1
|
Wang H, Ceylan Koydemir H, Qiu Y, Bai B, Zhang Y, Jin Y, Tok S, Yilmaz EC, Gumustekin E, Rivenson Y, Ozcan A. Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. LIGHT, SCIENCE & APPLICATIONS 2020; 9:118. [PMID: 32685139 PMCID: PMC7351775 DOI: 10.1038/s41377-020-00358-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
Early identification of pathogenic bacteria in food, water, and bodily fluids is very important and yet challenging, owing to sample complexities and large sample volumes that need to be rapidly screened. Existing screening methods based on plate counting or molecular analysis present various tradeoffs with regard to the detection time, accuracy/sensitivity, cost, and sample preparation complexity. Here, we present a computational live bacteria detection system that periodically captures coherent microscopy images of bacterial growth inside a 60-mm-diameter agar plate and analyses these time-lapsed holograms using deep neural networks for the rapid detection of bacterial growth and the classification of the corresponding species. The performance of our system was demonstrated by the rapid detection of Escherichia coli and total coliform bacteria (i.e., Klebsiella aerogenes and Klebsiella pneumoniae subsp. pneumoniae) in water samples, shortening the detection time by >12 h compared to the Environmental Protection Agency (EPA)-approved methods. Using the preincubation of samples in growth media, our system achieved a limit of detection (LOD) of ~1 colony forming unit (CFU)/L in ≤9 h of total test time. This platform is highly cost-effective (~$0.6/test) and has high-throughput with a scanning speed of 24 cm2/min over the entire plate surface, making it highly suitable for integration with the existing methods currently used for bacteria detection on agar plates. Powered by deep learning, this automated and cost-effective live bacteria detection platform can be transformative for a wide range of applications in microbiology by significantly reducing the detection time and automating the identification of colonies without labelling or the need for an expert.
Collapse
Affiliation(s)
- Hongda Wang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Yunzhe Qiu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Yibo Zhang
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Yiyin Jin
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Sabiha Tok
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Biophysics, Istanbul Medical Faculty, Istanbul University, Istanbul, 22000 Turkey
| | - Enis Cagatay Yilmaz
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
| | - Esin Gumustekin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095 USA
| | - Yair Rivenson
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA
- Bioengineering Department, University of California, Los Angeles, CA 90095 USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095 USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
2
|
Foster A, Rankin M. Evaluation and Adaptation of a Membrane Filter Technique for Detection ofClostridium Perfringens. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-47-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Liquid chromatography time of flight mass spectrometry based environmental metabolomics for the analysis of Pseudomonas putida Bacteria in potable water. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 966:179-86. [PMID: 24674937 DOI: 10.1016/j.jchromb.2014.02.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Water supply biofilms have the potential to harbour waterborne diseases, accelerate corrosion, and contribute to the formation of tuberculation in metallic pipes. One particular species of bacteria known to be found in the water supply networks is Pseudomonas sp., with the presence of Pseudomonas putida being isolated to iron pipe tubercles. Current methods for detecting and analysis pipe biofilms are time consuming and expensive. The application of metabolomics techniques could provide an alternative method for assessing biofilm risk more efficiently based on bacterial activity. As such, this paper investigates the application of metabolomic techniques and provides a proof-of-concept application using liquid chromatography coupled with time-of-flight mass spectrometry (LC-ToF-MS) to three biologically independent P. putida samples, across five different growth conditions exposed to solid and soluble iron (Fe). Analysis of the samples in +ESI and -ESI mode yielded 887 and 1789 metabolite features, respectively. Chemometric analysis of the +ESI and -ESI data identified 34 and 39 significant metabolite features, respectively, where features were considered significant if the fold change was greater than 2 and obtained a p-value less than 0.05. Metabolite features were subsequently identified according to the Metabolomics Standard Initiative (MSI) Chemical Analysis Workgroup using analytical standards and standard online LC-MS databases. Possible markers for P. putida growth, with and without being exposed to solid and soluble Fe, were identified from a diverse range of different chemical classes of metabolites including nucleobases, nucleosides, dipeptides, tripeptides, amino acids, fatty acids, sugars, and phospholipids.
