1
|
Kilinc E, Ozdemir S, Poli A, Niolaus B, Romano I, Bekmezci M, Sen F. A novel bio-solid phase extractor for preconcentrations of Hg and Sn in food samples. ENVIRONMENTAL RESEARCH 2022; 207:112231. [PMID: 34695434 DOI: 10.1016/j.envres.2021.112231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
An ecofriendly preconcentration method was developed based on the use of Geobacillus galactosidasius sp. nov immobilized on Amberlite XAD-4 as an adsorbent for the preconcentrations of Hg and Sn. SEM-EDX performed for the investigation of surface functionality and morphology. The detailed investigations of factors such as pH of the solution, flow rate, interfering ions and sample volume have been thanks to the optimization of the pre-concentration system. The optimum pHs were found as 5.0-7.0 for Hg and Sn and also the optimum flow rates were determined as 2 mL min-1 for recovery of Hg and Sn. Under the best experimental conditions, limits of detections (LOD) were found as 0.53 ng mL-1 for Hg and 0.27 ng mL-1 for Sn. RSDs were calculated as 8.2% for Hg and 6.9% for Sn. The process was validated to use certified references (fish samples). ICP-OES was used to measure the levels of Hg and Sn in various real meal patterns after the devised technique was used. Concentrations of Hg and Sn were quantitively measured on gluten-free biscuit, flour, rice, Tuna fish, meat, chicken meat, potato, chocolate, coffee, tap water, energy drink and mineral water samples with low RSD. The developed method emerges as an innovative technology that will eliminate the low cost and toxic effect.
Collapse
Affiliation(s)
- Ersin Kilinc
- Department of Chemical and Chemical Processing Technologies, Vocational School of Technical Sciences, Dicle University, 21280, Diyarbakir, Turkey.
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey.
| | - Annarita Poli
- National Research Council of Italy (C.N.R.), Institute of Biomolecular Chemistry, via Campi Flegrei, n. 34, 80078, Pozzuoli, Napoli, Italy
| | - Barbara Niolaus
- National Research Council of Italy (C.N.R.), Institute of Biomolecular Chemistry, via Campi Flegrei, n. 34, 80078, Pozzuoli, Napoli, Italy
| | - Ida Romano
- National Research Council of Italy (C.N.R.), Institute of Biomolecular Chemistry, via Campi Flegrei, n. 34, 80078, Pozzuoli, Napoli, Italy
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, 43100, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, 43100, Turkey.
| |
Collapse
|
2
|
Yeast immobilisation for brewery fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Marim AVC, Gabardo S, Ayub MAZ. Porungo cheese whey: β-galactosidase production, characterization and lactose hydrolysis. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.03821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract This study evaluated the lactose hydrolysis by immobilized β-galactosidase, which was produced by Kluyveromyces marxianus using porungo cheese whey as substrate. Initially, the yeast was cultivated in porungo cheese medium at 30 °C and 200 rpm, showing a maximal β-galactosidase production of 14.19 U mL-1. The crude extract obtained was used to evaluate the enzymatic hydrolysis in lactose solution. The optimal pH and temperature of the free and immobilized enzyme was investigated, whereas the lactose hydrolysis was carried out using two enzyme solutions (total activities of 2 U and 6 U) for both forms of the biocatalyst. Ca-alginate immobilization of β-galactosidase increased optimal temperature range to 40 °C, compared to the value for the free enzyme, which was 37 °C. The optimal pH was also increased by immobilization to 7.0, from pH 6.5 observed for the free enzyme. The highest lactose hydrolysis conversion was 15.82% using 6 U of free enzyme and 13.77% for 2 U of immobilized enzyme. Although, free enzyme showed higher conversion rates in the initial reaction time, the immobilized enzyme kept operational stability throughout reaction time, suggesting the advantage of using this technology. The use of porungo cheese whey allowed to aggregate value to this agro-industrial by-product, with the concomitant production of β-galactosidase to be used in the food industry chain itself.
