1
|
Morrison C, Hogard S, Pearce R, Mohan A, Pisarenko AN, Dickenson ERV, von Gunten U, Wert EC. Critical Review on Bromate Formation during Ozonation and Control Options for Its Minimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18393-18409. [PMID: 37363871 PMCID: PMC10690720 DOI: 10.1021/acs.est.3c00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Ozone is a commonly applied disinfectant and oxidant in drinking water and has more recently been implemented for enhanced municipal wastewater treatment for potable reuse and ecosystem protection. One drawback is the potential formation of bromate, a possible human carcinogen with a strict drinking water standard of 10 μg/L. The formation of bromate from bromide during ozonation is complex and involves reactions with both ozone and secondary oxidants formed from ozone decomposition, i.e., hydroxyl radical. The underlying mechanism has been elucidated over the past several decades, and the extent of many parallel reactions occurring with either ozone or hydroxyl radicals depends strongly on the concentration, type of dissolved organic matter (DOM), and carbonate. On the basis of mechanistic considerations, several approaches minimizing bromate formation during ozonation can be applied. Removal of bromate after ozonation is less feasible. We recommend that bromate control strategies be prioritized in the following order: (1) control bromide discharge at the source and ensure optimal ozone mass-transfer design to minimize bromate formation, (2) minimize bromate formation during ozonation by chemical control strategies, such as ammonium with or without chlorine addition or hydrogen peroxide addition, which interfere with specific bromate formation steps and/or mask bromide, (3) implement a pretreatment strategy to reduce bromide and/or DOM prior to ozonation, and (4) assess the suitability of ozonation altogether or utilize a downstream treatment process that may already be in place, such as reverse osmosis, for post-ozone bromate abatement. A one-size-fits-all approach to bromate control does not exist, and treatment objectives, such as disinfection and micropollutant abatement, must also be considered.
Collapse
Affiliation(s)
- Christina
M. Morrison
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Samantha Hogard
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert Pearce
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Aarthi Mohan
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Aleksey N. Pisarenko
- Trussell
Technologies, Inc., 380
Stevens Avenue, Suite 212, Solana Beach, California 92075, United States
| | - Eric R. V. Dickenson
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Urs von Gunten
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dubendorf, Switzerland
- School of
Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland
| | - Eric C. Wert
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| |
Collapse
|
2
|
Röhl C, Batke M, Damm G, Freyberger A, Gebel T, Gundert-Remy U, Hengstler JG, Mangerich A, Matthiessen A, Partosch F, Schupp T, Wollin KM, Foth H. New aspects in deriving health-based guidance values for bromate in swimming pool water. Arch Toxicol 2022; 96:1623-1659. [PMID: 35386057 PMCID: PMC9095538 DOI: 10.1007/s00204-022-03255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Bromate, classified as a EU CLP 1B carcinogen, is a typical by-product of the disinfection of drinking and swimming pool water. The aim of this study was (a) to provide data on the occurrence of bromate in pool water, (b) to re-evaluate the carcinogenic MOA of bromate in the light of existing data, (c) to assess the possible exposure to bromate via swimming pool water and (d) to inform the derivation of cancer risk-related bromate concentrations in swimming pool water. Measurements from monitoring analysis of 229 samples showed bromate concentrations in seawater pools up to 34 mg/L. A comprehensive non-systematic literature search was done and the quality of the studies on genotoxicity and carcinogenicity was assessed by Klimisch criteria (Klimisch et al., Regul Toxicol Pharmacol 25:1-5, 1997) and SciRAP tool (Beronius et al., J Appl Toxicol, 38:1460-1470, 2018) respectively. Benchmark dose (BMD) modeling was performed using the modeling average mode in BMDS 3.1 and PROAST 66.40, 67 and 69 (human cancer BMDL10; EFSA 2017). For exposure assessment, data from a wide range of sources were evaluated for their reliability. Different target groups (infants/toddlers, children and adults) and exposure scenarios (recreational, sport-active swimmers, top athletes) were considered for oral, inhalation and dermal exposure. Exposure was calculated according to the frequency of swimming events and duration in water. For illustration, cancer risk-related bromate concentrations in pool water were calculated for different target groups, taking into account their exposure using the hBMDL10 and a cancer risk of 1 in 100,000. Convincing evidence was obtained from a multitude of studies that bromate induces oxidative DNA damage and acts as a clastogen in vitro and in vivo. Since statistical modeling of the available genotoxicity data is compatible with both linear as well as non-linear dose-response relationships, bromate should be conservatively considered to be a non-threshold carcinogen. BMD modeling with model averaging for renal cancer studies (Kurokawa et al., J Natl. Cancer Inst, 1983 and 1986a; DeAngelo et al., Toxicol Pathol 26:587-594, 1998) resulted in a median hBMDL10 of 0.65 mg bromate/kg body weight (bw) per day. Evaluation of different age and activity groups revealed that top athletes had the highest exposure, followed by sport-active children, sport-active adults, infants and toddlers, children and adults. The predominant route of exposure was oral (73-98%) by swallowing water, followed by the dermal route (2-27%), while the inhalation route was insignificant (< 0.5%). Accepting the same risk level for all population groups resulted in different guidance values due to the large variation in exposure. For example, for an additional risk of 1 in 100,000, the bromate concentrations would range between 0.011 for top athletes, 0.015 for sport-active children and 2.1 mg/L for adults. In conclusion, the present study shows that health risks due to bromate exposure by swimming pool water cannot be excluded and that large differences in risk exist depending on the individual swimming habits and water concentrations.
