract
Angiosperm flowers are usually determinate structures that may produce seeds. In some species, flowers can revert from committed flower development back to an earlier developmental phase in a process called floral reversion. The allopolyploid Arabidopsis suecica displays photoperiod-dependent floral reversion in a subset of its flowers, yet little is known about the environmental conditions enhancing this phenotype, or the morphological processes leading to reversion. We have used light and electron microscopy to further describe this phenomenon. Additionally, we have further studied the phenology of flowering and floral reversion in A. suecica. In this study we confirm and expand upon our previous findings that floral reversion in the allopolyploid A. suecica is photoperiod-dependent, and show that its frequency is correlated with the timing for the onset of flowering. Our results also suggest that floral reversion in A. suecica displays natural variation in its penetrance between geographic populations of A. suecica.
Collapse
Affiliation(s)
- Amelia Asbe
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
| | - Starr C. Matsushita
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
| | - Spencer Gordon
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
| | - H. E. Kirkpatrick
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
| | - Andreas Madlung
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wang H, Zhang L, Cai Q, Hu Y, Jin Z, Zhao X, Fan W, Huang Q, Luo Z, Chen M, Zhang D, Yuan Z. OsMADS32 interacts with PI-like proteins and regulates rice flower development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:504-513. [PMID: 25081486 DOI: 10.1111/jipb.12248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
OsMADS32 is a monocot specific MIKC(c) type MADS-box gene that plays an important role in regulating rice floral meristem and organs identity, a crucial process for reproductive success and rice yield. However, its underlying mechanism of action remains to be clarified. Here, we characterized a hypomorphic mutant allele of OsMADS32/CFO1, cfo1-3 and identified its function in controlling rice flower development by bioinformatics and protein-protein interaction analysis. The cfo1-3 mutant produces defective flowers, including loss of lodicule identity, formation of ectopic lodicule or hull-like organs and decreased stamen number, mimicking phenotypes related to the mutation of B class genes. Molecular characterization indicated that mis-splicing of OsMADS32 transcripts in the cfo1-3 mutant resulted in an extra eight amino acids in the K-domain of OsMADS32 protein. By yeast two hybrid and bimolecular fluorescence complementation assays, we revealed that the insertion of eight amino acids or deletion of the internal region in the K1 subdomain of OsMADS32 affects the interaction between OsMADS32 with PISTILLATA (PI)-like proteins OsMADS2 and OsMADS4. This work provides new insight into the mechanism by which OsMADS32 regulates rice lodicule and stamen identity, by interaction with two PI-like proteins via its K domain.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu J, Zhang J, Hu W, Miao H, Zhang J, Jia C, Wang Z, Xu B, Jin Z. Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening. PLoS One 2015; 10:e0123870. [PMID: 25886169 PMCID: PMC4401719 DOI: 10.1371/journal.pone.0123870] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening.
Collapse
Affiliation(s)
- Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jing Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- * E-mail: (BX); (ZJ)
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- * E-mail: (BX); (ZJ)
| |
Collapse
|
37
|
Zhang S, Zhang JS, Zhao J, He C. Distinct subfunctionalization and neofunctionalization of the B-class MADS-box genes in Physalis floridana. PLANTA 2015; 241:387-402. [PMID: 25326772 DOI: 10.1007/s00425-014-2190-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/02/2014] [Indexed: 05/24/2023]
Abstract
This work suggested that in Physalis PFGLO1-PFDEF primarily determined corolla and androecium identity, and acquired a novel role in gynoecia functionality, while PFGLO2-PFTM6 functioned in pollen maturation only. The B-class MADS-box genes play a crucial role in determining the organ identity of the corolla and androecium. Two GLOBOSA-like (GLO-like) PFGLO1 and PFGLO2 and two DEFICIENS-like (DEF-like) PFDEF and PFTM6 genes were present in Physalis floridana. However, the double-layered-lantern1 (doll1) mutant is the result of a single recessive mutation in PFGLO1, hinting a distinct divergent pattern of B-class genes. In this work, we utilized the tobacco rattle virus (TRV)-mediated gene silencing approach to further verify this assumption in P. floridana. Silencing of PFGLO1 or/and PFDEF demonstrated their primary role in determining corolla and androecium identity. However, specific PFGLO2 or/and PFTM6 silencing did not affect any organ identity but showed a reduction in mature pollen. These results suggested that both PFGLO2 and PFTM6 had lost their role in organ identity determination but functioned in pollen maturation. Evaluation of fruit setting in reciprocal crosses suggested that both PFGLO1 and PFDEF might have acquired an essential and novel role in the functionality of gynoecia. Such a divergence of the duplicated GLO-DEF heterodimer genes in floral development is different from the existing observations within Solanaceae. Therefore, our research sheds new light on the functional evolution of the duplicated B-class MADS-box genes in angiosperms.