Collapse
|
4
|
Uria N, Fiset E, Pellitero MA, Muñoz F, Rabaey K, Campo F. Immobilisation of electrochemically active bacteria on screen-printed electrodes for rapid in situ toxicity biosensing. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 3:100053. [PMID: 36159604 PMCID: PMC9488082 DOI: 10.1016/j.ese.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 06/12/2023]
Abstract
Microbial biosensors can be an excellent alternative to classical methods for toxicity monitoring, which are time-consuming and not sensitive enough. However, bacteria typically connect to electrodes through biofilm formation, leading to problems due to lack of uniformity or long device production times. A suitable immobilisation technique can overcome these challenges. Still, they may respond more slowly than biofilm-based electrodes because bacteria gradually adapt to electron transfer during biofilm formation. In this study, we propose a controlled and reproducible way to fabricate bacteria-modified electrodes. The method consists of an immobilisation step using a cellulose matrix, followed by an electrode polarization in the presence of ferricyanide and glucose. Our process is short, reproducible and led us to obtain ready-to-use electrodes featuring a high-current response. An excellent shelf-life of the immobilised electrochemically active bacteria was demonstrated for up to one year. After an initial 50% activity loss in the first month, no further declines have been observed over the following 11 months. We implemented our bacteria-modified electrodes to fabricate a lateral flow platform for toxicity monitoring using formaldehyde (3%). Its addition led to a 59% current decrease approximately 20 min after the toxic input. The methods presented here offer the ability to develop a high sensitivity, easy to produce, and long shelf life bacteria-based toxicity detectors.
Collapse
Affiliation(s)
- N. Uria
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
- Arkyne Technologies SL (Bioo) ES-B90229261, Carrer de La Tecnologia, 17, 08840, Viladecans, Barcelona, Spain
| | - E. Fiset
- Center for Microbial Ecology and Technology (CMET) – FBE – Ghent University, Ghent, Belgium
| | - M. Aller Pellitero
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
| | - F.X. Muñoz
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
| | - K. Rabaey
- Center for Microbial Ecology and Technology (CMET) – FBE – Ghent University, Ghent, Belgium
- CAPTURE, Belgium
| | - F.J.del Campo
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Esfera UAB, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
5
|
Abstract
Abstract
Through years beer became one of the best known alcoholic beverages in the world. For some reason e.g. healthy lifestyle, medical reasons, driver’s duties, etc. there is a need for soft drink with similar organoleptic properties as standard beer. There are two major approaches to obtain such product. First is to interfere with biological aspects of beer production technology like changes in mashing regime or to perform fermentation in conditions that promote lower alcohol production or using special (often genetic modified) microorganism. Second approach is to remove alcohol from standard beer. It is mainly possible due to evaporation techniques and membrane ones. All these approaches are presented in the paper.
Collapse
|
6
|
Patel N, Rai D, Shahane S, Mishra U. Lipases: Sources, Production, Purification, and Applications. Recent Pat Biotechnol 2019; 13:45-56. [PMID: 30370868 DOI: 10.2174/1872208312666181029093333] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Background and Sources: Lipase enzyme is a naturally occurring enzyme found in the stomach and pancreatic juice. Its function is to digest fats and lipids, helping to maintain correct gallbladder function. Lipase is the one such widely used and versatile enzyme. These enzymes are obtained from animals, plants and as well as from several microorganisms and are sufficiently stable. These are considered as nature's catalysts, but commercially, only microbial lipases are being used significantly. Applications: They found enormous application in the industries of fat and oil processing, oleochemical industry, food industry, detergents, pulp and paper industry, detergents, environment management, tea processing, biosensors and cosmetics and perfumery. Various recent patents related to lipases have been revised in this review. Conclusion: Lipases are very peculiar as they have the ability to hydrolyse fats into fatty acids and glycerols at the water-lipid interface and can reverse the reaction in non-aqueous media. This natural ability makes it the most widely used enzyme in various industrial applications. This article deals with the immense versatility of lipase enzymes along with the recent advancements done in the various fields related to their purification and mass production in industries.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Dhananjai Rai
- Department of Civil Engineering, BIET Jhansi, Jhansi-284128, India
| | - Shraddha Shahane
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Umesh Mishra
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| |
Collapse
|
7
|
Shen HY, Moonjai N, Verstrepen KJ, Delvaux FR. Impact of Attachment Immobilization on Yeast Physiology and Fermentation Performance. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-61-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- H.-Y. Shen
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - N. Moonjai
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - K. J. Verstrepen
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| | - F. R. Delvaux
