1
|
Mota VT, Delforno TP, Ribeiro JC, Zaiat M, Oliveira VMD. Understanding microbiome dynamics and functional responses during acidogenic fermentation of sucrose and sugarcane vinasse through metatranscriptomic analysis. ENVIRONMENTAL RESEARCH 2024; 246:118150. [PMID: 38218518 DOI: 10.1016/j.envres.2024.118150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Improving anaerobic digestion of sugarcane vinasse - a high-strength wastewater from ethanol distillation - is a subject of great interest, in view of the reduction of the pollutants and recovery of methane and valuable metabolites as byproducts. Through metatranscriptomic analysis, this study evaluated the active microbiome and metabolic pathways in a continuous acidogenic reactor: Stage 1S (control): 100% sucrose-based substrate (SBS); Stage 2SV (acclimation): 50% SBS and 50% vinasse; Stage 3V: 100% vinasse. Metatranscriptome obtained from each Stage was subjected to taxonomic and functional annotations. Under SBS feeding, pH dropped to pH 2.7 and biohydrogen production was observed. As vinasse was added, pH increased to 4.1-4.5, resulting in community structure and metabolite changes. In Stage 3V, biohydrogen production ceased, and propionate and acetate prevailed among the volatile fatty acids. Release of homoacetogenesis enzymes by Clostridium ljungdahlii and of uptake hydrogenase (EC 1.12.99.6) by Pectinatus frisingensis were linked to hydrogen consumption in Stages 2SV and 3V. Metabolic pathways of vinasse compounds, such as carbohydrates, malate, oxalate, glycerol, sulfate and phenol, were investigated in detail. In pyruvate metabolism, gene transcripts of oadA (oxaloacetate decarboxylase) and mdh (malate dehydrogenase), were upregulated in Stage 3V, being mostly attributed to P. frisingensis. Acetate formation from vinasse degradation was mainly attributed to Megasphaera and Clostridium, and propionate formation to P. frisingensis. Glycerol removal from vinasse exceeded 99%, and gene transcripts encoding for glpF (glycerol uptake facilitator protein), glpK (glycerol kinase) and glpABC (glycerol-3-phosphate dehydrogenase) were expressed mostly by Pectinatus and Prevotella. mRNA profiling showed that active bacteria and gene expression greatly changed when vinasse replaced sucrose, and Pectinatus was the main active bacterium degrading the searched compounds from vinasse. The identification of the main metabolic routes and the associated microorganisms achieved in this work contributes with valuable information to support further optimization of fermentation towards the desired metabolites.
Collapse
Affiliation(s)
- Vera T Mota
- Research Center for Chemistry, Biology and Agriculture Research, University of Campinas (CPQBA/Unicamp), Paulínia, SP, Brazil.
| | - Tiago P Delforno
- SENAI Innovation Institute for Biotechnology, São Paulo, SP, Brazil
| | - Jaqueline C Ribeiro
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), São Carlos, SP, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), São Carlos, SP, Brazil
| | - Valéria M de Oliveira
- Research Center for Chemistry, Biology and Agriculture Research, University of Campinas (CPQBA/Unicamp), Paulínia, SP, Brazil
| |
Collapse
|
2
|
Roselli GE, Kerruish DWM, Crow M, Smart KA, Powell CD. The two faces of microorganisms in traditional brewing and the implications for no- and low-alcohol beers. Front Microbiol 2024; 15:1346724. [PMID: 38440137 PMCID: PMC10910910 DOI: 10.3389/fmicb.2024.1346724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
The production of alcoholic beverages is intrinsically linked to microbial activity. This is because microbes such as yeast are associated with the production of ethanol and key sensorial compounds that produce desirable qualities in fermented products. However, the brewing industry and other related sectors face a step-change in practice, primarily due to the growth in sales of no- and low-alcohol (NoLo) alternatives to traditional alcoholic products. Here we review the involvement of microbes across the brewing process, including both their positive contributions and their negative (spoilage) effects. We also discuss the opportunities for exploiting microbes for NoLo beer production, as well as the spoilage risks associated with these products. For the latter, we highlight differences in composition and process conditions between traditional and NoLo beers and discuss how these may impact the microbial ecosystem of each product stream in relation to microbiological stability and final beer quality.