Collapse
Affiliation(s)
- Shaohua Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China
| | | | | | | |
Collapse
|
38
|
Daminato M, Masiero S, Resentini F, Lovisetto A, Casadoro G. Characterization of TM8, a MADS-box gene expressed in tomato flowers. BMC PLANT BIOLOGY 2014; 14:319. [PMID: 25433802 PMCID: PMC4258831 DOI: 10.1186/s12870-014-0319-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/06/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND The identity of flower organs is specified by various MIKC MADS-box transcription factors which act in a combinatorial manner. TM8 is a MADS-box gene that was isolated from the floral meristem of a tomato mutant more than twenty years ago, but is still poorly known from a functional point of view in spite of being present in both Angiosperms and Gymnosperms, with some species harbouring more than one copy of the gene. This study reports a characterization of TM8 that was carried out in transgenic tomato plants with altered expression of the gene. RESULTS Tomato plants over-expressing either TM8 or a chimeric repressor form of the gene (TM8:SRDX) were prepared. In the TM8 up-regulated plants it was possible to observe anomalous stamens with poorly viable pollen and altered expression of several floral identity genes, among them B-, C- and E-function ones, while no apparent morphological modifications were visible in the other whorls. Oblong ovaries and fruits, that were also parthenocarpic, were obtained in the plants expressing the TM8:SRDX repressor gene. Such ovaries showed modified expression of various carpel-related genes. No apparent modifications could be seen in the other flower whorls. The latter plants had also epinastic leaves and malformed flower abscission zones. By using yeast two hybrid assays it was possible to show that TM8 was able to interact in yeast with MACROCALIX. CONCLUSIONS The impact of the ectopically altered TM8 expression on the reproductive structures suggests that this gene plays some role in the development of the tomato flower. MACROCALYX, a putative A-function MADS-box gene, was expressed in all the four whorls of fully developed flowers, and showed quantitative variations that were opposite to those of TM8 in the anomalous stamens and ovaries. Since the TM8 protein interacted in vitro only with the A-function MADS-box protein MACROCALYX, it seems that for the correct differentiation of the tomato reproductive structures possible interactions between TM8 and MACROCALYX proteins might be important.
Collapse
Affiliation(s)
- Margherita Daminato
- />Department of Biology, University of Padua, Via G. Colombo, 3, 35131 Padua, Italy
| | - Simona Masiero
- />Department of Bioscience, University of Milan, Via Celoria, 26, 20133 Milan, Italy
| | - Francesca Resentini
- />Department of Bioscience, University of Milan, Via Celoria, 26, 20133 Milan, Italy
| | - Alessandro Lovisetto
- />Department of Biology, University of Padua, Via G. Colombo, 3, 35131 Padua, Italy
| | - Giorgio Casadoro
- />Department of Biology, University of Padua, Via G. Colombo, 3, 35131 Padua, Italy
- />Botanical Garden, University of Padua, Via Orto Botanico, 15, 35123 Padua, Italy
| |
Collapse
|
39
|
Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z. Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 2014; 555:277-90. [PMID: 25447908 DOI: 10.1016/j.gene.2014.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 11/01/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family.
Collapse
Affiliation(s)
- Yi Tian
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Qinglong Dong
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Zhirui Ji
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Fumei Chi
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China
| | - Peihua Cong
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China.
| | - Zongshan Zhou
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China.
