1
|
Wang R, Long T, He J, Xu Y, Wei Y, Zhang Y, He X, He M. Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114048. [PMID: 36063616 DOI: 10.1016/j.ecoenv.2022.114048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As common contaminants, metals are non-negligible risk factors for diabetes and chronic kidney disease. However, whether there is an association between multiple metals exposure and incident chronic kidney disease (CKD) risk in patients with diabetes is unclear. We conducted a prospective study to evaluate these associations. In total, 3071 diabetics with baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2 from the Dongfeng-Tongji cohort were included. We measured baseline plasma concentrations of 23 metals and investigated the associations between plasma metal concentrations and CKD in diabetics using logistic regression, the least absolute shrinkage and selection operator (LASSO), and the Bayesian Kernel Machine Regression (BKMR) models. During average 4.6 years of follow-up, 457 diabetics developed CKD (14.9 %). The three models consistently found plasma levels of zinc, arsenic, and rubidium had a positive association with incident CKD risk in patients with diabetes, while titanium, cadmium, and lead had an inverse correlation. The results of BKMR showed a significant and positive overall effect of 23 metals on the risk of CKD, when all of the metals were above the 50th percentile as compared to the median value. In addition, potential interactions of zinc and arsenic, zinc and cadmium, zinc and lead, titanium and arsenic, and cadmium and lead on CKD risk were observed. In summary, we found significant associations of plasma titanium, zinc, arsenic, rubidium, cadmium, and lead with CKD in diabetes and interactions between these metals except for rubidium. Co-exposure to multiple metals was associated with increased CKD risk in diabetics.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiangjing He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Cavey T, Ropert M, de Tayrac M, Bardou-Jacquet E, Island ML, Leroyer P, Bendavid C, Brissot P, Loréal O. Mouse genetic background impacts both on iron and non-iron metals parameters and on their relationships. Biometals 2015; 28:733-43. [PMID: 26041486 DOI: 10.1007/s10534-015-9862-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/20/2015] [Indexed: 12/17/2022]
Abstract
Iron is reported to interact with other metals. In addition, it has been shown that genetic background may impact iron metabolism. Our objective was to characterize, in mice of three genetic backgrounds, the links between iron and several non-iron metals. Thirty normal mice (C57BL/6, Balb/c and DBA/2; n = 10 for each group), fed with the same diet, were studied. Quantification of iron, zinc, cobalt, copper, manganese, magnesium and rubidium was performed by ICP/MS in plasma, erythrocytes, liver and spleen. Transferrin saturation was determined. Hepatic hepcidin1 mRNA level was evaluated by quantitative RT-PCR. As previously reported, iron parameters were modulated by genetic background with significantly higher values for plasma iron parameters and liver iron concentration in DBA/2 and Balb/c strains. Hepatic hepcidin1 mRNA level was lower in DBA/2 mice. No iron parameter was correlated with hepcidin1 mRNA levels. Principal component analysis of the data obtained for non-iron metals indicated that metals parameters stratified the mice according to their genetic background. Plasma and tissue metals parameters that are dependent or independent of genetic background were identified. Moreover, relationships were found between plasma and tissue content of iron and some other metals parameters. Our data: (i) confirms the impact of the genetic background on iron parameters, (ii) shows that genetic background may also play a role in the metabolism of non-iron metals, (iii) identifies links between iron and other metals parameters which may have implications in the understanding and, potentially, the modulation of iron metabolism.
Collapse
|
3
|
Jones JM, Yeralan O, Hines G, Maher M, Roberts DW, Benson RW. Effects of lithium and rubidium on immune responses of rats. Toxicol Lett 1990; 52:163-8. [PMID: 2378000 DOI: 10.1016/0378-4274(90)90150-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rats were treated with LiCl or RbCl in drinking water for 65 days. Spleen cells from both treated groups exhibited significantly greater proliferative responses to lipopolysaccharide (LPS) than those from untreated controls. Responses to concanavalin A (Con A) were not affected. Cytotoxic activities of natural killer (NK) cells from both treated groups were significantly less than those from untreated controls. In vitro, Li augmented responses of spleen cells to LPS, but the same doses of Rb suppressed the responses. Effects on responses to Con A were variable. Both Li and Rb alone had a small mitogenic effect on spleen cells.
Collapse
Affiliation(s)
- J M Jones
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock
| | | | | | | | | | | |
Collapse
|