- Centre for Malting and Brewing Science, Faculty of Agricultural and Applied Biological Sciences, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Heverlee, Belgium
| |
Collapse
|
8
|
Hussain A, Kangwa M, Fernandez-Lahore M. Comparative analysis of stirred catalytic basket bio-reactor for the production of bio-ethanol using free and immobilized Saccharomyces cerevisiae cells. AMB Express 2017; 7:158. [PMID: 28759988 PMCID: PMC5533696 DOI: 10.1186/s13568-017-0460-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/20/2017] [Indexed: 11/10/2022] Open
Abstract
The successful industrial production of ethanol and fine chemicals requires the development of new biocatalytic reactors and support materials to achieve economically viable processes. In this work, a Stirred-Catalytic-Basket-BioReactor using various immobilizing foams as support material and compared to free cells were used, focusing mainly on; (i) effect of mass-transfer on cells physiology and (ii) ethanol productivity. The performance of the reactor was further evaluated by ethanol volumetric productivity, yield and time for process completion and it was found that the variation of ethanol production and diffusion of the substrate in fermentation process are co-related with the stirrer speed and initial glucose concentration. It was also observed that the time difference for glucose consumption between free and immobilized cells (alginate and sponges) tends to increase by increasing the glucose concentration in the medium. We found that at higher stirrer speed (500 rpm) when using higher glucose concentration (200 g/l), ethanol volumetric productivity increased significantly in the sponge (85 g/l) as compared to alginate beads (79 g/l) and free cells (60 g/l). From the data obtained, it can be concluded that sponges are the best support material for attaining higher ethanol productivity. A stirred catalytic basket bioreactor with yeast cells immobilized in polyethylene sponge gives higher ethanol production at a higher glucose consumption rate, and this productivity is due to higher mixing efficiency and reduced external as well as internal mass transfer limitations. The potentials of the reactor rank it as a remarkable ethanol/fine-chemical production approach that needs further investigations.
Collapse
|
9
|
He CR, Lee MC, Kuo YY, Wu TM, Li SY. The influence of support structures on cell immobilization and acetone–butanol–ethanol (ABE) fermentation performance. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
S.A. Z, A.M.M. S. Production of sorbitol by repeated batch fermentation using immobilized of Lactobacillus plantarum Strain (BAA-793) via Solid State Fermentation. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.5.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Simó G, Vila-Crespo J, Fernández-Fernández E, Ruipérez V, Rodríguez-Nogales JM. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5188-5197. [PMID: 28581736 DOI: 10.1021/acs.jafc.7b01210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.
Collapse
Affiliation(s)
- Guillermo Simó
- Food Technology Area, University of Valladolid, Technical High School of Agronomic Engineering , Av. Madrid 44, 34071 Palencia, Spain
| | - Josefina Vila-Crespo
- Microbiology Area, University of Valladolid, Technical High School of Agronomic Engineering , Av. Madrid 44, 34071 Palencia, Spain
| | - Encarnación Fernández-Fernández
- Food Technology Area, University of Valladolid, Technical High School of Agronomic Engineering , Av. Madrid 44, 34071 Palencia, Spain
| | - Violeta Ruipérez
- Microbiology Area, University of Valladolid, Technical High School of Agronomic Engineering , Av. Madrid 44, 34071 Palencia, Spain
| | - José Manuel Rodríguez-Nogales
- Food Technology Area, University of Valladolid, Technical High School of Agronomic Engineering , Av. Madrid 44, 34071 Palencia, Spain
| |
Collapse
|
12
|
Zhuang W, Liu X, Yang J, Wu J, Zhou J, Chen Y, Liu D, Ying H. Immobilization of Clostridium acetobutylicum onto natural textiles and its fermentation properties. Microb Biotechnol 2017; 10:502-512. [PMID: 28112488 PMCID: PMC5328812 DOI: 10.1111/1751-7915.12557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Immobilized fermentation has several advantages over traditional suspended fermentation, including simple and continuous operation, improved fermentation performance and reduced cost. Carrier is the most adjustable element among three elements of immobilized fermentation, including carrier, bacteria and environment. In this study, we characterized carrier roughness and surface properties of four types of natural fibres, including linen, cotton, bamboo fibre and silk, to assess their effects on cell immobilization, fermentation performance and stability. Linen with higher specific surface area and roughness could adsorb more bacteria during immobilized fermentation, thereby improving fermentation performance; thus, linen was selected as a suitable carrier and was applied for acetone–butanol–ethanol (ABE) fermentation. To further improve fermentation performance, we also found that microbes of Clostridium acetobutylicum were negatively charged surfaces during fermentation. Therefore, we then modified linen with polyetherimide (PEI) and steric acid (SA) to increase surface positive charge and improve surface property. During ABE fermentation, the adhesion between modified linen and bacteria was increased, adsorption was increased about twofold compared with that of unmodified linen, and butanol productivity was increased 8.16% and 6.80% with PEI‐ and SA‐modified linen as carriers respectively.