Collapse
|
4
|
|
5
|
Jung JH, Lee JE, Kim SS. Thermal effects on bacterial bioaerosols in continuous air flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:4723-4730. [PMID: 19482337 DOI: 10.1016/j.scitotenv.2009.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 04/28/2009] [Accepted: 05/06/2009] [Indexed: 05/27/2023]
Abstract
Exposure to bacterial bioaerosols can have adverse effects on health, such as infectious diseases, acute toxic effects, and allergies. The search for ways of preventing and curing the harmful effects of bacterial bioaerosols has created a strong demand for the study and development of an efficient method of controlling bioaerosols. We investigated the thermal effects on bacterial bioaerosols of Escherichia coli and Bacillus subtilis by using a thermal electric heating system in continuous air flow. The bacterial bioaerosols were exposed to a surrounding temperature that ranged from 20 degrees C to 700 degrees C for about 0.3 s. Both E. coli and B. subtilis vegetative cells were rendered more than 99.9% inactive at 160 degrees C and 350 degrees C of wall temperature of the quartz tube, respectively. Although the data on bacterial injury showed that the bacteria tended to sustain greater damage as the surrounding temperature increased, Gram-negative E. coli was highly sensitive to structural injury but Gram-positive B. subtilis was slightly more sensitive to metabolic injury. In addition, the inactivation of E. coli endotoxins was found to range from 9.2% (at 200 degrees C) to 82.0% (at 700 degrees C). However, the particle size distribution and morphology of both bacterial bioaerosols were maintained, despite exposure to a surrounding temperature of 700 degrees C. Our results show that thermal heating in a continuous air flow can be used with short exposure time to control bacterial bioaerosols by rendering the bacteria and endotoxins to a large extent inactive. This result could also be useful for developing more effective thermal treatment strategies for use in air purification or sterilization systems to control bioaerosols.
Collapse
Affiliation(s)
- Jae Hee Jung
- Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
6
|
Ozkanca R, Saribiyik F, Isik K, Sahin N, Kariptas E, Flint KP. Resuscitation and quantification of stressed Escherichia coli K12 NCTC8797 in water samples. Microbiol Res 2009; 164:212-20. [PMID: 17418553 DOI: 10.1016/j.micres.2006.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 09/20/2006] [Accepted: 11/08/2006] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the impact on numbers of using different media for the enumeration of Escherichia coli subjected to stress, and to evaluate the use of different resuscitation methods on bacterial numbers. E. coli was subjected to heat stress by exposure to 55 degrees C for 1h or to light-induced oxidative stress by exposure to artificial light for up to 8h in the presence of methylene blue. In both cases, the bacterial counts on selective media were below the limits of detection whereas on non-selective media colonies were still produced. After resuscitation in non-selective media, using a multi-well MPN resuscitation method or resuscitation on membrane filters, the bacterial counts on selective media matched those on non-selective media. Heat and light stress can affect the ability of E. coli to grow on selective media essential for the enumeration as indicator bacteria. A resuscitation method is essential for the recovery of these stressed bacteria in order to avoid underestimation of indicator bacteria numbers in water. There was no difference in resuscitation efficiency using the membrane filter and multi-well MPN methods. This study emphasises the need to use a resuscitation method if the numbers of indicator bacteria in water samples are not to be underestimated. False-negative results in the analysis of drinking water or natural bathing waters could have profound health effects.