Collapse
Affiliation(s)
- C Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christiana Albertina University Kiel, Kiel, Germany.
- Department of Environmental Health Protection, State Agency for social Services (LAsD) Schleswig-Holstein, Neumünster, Germany.
| | - M Batke
- University Emden/Leer, Emden, Germany
| | - G Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - A Freyberger
- Research and Development, Pharmaceuticals, RED-PCD-TOX-P&PC Clinical Pathology, Bayer AG, Wuppertal, Germany
| | - T Gebel
- Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
| | - U Gundert-Remy
- Institute for Clinical Pharmacology and Toxicology, Universitätsmedizin Berlin, Charité Berlin, Germany
| | - J G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - A Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - A Matthiessen
- Central Unit for Environmental Hygiene, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - F Partosch
- Department of Toxicology, Fraunhofer-Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - T Schupp
- Department of Chemical Engineering, University of Applied Science Muenster, Steinfurt, Germany
| | - K M Wollin
- Formerly Public Health Agency of Lower Saxony, Hannover, Germany
| | - H Foth
- Institute of Environmental Toxicology, University of Halle, Halle/Saale, Germany
| |
Collapse
|
3
|
Fischbacher A, Löppenberg K, von Sonntag C, Schmidt TC. A New Reaction Pathway for Bromite to Bromate in the Ozonation of Bromide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11714-11720. [PMID: 26371826 DOI: 10.1021/acs.est.5b02634] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ozone is often used in the treatment of drinking water. This may cause problems if the water to be treated contains bromide as its reaction with ozone leads to the formation of bromate, which is considered to be carcinogenic. Bromate formation is a multistep process resulting from the reaction of ozone with bromite. Although this process seemed to be established, it has been shown that ozone reacts with bromite not by the previously assumed mechanism via O transfer but via electron transfer. Besides bromate, the electron-transfer reaction also yields O3(•-), the precursor of OH radicals. The experiments were set up in such a way that OH radicals are not produced from ozone self-decomposition but solely by the electron-transfer reaction. This study shows that hydroxyl radicals are indeed generated by using tBuOH as the OH radical scavenger and measuring its product, formaldehyde. HOBr and bromate yields were measured in systems with and without tBuOH. As OH radicals contribute to bromate formation, higher bromate and HOBr yields were observed in the absence of tBuOH than in its presence, where all OH radicals are scavenged. On the basis of the results presented here, a pathway from bromide to bromate, revised in the last step, was suggested.