Collapse
Affiliation(s)
- Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, China.,College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China.,Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Xiaojing Liu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Jing Yang
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Jingwei Zhou
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, China.,College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, China.,College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China.,Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China
| |
Collapse
|
13
|
Enhanced Production of Xylitol from Poplar Wood Hydrolysates Through a Sustainable Process Using Immobilized New Strain Candida tropicalis UFMG BX 12-a. Appl Biochem Biotechnol 2017; 182:1053-1064. [PMID: 28054259 DOI: 10.1007/s12010-016-2381-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
A new strain, Candida tropicalis UFMG BX 12-a, was found to produce higher yields of xylitol on poplar wood hemicellulose hydrolysate. The hemicellulose hydrolysate liquor was detoxified using a novel method we developed, involving vacuum evaporation and solvent separation of inhibitors which made the hydrolysate free of toxins while retaining high concentrations of fermentable sugars. The effect of the detoxification method on the fermentation was also reported and compared to well-known methods reported in literature. In this study, the new strain C. tropicalis UFMG BX 12-a was used on the detoxified hydrolysate to produce xylitol. It was also compared to Candida guilliermondii FTI 20037, which has been reported to be one of the best strains for fermentative production of xylitol. To further improve the efficiency of the fermentation process, these strains were immobilized in calcium alginate beads. The yield (0.92 g g-1) and productivity (0.88 g L-1 h-1) obtained by fermenting the wood hydrolysate detoxified by our new detoxification technique using an immobilized new Candida strain were found to be higher than the values reported in literature.
Collapse
|
14
|
Bleve G, Tufariello M, Vetrano C, Mita G, Grieco F. Simultaneous Alcoholic and Malolactic Fermentations by Saccharomyces cerevisiae and Oenococcus oeni Cells Co-immobilized in Alginate Beads. Front Microbiol 2016; 7:943. [PMID: 27379072 PMCID: PMC4906054 DOI: 10.3389/fmicb.2016.00943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Malolactic fermentation (MLF) usually takes place after the end of alcoholic fermentation (AF). However, the inoculation of lactic acid bacteria together with yeast starter cultures is a promising system to enhance the quality and safety of wine. In recent years, the use of immobilized cell systems has been investigated, with interesting results, for the production of different fermented foods and beverages. In this study we have carried out the simultaneous immobilization of Saccharomyces cerevisiae and Oenococcus oeni in alginate beads and used them in microvinifications tests to produce Negroamaro wine. The process was monitored by chemical and sensorial analyses and dominance of starters and cell leaking from beads were also checked. Co-immobilization of S. cerevisiae and O. oeni allowed to perform an efficient fermentation process, producing low volatile acidity levels and ethanol and glycerol concentrations comparable with those obtained by cell sequential inoculum and co-inoculum of yeast and bacteria cells in free form. More importantly, co-immobilization strategy produced a significant decrease of the time requested to complete AF and MLF. The immobilized cells could be efficiently reused for the wine fermentation at least three times without any apparent loss of cell metabolic activities. This integrated biocatalytic system is able to perform simultaneously AF and MLF, producing wines similar in organoleptic traits in comparison with wines fermented following traditional sequential AF and MLF with free cell starters. The immobilized-cell system, that we here describe for the first time in our knowledge, offers many advantages over conventional free cell fermentations, including: (i) elimination of non-productive cell growth phases; (ii) feasibility of continuous processing; (iii) re-use of the biocatalyst.