Collapse
Affiliation(s)
- R Ozkanca
- Department of Biological Sciences, Ondokuz Mayis University, Kurupelit, Samsun, Turkey
| | | | | | | | | | | |
Collapse
|
7
|
Srinivasan S, Harrington GW. Biostability analysis for drinking water distribution systems. WATER RESEARCH 2007; 41:2127-38. [PMID: 17408720 DOI: 10.1016/j.watres.2007.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 05/14/2023]
Abstract
The ability to limit regrowth in drinking water is referred to as biological stability and depends on the concentration of disinfectant residual and on the concentration of substrate required for the growth of microorganisms. The biostability curve, based on this fundamental concept of biological stability, is a graphical approach to study the two competing effects that determine bacterial regrowth in a distribution system: inactivation due to the presence of a disinfectant, and growth due to the presence of a substrate. Biostability curves are a practical, system specific approach for addressing the problem of bacterial regrowth in distribution systems. This paper presents a standardized algorithm for generating biostability curves and this will enable water utilities to incorporate this approach for their site-specific needs. Using data from pilot scale studies, it was found that this algorithm was applicable to control regrowth of HPC in chlorinated systems where AOC is the growth limiting substrate, and growth of AOB in chloraminated systems, where ammonia is the growth limiting substrate.
Collapse
Affiliation(s)
- Soumya Srinivasan
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | |
Collapse
|
8
|
Sattar SA, Springthorpe S, Mani S, Gallant M, Nair RC, Scott E, Kain J. Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. J Appl Microbiol 2001; 90:962-70. [PMID: 11412326 DOI: 10.1046/j.1365-2672.2001.01347.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To develop and apply a quantitative protocol for assessing the transfer of bacteria from bleached and undyed fabrics of 100% cotton and 50% cotton + 50% polyester (poly cotton) to fingerpads or other pieces of fabric. METHODS AND RESULTS Test pieces of the fabrics were mounted on custom-made stainless steel carriers to give a surface area of 1 cm in diameter, and each piece seeded with about 10(5) cfu of Staphylococcus aureus from an overnight broth culture; the inoculum contained 5% fetal bovine serum as the soil load. Transfer from fabric to fabric was performed by direct contact using moist and dry fabrics. Transfers from fabrics to fingerpads of adult volunteers were tested using moist, dry and re-moistened pieces of the fabrics, with or without friction during the contact. Bacterial transfer from fabrics to moistened fingerpads was also studied. All the transfers were conducted under ambient conditions at an applied pressure of 0.2 kg cm(-2). After the transfer, the recipient fingerpads or fabric pieces were eluted, the eluates spread-plated, along with appropriate controls, on tryptic soy agar and the percentage transfer calculated after the incubation of the plates for 24 h at 37 degrees C. CONCLUSION Bacterial transfer from moist donor fabrics using recipients with moisture was always higher than that to and from dry ones. Friction increased the level of transfer from fabrics to fingerpads by as much as fivefold. Bacterial transfer from poly cotton was consistently higher when compared with that from all-cotton material. SIGNIFICANCE AND IMPACT OF THE STUDY The data generated should help in the development of better models to assess the role fabrics may play as vehicles for infectious agents. Also, the basic design of the reported methodology lends itself to work with other types of human pathogens.
Collapse
Affiliation(s)
- S A Sattar
- Centre for Research on Environmental Microbiology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
McFeters GA, Broadaway SC, Pyle BH, Pickett M, Egozy Y. Comparative performance of Colisure. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/j.1551-8833.1997.tb08294.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Prévost M, Rompré A, Baribeau H, Coallier J, Lafrance P. Service lines: their effect on microbiological quality. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/j.1551-8833.1997.tb08261.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Leff LG, Leff AA. Use of green fluorescent protein to monitor survival of genetically engineered bacteria in aquatic environments. Appl Environ Microbiol 1996; 62:3486-8. [PMID: 8795242 PMCID: PMC168148 DOI: 10.1128/aem.62.9.3486-3488.1996] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many methods for detecting model genetically engineered microorganisms (GEMs) in experimental ecosystems rely on cultivation of introduced cells. In this study, survival of Escherichia coli was monitored with the green fluorescent protein (GFP) gene. This approach allowed enumeration of GEMs by both plating and microscopy. Use of the GFP-marked GEMs revealed that E. coli persisted in stream water at higher densities as determined microscopically than as determined by CFU enumeration. The GFP gene did not negatively impact the fitness of the host strain.