Collapse
Affiliation(s)
- Alexandra Fischbacher
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
| | - Katja Löppenberg
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
| | - Clemens von Sonntag
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
- Max-Planck-Institut für Bioanorganische Chemie , Stiftstr. 34-36, 45413 Mülheim an der Ruhr, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen , Universitätsstraße 2, 45141 Essen, Germany
| |
Collapse
|
4
|
Bull RJ, Kolisetty N, Zhang X, Muralidhara S, Quiñones O, Lim KY, Guo Z, Cotruvo JA, Fisher JW, Yang X, Delker D, Snyder SA, Cummings BS. Absorption and disposition of bromate in F344 rats. Toxicology 2012; 300:83-91. [PMID: 22699156 DOI: 10.1016/j.tox.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/24/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Bromate (BrO(3)(-)) is a ubiquitous by-product of using ozone to disinfect water containing bromide (Br(-)). The reactivity of BrO(3)(-) with biological reductants suggests that its systemic absorption and distribution to target tissues may display non-linear behavior as doses increase. The intent of this study is to determine the extent to which BrO(3)(-) is systemically bioavailable via oral exposure and broadly identify its pathways of degradation. In vitro experiments of BrO(3)(-) degradation in rat blood indicate a rapid initial degradation immediately upon addition that is >98% complete at concentrations up to 66μM in blood. As initial concentrations are increased, progressively lower fractions are lost prior to the first measurement. Secondary to this initial loss, a slower and predictable first order degradation rate was observed (10%/min). Losses during both phases were accompanied by increases in Br(-) concentrations indicating that the loss of BrO(3)(-) was due to its reduction. In vivo experiments were conducted using doses of BrO(3)(-) ranging from 0.077 to 15.3mg/kg, administered intravenously (IV) or orally (gavage) to female F344 rats. The variable nature and uncertain source of background concentrations of BrO(3)(-) limited derivation of terminal half-lives, but the initial half-life was approximately 10min for all dose groups. The area under the curve (AUC) and peak concentrations (C(t=5')) were linearly related to IV dose up to 0.77mg/kg; however, disproportionate increases in the AUC and C(t=5') and a large decrease in the volume of distribution was observed when IV doses of 1.9 and 3.8mg/kg were administered. The average terminal half-life of BrO(3)(-) from oral administration was 37min, but this was influenced by background levels of BrO(3)(-) at lower doses. With oral doses, the AUC and C(max) increased linearly with dose up to 15.3mgBrO(3)(-)/kg. BrO(3)(-) appeared to be 19-25% bioavailable without an obvious dose-dependency between 0.077 and 1.9mg/kg. The urinary elimination of BrO(3)(-) and Br(-) was measured from female F344 rats for four days following administration of single doses of 8.1mgKBrO(3)/kg and for 15 days after a single dose of 5.0mgKBr/kg. BrO(3)(-) elimination was detected over the first 12h, but Br(-) elimination from BrO(3)(-) over the first 48h was 18% lower than expected based on that eliminated from an equimolar dose of Br(-) (15.5±1.6 vs. 18.8±1.2μmol/kg, respectively). The cumulative excretion of Br(-) from KBr vs. KBrO(3) was equivalent 72h after administration. The recovery of unchanged administered BrO(3)(-) in the urine ranged between 6.0 and 11.3% (creatinine corrected) on the 27th day of treatment with concentrations of KBrO(3) of 15, 60, and 400mg/L of drinking water. The recovery of total urinary bromine as Br(-)+BrO(3)(-) ranged between 61 and 88%. An increase in the fraction of the daily BrO(3)(-) dose recovered in the urine was observed at the high dose to both sexes. The deficit in total bromine recovery raises the possibility that some brominated biochemicals may be produced in vivo and more slowly metabolized and eliminated. This was supported by measurements of dose-dependent increases of total organic bromine (TOBr) that was eliminated in the urine. The role these organic by-products play in BrO(3)(-)-induced cancer remains to be established.
Collapse
|
5
|
Davidson AN, Chee-Sanford J, Lai HYM, Ho CH, Klenzendorf JB, Kirisits MJ. Characterization of bromate-reducing bacterial isolates and their potential for drinking water treatment. WATER RESEARCH 2011; 45:6051-6062. [PMID: 21943884 DOI: 10.1016/j.watres.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 05/31/2023]
Abstract
The objective of the current study was to isolate and characterize several bromate-reducing bacteria and to examine their potential for bioaugmentation to a drinking water treatment process. Fifteen bromate-reducing bacteria were isolated from three sources. According to 16S rRNA gene sequencing, the bromate-reducing bacteria are phylogenetically diverse, representing the Actinobacteria, Bacteroidetes, Firmicutes, and α-, β-, and γ-Proteobacteria. The broad diversity of bromate-reducing bacteria suggests the widespread capability for microbial bromate reduction. While the cometabolism of bromate via nitrate reductase and (per)chlorate reductase has been postulated, five of our bromate-reducing isolates were unable to reduce nitrate or perchlorate. This suggests that a bromate-specific reduction pathway might exist in some microorganisms. Bioaugmentation of activated carbon filters with eight of the bromate-reducing isolates did not significantly decrease start-up time or increase bromate removal as compared to control filters. To optimize bromate reduction in a biological drinking water treatment process, the predominant mechanism of bromate reduction (i.e., cometabolic or respiratory) needs to be assessed so that appropriate measures can be taken to improve bromate removal.
Collapse
Affiliation(s)
- Andrew N Davidson
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 1 University Station C1786, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|