Collapse
Affiliation(s)
- Gianluca Bleve
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari Lecce, Italy
| | - Maria Tufariello
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari Lecce, Italy
| | - Cosimo Vetrano
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari Lecce, Italy
| | - Giovanni Mita
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari Lecce, Italy
| | - Francesco Grieco
- Unità Operativa di Lecce, Consiglio Nazionale delle Ricerche - Istituto di Scienze delle Produzioni Alimentari Lecce, Italy
| |
Collapse
|
15
|
Szollosi A, Nguyen QD, Kovacs AG, Fogarasi AL, Kun S, Hegyesne-Vecseri B. Production of low or non-alcoholic beer in microbial fuel cell. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
|
17
|
Hussain A, Kangwa M, Yumnam N, Fernandez-Lahore M. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor. AMB Express 2015; 5:138. [PMID: 26272478 PMCID: PMC4536250 DOI: 10.1186/s13568-015-0138-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/30/2015] [Indexed: 12/29/2022] Open
Abstract
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.
Collapse
|
18
|
Li T, Chen XB, Chen JC, Wu Q, Chen GQ. Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 2015; 9:1503-11. [PMID: 25476917 DOI: 10.1002/biot.201400084] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/02/2014] [Accepted: 11/13/2014] [Indexed: 11/08/2022]
Abstract
Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products. In an effort to make bio-products more economically competitive, increased attention has been paid to developing open (unsterile) and continuous processes. If well conducted, continuous fermentation processes will lead to the reduced cost of industrial bio-products. To achieve cost-efficient open and continuous fermentations, the feeding of raw materials and the removal of products must be conducted in a continuous manner without the risk of contamination, even under 'open' conditions. Factors such as the stability of the biological system as a whole during long cultivations, as well as the yield and productivity of the process, are also important. Microorganisms that grow under extreme conditions such as high or low pH, high osmotic pressure, and high or low temperature, as well as under conditions of mixed culturing, cell immobilization, and solid state cultivation, are of interest for developing open and continuous fermentation processes.
Collapse
Affiliation(s)
- Teng Li
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Kathiravan MN, Gim GH, Ryu J, Han GH, Kim SW. Evaluation of steady state and unsteady state mass transfer rate of Cr(VI) in immobilized Bacillus sp. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0689-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Hussain A, Kangwa M, Abo-Elwafa AG, Fernandez-Lahore M. Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor. AMB Express 2015; 5:25. [PMID: 25977875 PMCID: PMC4416096 DOI: 10.1186/s13568-015-0111-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
The influence of mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; flow rate, glucose concentration and polymers (chitosan). Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on external mass transfer by substrate consumption time, lag phase and ethanol production. The results indicate that coating has a significant effect on the lag phase duration, being 30-40 min higher than non-coated beads. After lag phase, no significant change was observed in both types of beads on consumption of glucose with the same flow rate. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external mass transfer as a result of increase in flow rate as glucose is easily transported to and from the beads surface by diffusion. It is observed that chitosan acts as barrier for transfer of substrate and products, in and out of beads, at initial time of fermentation as it shows longer lag phase for chitosan coated beads than non-coated. Glucose consumption at low flow rate was lower as compared to higher flow rates. The optimum combination of parameters consisting of higher flow rates 30-90 ml/min and between 10 and 20 g/l of glucose was found for maximum production of ethanol.
Collapse
|
21
|
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Carrier-free, continuous primary beer fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Eduardo J. Pires
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - José A. Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Tomás Brányik
- Department of Biotechnology; Institute of Chemical Technology Prague; Technická 5 166 28 Prague 6 Czech Republic
| | - António A. Vicente
- Institute for Biotechnology and Bioengineering, Centre for Biological Engineering; Universidade do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
22
|
Pereira A, Mendes-Ferreira A, Oliveira J, Estevinho L, Mendes-Faia A. Effect of Saccharomyces cerevisiae cells immobilisation on mead production. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10:1646-62. [PMID: 24334143 DOI: 10.1016/j.actbio.2013.12.006] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently, which further allow their tailoring to the desired application. Additionally, their potential use as injectable materials offers several advantages over preformed scaffold-based approaches, namely: easy incorporation of therapeutic agents, such as cells, under mild conditions; minimally invasive local delivery; and high contourability, which is essential for filling in irregular defects. Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs. Here, the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed. In each example, the selected crosslinking approach, the cell type, the target tissue and the main findings of the study are highlighted.