| |
Collapse
|
40
|
Melzer R, Härter A, Rümpler F, Kim S, Soltis PS, Soltis DE, Theißen G. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. ANNALS OF BOTANY 2014; 114:1431-43. [PMID: 24902716 PMCID: PMC4204782 DOI: 10.1093/aob/mcu094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS DEFICIENS (DEF)- and GLOBOSA (GLO)-like proteins constitute two sister clades of floral homeotic transcription factors that were already present in the most recent common ancestor (MRCA) of extant angiosperms. Together they specify the identity of petals and stamens in flowering plants. In core eudicots, DEF- and GLO-like proteins are functional in the cell only as heterodimers with each other. There is evidence that this obligate heterodimerization contributed to the canalization of the flower structure of core eudicots during evolution. It remains unknown as to whether this strict heterodimerization is an ancient feature that can be traced back to the MRCA of extant flowering plants or if it evolved later during the evolution of the crown group angiosperms. METHODS The interactions of DEF- and GLO-like proteins of the early-diverging angiosperms Amborella trichopoda and Nuphar advena and of the magnoliid Liriodendron tulipifera were analysed by employing yeast two-hybrid analysis and electrophoretic mobility shift assay (EMSA). Character-state reconstruction, including data from other species as well, was used to infer the ancestral interaction patterns of DEF- and GLO-like proteins. KEY RESULTS The yeast two-hybrid and EMSA data suggest that DEF- and GLO-like proteins from early-diverging angiosperms both homo- and heterodimerize. Character-state reconstruction suggests that the ability to form heterodimeric complexes already existed in the MRCA of extant angiosperms and that this property remained highly conserved throughout angiosperm evolution. Homodimerization of DEF- and GLO-like proteins also existed in the MRCA of all extant angiosperms. DEF-like protein homodimerization was probably lost very early in angiosperm evolution and was not present in the MRCA of eudicots and monocots. GLO-like protein homodimerization might have been lost later during evolution, but very probably was not present in the MRCA of eudicots. CONCLUSIONS The flexibility of DEF- and GLO-like protein interactions in early-diverging angiosperms may be one reason for the highly diverse flower morphologies observed in these species. The results strengthen the hypothesis that a reduction in the number of interaction partners of DEF- and GLO-like proteins, with DEF-GLO heterodimers remaining the only DNA-binding dimers in core eudicots, contributed to developmental robustness, canalization of flower development and the diversification of angiosperms.
Collapse
Affiliation(s)
- Rainer Melzer
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany Department of Genetics, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Andrea Härter
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Department of Biology Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
41
|
Rameneni JJ, Dhandapani V, Paul P, Im S, Oh MH, Choi SR, Lim YP. Genome-wide identification, characterization, and comparative phylogeny analysis of MADS-box transcription factors in Brassica rapa. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0187-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Wang S, Lu G, Hou Z, Luo Z, Wang T, Li H, Zhang J, Ye Z. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3005-14. [PMID: 24723399 PMCID: PMC4071821 DOI: 10.1093/jxb/eru137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes.
Collapse
Affiliation(s)
- Shufen Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Hou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhidan Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
43
|
Dardick C, Callahan AM. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. FRONTIERS IN PLANT SCIENCE 2014; 5:284. [PMID: 25009543 PMCID: PMC4070412 DOI: 10.3389/fpls.2014.00284] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/30/2014] [Indexed: 05/20/2023]
Abstract
Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages.
Collapse
Affiliation(s)
- Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research ServiceKearneysville, WV, USA
| | | |
Collapse
|
44
|
MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 2014; 12:e1001835. [PMID: 24714165 PMCID: PMC3979655 DOI: 10.1371/journal.pbio.1001835] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/28/2014] [Indexed: 12/19/2022] Open
Abstract
Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1, that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome. Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants).
Collapse
Affiliation(s)
- Allyson M. MacLean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Zigmunds Orlovskis
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Krissana Kowitwanich
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Anna M. Zdziarska
- Bioscience, Plant Research International, Wageningen, The Netherlands
| | - Gerco C. Angenent
- Bioscience, Plant Research International, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | | | - Saskia A. Hogenhout
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| |
Collapse
|
45
|
Dreni L, Kater MM. MADS reloaded: evolution of the AGAMOUS subfamily genes. THE NEW PHYTOLOGIST 2014; 201:717-732. [PMID: 24164649 DOI: 10.1111/nph.12555] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/02/2013] [Indexed: 05/03/2023]
Abstract
AGAMOUS subfamily proteins are encoded by MADS-box family genes. They have been shown to play key roles in the determination of reproductive floral organs such as stamens, carpels and ovules. However, they also play key roles in ensuring a fixed number of floral organs by controlling floral meristem determinacy. Recently, an enormous amount of sequence data for nonmodel species have become available together with functional data on AGAMOUS subfamily members in many species. Here, we give a detailed overview of the most important information about this interesting gene subfamily and provide new insights into its evolution.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | - Martin M Kater
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
46
|
Espinosa-Soto C, Immink RGH, Angenent GC, Alvarez-Buylla ER, de Folter S. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network. BMC SYSTEMS BIOLOGY 2014; 8:9. [PMID: 24468197 PMCID: PMC3913338 DOI: 10.1186/1752-0509-8-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. RESULTS We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. CONCLUSIONS Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico
- Current address: Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, C.P. 78290 San Luis Potosí, Mexico
| | | | - Gerco C Angenent
- Plant Research International, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Elena R Alvarez-Buylla
- Departamento de Ecología Funcional. Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, 3er Circ. Ext. Jto. Jard. Bot., CU, C.P. 04510 Mexico, D.F., Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico
| |
Collapse
|
47
|
Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One 2014; 9:e84781. [PMID: 24454749 PMCID: PMC3890268 DOI: 10.1371/journal.pone.0084781] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/18/2013] [Indexed: 01/16/2023] Open
Abstract
MADS-box genes are important transcription factors for plant development, especially floral organogenesis. Brachypodium distachyon is a model for biofuel plants and temperate grasses such as wheat and barley, but a comprehensive analysis of MADS-box family proteins in Brachypodium is still missing. We report here a genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. We identified 57 MADS-box genes and classified them into 32 MIKCc-type, 7 MIKC*-type, 9 Mα, 7 Mβ and 2 Mγ MADS-box genes according to their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. Detailed gene structure and motif distribution were then studied. Investigation of their chromosomal localizations revealed that Brachypodium MADS-box genes distributed evenly across five chromosomes. In addition, five pairs of type II MADS-box genes were found on synteny blocks derived from whole genome duplication blocks. We then performed a systematic expression analysis of Brachypodium MADS-box genes in various tissues, particular floral organs. Further detection under salt, drought, and low-temperature conditions showed that some MADS-box genes may also be involved in abiotic stress responses, including type I genes. Comparative studies of MADS-box genes among Brachypodium, rice and Arabidopsis showed that Brachypodium had fewer gene duplication events. Taken together, this work provides useful data for further functional studies of MADS-box genes in Brachypodium distachyon.
