Kilonzo P, Margaritis A, Bergougnou M. Effects of surface treatment and process parameters on immobilization of recombinant yeast cells by adsorption to fibrous matrices.
BIORESOURCE TECHNOLOGY 2011;
102:3662-3672. [PMID:
21185170 DOI:
10.1016/j.biortech.2010.11.055]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 05/30/2023]
Abstract
The effects of surface properties of Saccharomyces cerevisiae strains 468/pGAC9 and 468 on adhesion to polyethyleneimine (PEI) and/glutaraldehyde (GA) pre-treated cotton (CT), polyester (PE), polyester+cotton (PECT), nylon (NL), polyurethane foam (PUF), and cellulose re-enforced polyurethane (CPU) fibers were investigated. Process parameters (circulation velocity, pH, ionic strength, media composition and surfactants) were also examined. 80%, 90%, and 35% of the cells were adsorbed onto unmodified CT, PUF, and PE, respectively. PEI-GA pre-treated CT and alkali treated PE yielded 25% and 60% cell adhesion, respectively. Adsorption rate (K(a)) ranged from 0.06 to 0.17 for CT and 0.06-0.16 for PE at varied pH. Adhesion increased by 15% in the presence of ethanol, low pH and ionic strength, and decreased by 23% in the presence of yeast extract and glucose. Shear flow and 1% Triton X-100 detached 62% and 36% nonviable cells from PE and CT, respectively, suggesting that cell immobilization in fibrous-bed bioreactors can be controlled to optimize cell density for long-term stability.
Collapse