Collapse
Affiliation(s)
- Sílvia J Bidarra
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | - Pedro L Granja
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
24
|
Mathew AK, Crook M, Chaney K, Humphries AC. Continuous bioethanol production from oilseed rape straw hydrosylate using immobilised Saccharomyces cerevisiae cells. BIORESOURCE TECHNOLOGY 2014; 154:248-253. [PMID: 24406845 DOI: 10.1016/j.biortech.2013.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
The aim of the study was to evaluate continuous bioethanol production from oilseed rape (OSR) straw hydrolysate using Saccharomyces cerevisiae cells immobilised in Lentikat® discs. The study evaluated the effect of dilution rate (0.25, 0.50, 0.75 and 1.00 h(-1)), substrate concentration (15, 22, 40 and 60 g L(-1)) and cell loading (0.03, 0.16 and 0.24 g d.c.w.mL(-1) Lentikat®) on bioethanol production. Volumetric productivity was found to increase with increasing substrate concentration from 15 g L(-1) to 60 g L(-1). A maximum volumetric productivity of 12.88 g L(-1)h(-1) was achieved at a substrate concentration of 60 g L(-1) and at a dilution rate of 0.5h(-1). An overall mass balance for bioethanol production was created to determine the energy recovery from bioethanol and concluded that a biorefinery approach might be the most appropriate option for maximising the energy recovery from OSR straw.
Collapse
Affiliation(s)
- Anil Kuruvilla Mathew
- Crops Department, Harper Adams University College, Newport, Shropshire TF10 8NB, UK.
| | - Mitch Crook
- Crops Department, Harper Adams University College, Newport, Shropshire TF10 8NB, UK
| | - Keith Chaney
- Crops Department, Harper Adams University College, Newport, Shropshire TF10 8NB, UK
| | | |
Collapse
|
25
|
Borovikova D, Scherbaka R, Patmalnieks A, Rapoport A. Effects of yeast immobilization on bioethanol production. Biotechnol Appl Biochem 2014; 61:33-9. [DOI: 10.1002/bab.1158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Diana Borovikova
- Laboratory of Cell Biology; Institute of Microbiology and Biotechnology; University of Latvia; Riga Latvia
| | - Rita Scherbaka
- Laboratory of Cell Biology; Institute of Microbiology and Biotechnology; University of Latvia; Riga Latvia
| | - Aloizijs Patmalnieks
- Laboratory of Cell Biology; Institute of Microbiology and Biotechnology; University of Latvia; Riga Latvia
| | - Alexander Rapoport
- Laboratory of Cell Biology; Institute of Microbiology and Biotechnology; University of Latvia; Riga Latvia
| |
Collapse
|
26
|
Abstract
One issue with batch fermentation is that product inhibition causes low yields and ethanol productivity. The objective of this study was to increase the yield and ethanol productivity via continuous fermentation in a packed bed bioreactor with both an integrated extraction process and recycling of the raffinate into the fermenter. Molasses was used as the feedstock, and the immobilized cells were supported by ĸ-carrageenan. This process used n-amyl alcohol, 1-octanol, and 1-dodecanol as solvents. The yield and ethanol productivity increased from 8.79% to 20.03% and 34.54 g/L·h to 118.16 g/L·h for experiments using n-amyl alcohol, 9.05% to 12.67% and 35.59 g/L·h to 74.71 g/L·h, for 1-dodecanol, 8.89% to 13.45% and 34.93 g/L·h to 84.62 g/L·h, for1-octanol by increasing recycle ratio from 0 to 0.5. Based on these results, n-amyl alcohol was the best solvent for the extractive fermentation process.