Collapse
Affiliation(s)
- L G Leff
- Department of Biological Sciences, Kent State University, Ohio 44242, USA.
| | | |
Collapse
|
12
|
Brenner KP, Rankin CC, Sivaganesan M, Scarpino PV. Comparison of the recoveries of Escherichia coli and total coliforms from drinking water by the MI agar method and the U.S. Environmental Protection Agency-approved membrane filter method. Appl Environ Microbiol 1996; 62:203-8. [PMID: 8572697 PMCID: PMC167787 DOI: 10.1128/aem.62.1.203-208.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Drinking water regulations under the Final Coliform Rule require that total coliform-positive drinking water samples be examined for the presence of Escherichia coli or fecal coliforms. The current U.S. Environmental Protection Agency-approved membrane filter (MF) method for E. coli requires two media, an MF transfer, and a total incubation time of 28 h. A newly developed MF method, the MI agar method, containing indoxyl-beta-D-glucuronide and 4-methylumbelliferyl-beta-D-galactopyranoside for the simultaneous detection of E. coli and total coliforms, respectively, by means of their specific enzyme reactions, was compared with the approved method by the use of wastewater-spiked tap water samples. Overall, weighted analysis of variance (significance level, 0.05) showed that the new medium recoveries of total coliforms and E. coli were significantly higher than those of mEndo agar and nutrient agar plus MUG (4-methylumbelliferyl-beta-D-glucuronide), respectively, and the background counts were significantly lower than those of mEndo agar (< 5%). Generally, the tap water source, overall chlorine level, wastewater source, granular activated carbon treatment of the tap water, and method of grouping data by E. coli count for statistical analysis did not affect the performance of the new medium.
Collapse
Affiliation(s)
- K P Brenner
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, USA
| | | | | | | |
Collapse
|
13
|
Audicana A, Perales I, Borrego JJ. Modification of kanamycin-esculin-azide agar to improve selectivity in the enumeration of fecal streptococci from water samples. Appl Environ Microbiol 1995; 61:4178-83. [PMID: 8534085 PMCID: PMC167729 DOI: 10.1128/aem.61.12.4178-4183.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kanamycin-esculin-azide agar was modified by increasing the concentration of sodium azide to 0.4 g liter-1 and replacing kanamycin sulfate with 5 mg of oxolinic acid liter-1. The modification, named oxolinic acid-esculin-azide (OAA) agar, was compared with Slanetz-Bartley and KF agars by using drinking water and seawater samples. The OAA agar showed higher specificity, selectivity, and recovery efficiencies than those obtained by using the other media. In addition, no confirmation of typical colonies was needed when OAA agar was used, which significantly shortens the time of sample processing and increases the accuracy of the method.