Collapse
Affiliation(s)
- Giulia E. Roselli
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | | | - Matthew Crow
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Katherine A. Smart
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Chris D. Powell
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
3
|
Kurniawan YN, Shinohara Y, Suzuki K. Applications of the Third-Generation DNA Sequencing Technology to the Identification of Spoilage Microorganisms in the Brewing Industry. Methods Mol Biol 2024; 2851:75-85. [PMID: 39210172 DOI: 10.1007/978-1-0716-4096-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new nanopore sequencing-based method has been developed for the detection and identification of a wider range of microorganisms. This method uses universal primers to identify virtually all the bacterial or yeast/fungal species via the amplification and nucleotide sequencing of common ribosomal DNA regions. The simplicity of its protocol makes the method suitable for both small and large breweries.
Collapse
Affiliation(s)
| | | | - Koji Suzuki
- Asahi Quality & Innovations, LTD, Ibaraki, Japan
| |
Collapse
|
4
|
de Lima AC, Brandao LR, Botelho BG, Rosa CA, Aceña L, Mestres M, Boqué R. Multivariate Analysis of the Influence of Microfiltration and Pasteurisation on the Quality of Beer during Its Shelf Life. Foods 2023; 13:122. [PMID: 38201150 PMCID: PMC10778496 DOI: 10.3390/foods13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gas chromatography-mass spectrometry (GC-MS), physicochemical and microbiological analyses, sensory descriptive evaluation, and multivariate analyses were applied to evaluate the efficiencies of microfiltration and pasteurization processes during the shelf life of beer. Samples of microfiltered and pasteurised beer were divided into fresh and aged groups. A forced ageing process, which consisted of storing fresh samples at 55° C for 6 days in an incubator and then keeping them under ambient conditions prior to analysis, was applied. Physicochemical analysis showed that both microfiltered and pasteurised samples had a slight variation in apparent extract, pH, and bitterness. The samples that underwent heat treatment had lower colour values compared with those that were microfiltered. Chromatographic peak areas of vicinal diketones increased in both fresh and aged samples. The results of the microbiological analysis revealed spoilage lactic acid bacteria (Lactobacillus) and yeasts (Saccharomyces and non-Saccharomyces) in fresh microfiltered samples. In the GC-MS analysis, furfural, considered by many authors as a heat indicator, was detected only in samples that underwent forced ageing and not in samples that were subjected to thermal pasteurisation. Finally, sensory analysis found differences in the organoleptic properties of fresh microfiltered samples compared with the rest of the samples.
Collapse
Affiliation(s)
- Ana Carolina de Lima
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | | | - Bruno G. Botelho
- Department of Chemistry, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Carlos A. Rosa
- Department of Microbiology, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Laura Aceña
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | - Montserrat Mestres
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| | - Ricard Boqué
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, 43007 Tarragona, Catalonia, Spain; (A.C.d.L.); (L.A.); (M.M.)
| |
Collapse
|
5
|
Bucka-Kolendo J, Kiousi DE, Wojtczak A, Doulgeraki AI, Galanis A, Sokołowska B. Depiction of the In Vitro and Genomic Basis of Resistance to Hop and High Hydrostatic Pressure of Lactiplantibacillus plantarum Isolated from Spoiled Beer. Genes (Basel) 2023; 14:1710. [PMID: 37761850 PMCID: PMC10530735 DOI: 10.3390/genes14091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Among the beer-spoiling microorganisms, the dominant ones belong to the genera Lactobacillus, Leuconostoc, Oenococcus, and Pediococcus. It is assumed that resistance to hop bitters correlates with resistance to other factors and can significantly impact the brewing industry. Beer preservation with high hydrostatic pressure eliminates the spoiling microorganisms while preserving all desired properties of the beer. Here, we present comprehensive in vitro and genomic analysis of the beer-spoiling Lactiplantibacillus plantarum KKP 3573 capacity to resist hop and high hydrostatic pressure. Lp. plantarum KKP 3573 is a strain isolated from spoiled beer. Our finding suggests that the growth rate of the strain depends on the medium variant, where a small concentration of beer (5 IBU) stimulates the growth, suggesting that the limited concentration has a positive effect on cell growth. At the same time, increased concentrations of 20 IBU, 30 IBU, and pure beer 43.6 IBU decreased the growth rate of the KKP 3573 strain. We observed that higher extract content in the pressurized beer increased microbial survivability. The wort and Vienna Lager beer can stimulate the baroprotective effect. The taxonomy of the novel strain was confirmed after whole genome sequencing (WGS) and comparative genomic analysis. More specifically, it contains a chromosome of 3.3 Mb with a GC content of 44.4%, indicative of the Lp. plantarum species. Accordingly, it possesses high genomic similarity (>98%) with other species members. Annotation algorithms revealed that the strain carries several genes involved in resistance to stress, including extreme temperature, hop bitters and high pressure, and adaptation to the brewing environment. Lastly, the strain does not code for toxins and virulence proteins and cannot produce biogenic amines.