Collapse
|
27
|
Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 2013; 31:877-902. [DOI: 10.1016/j.biotechadv.2013.04.002] [Citation(s) in RCA: 607] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
28
|
Paulová L, Patáková P, Brányik T. Advanced Fermentation Processes. CONTEMPORARY FOOD ENGINEERING 2013. [DOI: 10.1201/b15426-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Kregiel D, Berlowska J, Ambroziak W. Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate. Enzyme Microb Technol 2013; 53:229-34. [PMID: 23931687 DOI: 10.1016/j.enzmictec.2013.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
Abstract
The aim of this research was to study how the cell immobilization technique of forming foamed alginate gels influences the growth, vitality and metabolic activity of different yeasts. Two distinct strains were used, namely conventional yeast (exemplified by Saccharomyces cerevisiae) and a non-conventional strain (exemplified by Debaryomyces occidentalis). The encapsulation of the yeast cells was performed by the traditional process of droplet formation, but from a foamed alginate solution. The activities of two key enzymes, succinate dehydrogenase and pyruvate decarboxylase, together with the ATP content were measured in both the free and immobilized cells. This novel method of yeast cell entrapment had some notable effects. The number of living immobilized cells reached the level of 10(6)-10(7) per single bead, and was stable during the fermentation process. Reductions in both enzyme activity and ATP content were observed in all immobilized yeasts. However, S. cerevisiae showed higher levels of ATP and enzymatic activity than D. occidentalis. Fermentation trials with immobilized repitching cells showed that the tested yeasts adapted to the specific conditions. Nevertheless, the mechanical endurance of the carriers and the internal structure of the gel need to be improved to enable broad applications of alginate gels in industrial fermentation processes, especially with conventional yeasts. This is one of the few papers and patents that describe the technique of cell immobilization in foamed alginate and shows the fermentative capacities and activities of key enzymes in immobilized yeast cells.
Collapse
Affiliation(s)
- Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Poland.
| | | | | |
Collapse
|
30
|
Saeed A, Iqbal M. Loofa (Luffa cylindrica) sponge: Review of development of the biomatrix as a tool for biotechnological applications. Biotechnol Prog 2013; 29:573-600. [DOI: 10.1002/btpr.1702] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/11/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Asma Saeed
- Environmental Biotechnology Group; Biotechnology and Food Research Centre; Lahore 54600 Pakistan
| | - Muhammad Iqbal
- Environmental Biotechnology Group; Biotechnology and Food Research Centre; Lahore 54600 Pakistan
| |
Collapse
|
31
|
|
32
|
Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification. World J Microbiol Biotechnol 2013; 29:1307-16. [DOI: 10.1007/s11274-013-1294-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/13/2013] [Indexed: 01/01/2023]
|
33
|
Partial purification of saccharifying and cell wall-hydrolyzing enzymes from malt in waste from beer fermentation broth. Bioprocess Biosyst Eng 2013; 36:737-47. [DOI: 10.1007/s00449-013-0899-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
34
|
Sidorov YI. MODERN PROCESSES AND EQUIPMENT FOR BEER PRODUCTION. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Dragone G, Mussatto SI, Almeida e Silva JB. High Gravity Brewing by Continuous Process Using Immobilised Yeast: Effect of Wort Original Gravity on Fermentation Performance. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00766.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Genisheva Z, Macedo S, Mussatto SI, Teixeira JA, Oliveira JM. Production of white wine by Saccharomyces cerevisiae immobilized on grape pomace. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zlatina Genisheva
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering; Universidade do Minho; 4710-057; Braga; Portugal
| | - Susana Macedo
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering; Universidade do Minho; 4710-057; Braga; Portugal
| | - Solange I. Mussatto
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering; Universidade do Minho; 4710-057; Braga; Portugal
| | - José A. Teixeira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering; Universidade do Minho; 4710-057; Braga; Portugal
| | - José M. Oliveira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering; Universidade do Minho; 4710-057; Braga; Portugal
| |
Collapse
|
37
|