Collapse
Affiliation(s)
- A Audicana
- Laboratorio de Salud Pública, Delegación Territorial de Sanidad de Vizcaya, Bilbao Paris Vasco, Spain
| | | | | |
Collapse
|
14
|
McFeters GA, Terzieva SI. Survival ofEscherichia coli andYersinia enterocolitica in stream water: Comparison of field and laboratory exposure. MICROBIAL ECOLOGY 1991; 22:65-74. [PMID: 24194326 DOI: 10.1007/bf02540213] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/1991] [Revised: 04/30/1991] [Indexed: 06/02/2023]
Abstract
Experiments were done to compare the influence of three aquatic exposure methods on the behavior of pathogenic and nonpathogenic enteric bacteria (Yersinia enterocolitica andEscherichia coli). Bacterial suspensions were exposed to stream water in membrane diffusion chambers in situ as well as in the laboratory using a large vessel of stream water and in enclosed bottles. The persistence of culturability of the bacterial suspensions was dependent upon the method of aquatic exposure. This difference was most apparent during the initial six days of each experiment. A steady decline in colony forming units was seen after a short stationary period in chambers in situ, while there was an abrupt increase in bacteria within chambers exposed in the laboratory. A rapid initial decrease was observed in the experimental variation using bottles, accompanied by higher levels of injury inE. coli and reduced expression of plasmid-borne virulence phenotypes inY. enterocolitica. However, there were no changes in the plasmid profiles of either organism throughout the 21-day duration of the experiments. In addition, the survival and injury of pathogenic and nonpathogenic strains of both test bacteria was very similar with aquatic exposure. These results suggest that the response of enteric bacteria in aquatic environments is influenced by experimental design as well as other factors and that the comparison of survival data should only be attempted when similar methods are used.
Collapse
Affiliation(s)
- G A McFeters
- Department of Microbiology, Montana State University, 59717, Bozeman, Montana, USA
| | | |
Collapse
|
15
|
Calabrese JP, Bissonnette GK. Improved membrane filtration method incorporating catalase and sodium pyruvate for detection of chlorine-stressed coliform bacteria. Appl Environ Microbiol 1990; 56:3558-64. [PMID: 2268162 PMCID: PMC185023 DOI: 10.1128/aem.56.11.3558-3564.1990] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In vitro pure culture studies were conducted on three different strains of Escherichia coli (K-12, EPA 00244, and SWEI) to determine the effect of chlorination on catalase activity. In each case, stationary-phase cells exhibited significant (P less than 0.001) reductions in enzyme activity following exposure to chlorine. Mean differences in activity between control and chlorine-stressed cells ranged from 8.8 to 20.3 U/mg of protein for E. coli SWEI and EPA 00244, respectively. Following initial enzyme studies, resuscitation experiments utilizing the membrane filtration technique were conducted on chlorinated sewage effluent. Five different amendments, including catalase (1,000 U per plate), heat-inactivated catalase (1,000-U per plate), sodium pyruvate (0.05%), a catalase-sodium pyruvate combination (1,500 U/0.01%), and acetic acid (0.05%), were tested for the ability to enhance detection of chlorine-stressed cells on M-fecal coliform (M-FC), mT7, M-Endo, and tryptone-glucose-yeast extract (TGY) media. Significant (P less than 0.001) increases in recovery of fecal coliforms on M-FC, total coliforms on mT7 and M-Endo, and total heterotrophs on TGY were obtained on plates containing catalase, pyruvate, or the combination of these compounds. Supplementation with heat-inactivated catalase and acetic acid did not improve recovery of chlorine-stressed cells compared with recovery on nonamended media. Subsequent analysis of colonies from plates containing compounds which enhanced recovery indicated coliform verification percentages of greater than 80% on M-FC, greater than 90% on mT7, and greater than 94% on M-Endo media. These data suggest that the addition of peroxide-degrading compounds to various standard recovery media may improve detection of both coliform and heterotrophic bacteria in chlorinated waters.