Collapse
Affiliation(s)
- Joanna Bucka-Kolendo
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.W.); (B.S.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.G.)
| | - Adrian Wojtczak
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.W.); (B.S.)
| | - Agapi I. Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.G.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.W.); (B.S.)
| |
Collapse
|
6
|
Latorre M, Bruzone MC, de Garcia V, Libkind D. [Microbial contaminants in bottled craft beer of Andean Patagonia, Argentina]. Rev Argent Microbiol 2023; 55:88-99. [PMID: 35738976 DOI: 10.1016/j.ram.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The brewing activity in Andean Patagonia plays a very important role in the region's economy, being microbial contamination one of the main problems in terms of quality. The presence of contaminant bacteria and wild yeasts in beer generate microbiological, physical and chemical changes that impact on its sensory attributes. However, few breweries establish criteria and policies to guarantee the quality of their products in a microbiological sense. The purpose of this work was to study for the first time the incidence of microbial contaminants in bottled craft beers from Andean Patagonia, identify the main microorganisms involved and establish relationships between contamination and the physicochemical variables of beer. We analyzed 75 beers from 37 breweries from 12 different Patagonian cities. Our results showed that 69.3% of the analyzed beer exhibited contaminant microorganism growth. Bacteria Levilactobacillus brevis and wild yeasts of Saccharomyces were the main microorganisms responsible for these contaminations. In addition, we found that microbial contamination had an impact on beer sensory profile and also that pH was correlated with the presence of lactic acid bacteria in beer, being an indicator of contamination for these bacteria. In conclusion, we observed that 8 out of 10 breweries studied showed contamination problems, highlighting the need to design prevention and control strategies in microbreweries.
Collapse
Affiliation(s)
- Mailen Latorre
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - M Clara Bruzone
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina
| | - Virginia de Garcia
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Neuquén, Buenos Aires, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, Bariloche, Río Negro, Argentina.
| |
Collapse
|
7
|
Gil RL, Amorim CMPG, Amorim HG, Montenegro MDCBSM, Araújo AN. Influence of Brewing Process on the Profile of Biogenic Amines in Craft Beers. SENSORS (BASEL, SWITZERLAND) 2022; 23:343. [PMID: 36616940 PMCID: PMC9823436 DOI: 10.3390/s23010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The evaluation of the biogenic amines (BAs) profile of different types of craft beers is herein presented. A previously developed and validated analytical method based on ion-pair chromatography coupled with potentiometric detection was used to determine the presence of 10 BAs. Good analytical features were obtained for all amines regarding linearity (R2 values from 0.9873 ± 0.0015 to 0.9973 ± 0.0015), intra- and inter-day precision (RSD lower than 6.9% and 9.7% for beer samples, respectively), and accuracy (recovery between 83.2-108.9%). Detection and quantification limits range from 9.3 to 60.5 and from 31.1 to 202.3 µg L-1, respectively. The validated method was applied to the analysis of four ale beers and one lager craft beer. Ethylamine, spermidine, spermine, and tyramine were detected in all analyzed samples while methylamine and phenylethylamine were not detected. Overall, pale ale beers had a significantly higher total content of BAs than those found in wheat pale and dark samples. A general least square regression model showed a good correlation between the total content of BAs and the brewing process, especially for Plato degree, mashing, and fermentation temperatures. Knowledge about the type of ingredients and manufacturing processes that contribute to higher concentrations of these compounds is crucial to ensuring consumer safety.