Brányik T, Vicente AA, Dostálek P, Teixeira JA. A Review of Flavour Formation in Continuous Beer Fermentations*. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2008.tb00299.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Pilkington H, Margaritis A, Mensour N, Sobczak J, Hancock I, Russell I. Kappa-Carrageenan Gel Immobilisation of Lager Brewing Yeast. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.1999.tb00032.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Brányik T, Silva DP, Baszczyňski M, Lehnert R, Almeida e Silva JB. A review of methods of low alcohol and alcohol-free beer production. J FOOD ENG 2012. [DOI: 10.1016/j.jfoodeng.2011.09.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Liu ZQ, Zhou M, Zhang XH, Xu JM, Xue YP, Zheng YG. Biosynthesis of Iminodiacetic Acid from Iminodiacetonitrile by Immobilized Recombinant Escherichia coli Harboring Nitrilase. J Mol Microbiol Biotechnol 2012; 22:35-47. [DOI: 10.1159/000337055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Gungormusler M, Gonen C, Azbar N. Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumoniae. J Appl Microbiol 2011; 111:1138-47. [PMID: 21883732 DOI: 10.1111/j.1365-2672.2011.05137.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The feasibility of the continuous production of a valuable bioplastic raw material, namely 1,3-propanediol (1,3-PDO) from biodiesel by-product glycerol, using immobilized cells was investigated. In addition, the effect of hydraulic retention time (HRT) was also analysed. METHODS AND RESULTS Ceramic balls and ceramic rings were used for the immobilization of a locally isolated strain; Klebsiella pneumoniae (GenBank no. 27F HM063413). HRT of 1 h is the best one in terms of volumetric production rate (g 1,3-PDO l(-1) h(-1)). The results indicated that ceramic-based cell immobilization achieved a 2-fold higher production rate (10 g 1,3-PDO l(-1) h(-1)) in comparison with suspended cell system (4·9 g 1,3-PDO l(-1) h(-1)). CONCLUSIONS Continuous cultures with immobilized cells revealed that 1,3-PDO production was more effective and more stable than suspended culture systems. Furthermore, cell immobilization had also obvious benefits especially for resistance of the production for extreme conditions (high organic loading rates, cell washouts). The results were important for understanding the significance of continuous immobilization process among other well-known 1,3-PDO fermentation processes. SIGNIFICANCE AND IMPACT OF THE STUDY This work is a promising process for further studies, as the immobilized micro-organism was able to reach high volumetric production rates at short HRT, it has an important role in tolerating and converting glycerol during fermentation. Therefore, HRT is a very significant operational parameter (P value <0·05) directly affecting the bioreactor performance and production rate.
Collapse
Affiliation(s)
- M Gungormusler
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | | | | |
Collapse
|
42
|
Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol. Appl Biochem Biotechnol 2011; 168:21-8. [PMID: 21590307 DOI: 10.1007/s12010-011-9280-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
Abstract
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.
Collapse
|
43
|
|
44
|
Sohrabvandi S, Mousavi S, Razavi S, Mortazavian A, Rezaei K. Alcohol-free Beer: Methods of Production, Sensorial Defects, and Healthful Effects. FOOD REVIEWS INTERNATIONAL 2010. [DOI: 10.1080/87559129.2010.496022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
|
46
|
Almonacid SF, Nájera AL, Young ME, Simpson RJ, Acevedo CA. A Comparative Study of Stout Beer Batch Fermentation Using Free and Microencapsulated Yeasts. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0379-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Acevedo CA, Skurtys O, Young ME, Enrione J, Pedreschi F, Osorio F. A non-destructive digital imaging method to predict immobilized yeast-biomass. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2009.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Pilkington PH, Margaritis A, Mensour NA. Mass Transfer Characteristics of Immobilized Cells Used in Fermentation Processes. Crit Rev Biotechnol 2008. [DOI: 10.1080/0738-859891224239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Brányik T, Vicente AA, Dostálek P, Teixeira JA. Continuous Beer Fermentation Using Immobilized Yeast Cell Bioreactor Systems. Biotechnol Prog 2008; 21:653-63. [PMID: 15932239 DOI: 10.1021/bp050012u] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional beer fermentation and maturation processes use open fermentation and lager tanks. Although these vessels had previously been considered indispensable, during the past decades they were in many breweries replaced by large production units (cylindroconical tanks). These have proved to be successful, both providing operating advantages and ensuring the quality of the final beer. Another promising contemporary technology, namely, continuous beer fermentation using immobilized brewing yeast, by contrast, has found only a limited number of industrial applications. Continuous fermentation systems based on immobilized cell technology, albeit initially successful, were condemned to failure for several reasons. These include engineering problems (excess biomass and problems with CO(2) removal, optimization of operating conditions, clogging and channeling of the reactor), unbalanced beer flavor (altered cell physiology, cell aging), and unrealized cost advantages (carrier price, complex and unstable operation). However, recent development in reactor design and understanding of immobilized cell physiology, together with application of novel carrier materials, could provide a new stimulus to both research and application of this promising technology.
Collapse
Affiliation(s)
- Tomás Brányik
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
50
|
|