Collapse
|
48
|
Wellmer F, Bowman JL, Davies B, Ferrándiz C, Fletcher JC, Franks RG, Graciet E, Gregis V, Ito T, Jack TP, Jiao Y, Kater MM, Ma H, Meyerowitz EM, Prunet N, Riechmann JL. Flower development: open questions and future directions. Methods Mol Biol 2014; 1110:103-24. [PMID: 24395254 DOI: 10.1007/978-1-4614-9408-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.
Collapse
Affiliation(s)
- Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A complete understanding of the genetic control of flower development requires a comparative approach, involving species from across the angiosperm lineage. Using the accessible model plant Arabidopsis thaliana many of the genetic pathways that control development of the reproductive growth phase have been delineated. Research in other species has added to this knowledge base, revealing that, despite the myriad of floral forms found in nature, the genetic blueprint of flower development is largely conserved. However, these same studies have also highlighted differences in the way flowering is controlled in evolutionarily diverse species. Here, we review flower development in the eudicot asterid lineage, a group of plants that diverged from the rosid family, which includes Arabidopsis, 120 million years ago. Work on model species such as Antirrhinum majus, Petunia hybrida, and Gerbera hybrida has prompted a reexamination of textbook models of flower development; revealed novel mechanisms controlling floral gene expression; provided a means to trace evolution of key regulatory genes; and stimulated discussion about genetic redundancy and the fate of duplicated genes.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
50
|
Ubi BE, Saito T, Bai S, Nishitani C, Ban Y, Ikeda K, Ito A, Moriguchi T. Characterization of 10 MADS-box genes from Pyrus pyrifolia and their differential expression during fruit development and ripening. Gene 2013; 528:183-94. [PMID: 23891821 DOI: 10.1016/j.gene.2013.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
We cloned 10 Japanese pear (Pyrus pyrifolia) MIKC-type II MADS-box genes, and analyzed their expression during fruit development and ripening. PpMADS2-1 was APETALA (AP)1-like; PpMADS3-1 was FRUITFULL (FUL)/SQUAMOSA (SQUA)-like; PpMADS4-1 was AGAMOUS-like (AGL)6; PpMADS5-1 and PpMADS8-1 were SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC)-like; PpMADS9-1, PpMADS12-1, PpMADS14-1 and PpMADS16-1 were SEPALLATA (SEP)-like; while PpMADS15-1 was AGL/SHATTERPROOF (SHP)-like. Phylogenetic analysis showed their grouping into five major clades (and 10 sub-clades) that was consistent with their diverse functional types. Expression analysis in flower tissue revealed their distinct putative homeotic functional classes: A-class (PpMADS2-1, PpMADS3-1, PpMADS4-1, and PpMADS14-1), C-class (PpMADS15-1), E-class (PpMADS9-1, PpMADS12-1, and PpMADS16-1) and E (F)-class (PpMADS5-1 and PpMADS8-1). Differential gene expression was observed in different fruit tissues (skin, cortex and core) as well as in the cortex during the course of fruit development and ripening. Collectively, our results suggest their involvement in the diverse aspects of plant development including flower development and the course of fruit development and ripening.
Collapse
Affiliation(s)
- Benjamin Ewa Ubi
- Plant Physiology and Fruit Chemistry Division, NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
| | | | | | | | | | | | | | | |
Collapse
|