Collapse
Affiliation(s)
- J P Calabrese
- Division of Plant and Soil Sciences, West Virginia University, Morgantown 26506-6057
| | | |
Collapse
|
16
|
|
17
|
Rapid detection of chlorine-induced bacterial injury by the direct viable count method using image analysis. Appl Environ Microbiol 1990; 56:389-94. [PMID: 2407185 PMCID: PMC183350 DOI: 10.1128/aem.56.2.389-394.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A modified direct viable count method to detect living bacteria was used with image analysis for the rapid enumeration of chlorine-injured cells in an Escherichia coli culture. The method was also used for determining chlorine-induced injury in coliform isolates and enteric pathogenic bacteria. Cultures were incubated in phosphate-buffered saline, containing 0.3% Casamino Acids (Difco Laboratories, Detroit, Mich.), 0.03% yeast extract, and optimal concentrations of nalidixic acid. Samples were withdrawn before and after incubation and stained with acridine orange, and cell lengths and breadths were measured by computerized image analysis. After incubation, cells which exceeded the mean preincubation length (viable cells) were enumerated and the results were compared with those obtained by the plate count method. Injury in the chlorine-exposed cell population was determined from the difference in viable count obtained with a nonselective Casamino Acids-yeast extract-nalidixic acid medium and a selective Casamino Acids-yeast extract-nalidixic acid medium containing sodium deoxycholate or sodium lauryl sulfate. The levels of injury determined by the direct viable count technique by using image analysis were comparable to those determined by the plate count method. The results showed that image analysis, under optimal conditions, enumerated significantly higher numbers of stressed E. coli than the plate count method did and detected injury in various cultures in 4 to 6 h.
Collapse
|
18
|
Enumeration, Occurrence, and Significance of Injured Indicator Bacteria in Drinking Water. DRINKING WATER MICROBIOLOGY 1990. [DOI: 10.1007/978-1-4612-4464-6_23] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
|
20
|
Naundorf G, Aumen NG. Ammonia-induced injury in pure cultures and natural populations of coliform bacteria. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03598.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Lytle MS, Adams JC, Dickman DG, Bressler WR. Use of nutrient response techniques to assess the effectiveness of chlorination of rapid sand filter gravel. Appl Environ Microbiol 1989; 55:29-32. [PMID: 2705772 PMCID: PMC184049 DOI: 10.1128/aem.55.1.29-32.1989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A direct viable counting method was used to rapidly assess the effectiveness of chlorination of biofilms on rapid sand filter gravel. A total of 50% of the cells were nutrient responsive after exposure to 0.5 mg of chlorine per liter, while this value was 25% after exposure to 25 mg of chlorine per liter. A large variation was seen in the numbers of nutrient-responsive cells on different rocks. More cells attached to the sandblasted side of marbles than to the smooth side, but there was no difference in eight of nine cases in the proportion of survival to chlorination between the two different sides. The effectiveness of chlorination appeared to be influenced by the species of bacterium in the biofilm.
Collapse
Affiliation(s)
- M S Lytle
- Department of Molecular Biology, University of Wyoming, Laramie 82071
| | | | | | | |
Collapse
|
22
|
|
23
|
LeChevallier MW, Babcock TM, Lee RG. Examination and characterization of distribution system biofilms. Appl Environ Microbiol 1987; 53:2714-24. [PMID: 3435140 PMCID: PMC204187 DOI: 10.1128/aem.53.12.2714-2724.1987] [Citation(s) in RCA: 357] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Investigations concerning the role of distribution system biofilms on water quality were conducted at a drinking water utility in New Jersey. The utility experienced long-term bacteriological problems in the distribution system, while treatment plant effluents were uniformly negative for coliform bacteria. Results of a monitoring program showed increased coliform levels as the water moved from the treatment plant through the distribution system. Increased coliform densities could not be accounted for by growth of the cells in the water column alone. Identification of coliform bacteria showed that species diversity increased as water flowed through the study area. All materials in the distribution system had high densities of heterotrophic plate count bacteria, while high levels of coliforms were detected only in iron tubercles. Coliform bacteria with the same biochemical profile were found both in distribution system biofilms and in the water column. Assimilable organic carbon determinations showed that carbon levels declined as water flowed through the study area. Maintenance of a 1.0-mg/liter free chlorine residual was insufficient to control coliform occurrences. Flushing and pigging the study area was not an effective control for coliform occurrences in that section. Because coliform bacteria growing in distribution system biofilms may mask the presence of indicator organisms resulting from a true breakdown of treatment barriers, the report recommends that efforts continue to find methods to control growth of coliform bacteria in pipeline biofilms.
Collapse
Affiliation(s)
- M W LeChevallier
- Belleville Laboratory, American Water Works Service Company, Inc., Belleville, Illinois 62220
| | | | | |
Collapse
|
24
|
Rollinger Y, Dott W. Survival of selected bacterial species in sterilized activated carbon filters and biological activated carbon filters. Appl Environ Microbiol 1987; 53:777-81. [PMID: 3579281 PMCID: PMC203755 DOI: 10.1128/aem.53.4.777-781.1987] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The survival of selected hygienically relevant bacterial species in activated carbon (AC) filters on a bench scale was investigated. The results revealed that after inoculation of the test strains the previously sterilized AC absorbed all bacteria (10(6) to 10(7)). After a period of 6 to 13 days without countable bacteria in the effluent, the numbers of Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida increased up to 10(4) to 10(5) CFU/ml of effluent and 10(6) to 10(7) CFU/g of AC. When Klebsiella pneumoniae and Streptococcus faecalis were used, no growth in filters could be observed. The numbers of E. coli, P. aeruginosa, and P. putida, however, decreased immediately and showed no regrowth in nonsterile AC from a filter which had been continuously connected to running tap water for 2 months. Under these conditions an autochthonous microflora developed on the carbon surface which could be demonstrated by scanning electron microscopy and culturing methods (heterotrophic plate count). These bacteria reduced E. coli, P. aeruginosa, and P. putida densities in the effluent by a factor of more than 10(5) within 1 to 5 days. The hypothesis that antagonistic substances of the autochthonous microflora were responsible for the elimination of the artificial contamination could not be confirmed because less than 1% of the isolates of the autochthonous microflora were able to produce such substances as indicated by in vitro tests. Competition for limiting nutrients was thought to be the reason for the observed effects.
Collapse
|
25
|
Singh A, McFeters GA. Recovery, growth, and production of heat-stable enterotoxin by Escherichia coli after copper-induced injury. Appl Environ Microbiol 1986; 51:738-42. [PMID: 3518629 PMCID: PMC238957 DOI: 10.1128/aem.51.4.738-742.1986] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Exposure of enterotoxigenic Escherichia coli strains to a sublethal concentration (0.75 mg/liter) of copper for 3 days at 4 degrees C induced sensitivity to deoxycholate (0.1%). When placed in a complex (brain heart infusion) or a defined amino acid salt medium, the copper-injured cells recovered their tolerance to deoxycholate in 3 and 6 h, respectively, and commenced active growth. Growth and heat-stable enterotoxin production of uninjured and copper-injured cells were studied in brain heart infusion medium. A slightly altered growth curve and an initial slow rate of toxin production were observed in injured cells when compared with those corresponding uninjured controls. However, maximum heat-stable enterotoxin levels in injured cultures were comparable to those produced by uninjured cells, suggesting that the enterotoxigenic potential of copper-injured cells was fully retained.
Collapse
|
26
|
Abstract
Coliforms were enumerated by using m-Endo agar LES and m-T7 agar in 102 routine samples of drinking water from three New England community water systems to investigate the occurrence and significance of injured coliforms. Samples included water collected immediately after conventional treatment, during the backwash cycle, at various points in the distribution system, and 1 week after the break and subsequent repair of a distribution main. Injured coliforms in these samples averaged greater than 95%. m-T7 agar yielded 8- to 38-fold more coliforms than did m-Endo agar LES. The geometric mean of coliforms recovered by m-Endo agar LES was less than 1 confirmed coliform per 100 ml, although m-T7 agar yielded 5.7 to 67.5 confirmed coliforms per 100 ml. In addition, the majority of these samples giving positive results on m-T7 agar produced no detectable counts on m-Endo agar LES. These findings indicated that coliforms were injured and largely undetected by use of accepted analytical media in the systems examined.
Collapse
|