Collapse
Affiliation(s)
- Renato L. Gil
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Célia M. P. G. Amorim
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Henrique G. Amorim
- Mathematics Department, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Alberto N. Araújo
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer. Foods 2022; 11:foods11182787. [PMID: 36140918 PMCID: PMC9497594 DOI: 10.3390/foods11182787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
During the last few years, consumer demand has been increasingly oriented to fermented foods with functional properties. This work proposed to use selected non-conventional yeasts (NCY) Lachanceathermotolerans and Kazachstaniaunispora in pure and mixed fermentation to produce craft beer fortified with hydrolyzed red lentils (HRL). For this, fermentation trials using pils wort (PW) and pils wort added with HRL (PWL) were carried out. HRL in pils wort improved the fermentation kinetics both in mixed and pure fermentations without negatively affecting the main analytical characters. The addition of HRL determined a generalized increase in amino acids concentration in PW. L. thermotolerans and K. unispora affected the amino acid profile of beers (with and without adding HRL). The analysis of by-products and volatile compounds in PW trials revealed a significant increase of some higher alcohols with L. thermotolerans and ethyl butyrate with K. unispora. In PWL, the two NCY showed a different behavior: an increment of ethyl acetate (K. unispora) and β-phenyl ethanol (L. thermotolerans). Sensory analysis showed that the presence of HRL characterized all beers, increasing the perception of the fruity aroma in both pure and mixed fermentation.
Collapse
|
9
|
Hayashi N, Arai R, Minato T, Fujita Y. Factorial Analysis of Variance of the Inhibiting Effects of Iso-Alpha Acids, Alpha Acids, and Sulfur Dioxide on the Growth of Beer-Spoilage Bacteria in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2093091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Nobuyuki Hayashi
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Ritsuko Arai
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Toshiko Minato
- Food Safety and Quality Assurance Center, Quality Assurance Department, Kirin Holdings Company, Ltd, Yokohama, Japan
| | - Yasuhiro Fujita
- Institute for Future Beverages, Kirin Holdings Company, Limited, Yokohama, Japan
| |
Collapse
|
10
|
Attchelouwa CK, Kouakou-Kouamé CA, Ouattara L, Amoikon TLS, N'guessan FK, Marcotte S, Charmel M, Djè MK. Detection of spoilage-causing yeasts and bacteria in tchapalo, the Ivorian traditional sorghum beer. Lett Appl Microbiol 2022; 75:135-144. [PMID: 35344598 DOI: 10.1111/lam.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
In this study, we aimed to analyse the spoilage potential of the isolated yeast, LAB and AAB species. Thus, eleven strains were inoculated at 0.3% (v/v) into a sterile filtered tchapalo and stored for three days at ambient temperature (27-30°C). All the tested strains grew well or remained stable except for Limosilactobacillus fermentum and Pediococcus acidilactici which decreased throughout the storage time. A significant decrease of Total Soluble Solids was observed only for Saccharomyces cerevisiae (from 7.8 to 5.8 °Brix) and M. guilliermondii (from 7.8 to 5.5 °Brix). The tchapalo samples inoculated with the LAB strains Weissella paramesenteroides, P. acidilactici, Limosilactobacillus fermentum and the yeast strain Candida tropicalis were judged similar to the control by the panellists. However, the strains of Lacticaseibacillus paracasei and Latilactobacillus curvatus (LAB), S. cerevisiae, Meyerozyma guilliermondii and Kluyveromyces marxianus (yeasts) and Acetobacter pasteurianus and A. cerevisiae (AAB) induced the spoilage of the tchapalo appearance, smell and/or taste. In the spoiled tchapalo quantitative and qualitative modification of some volatile compounds (VOCs) such as lilac aldehyde, ethyl acetate, ethyl hexanoate, ethyl octanoate and phenethyl acetate, were observed. These results provide information about the microorganisms that need to be removed to extend the shelf life of tchapalo.
Collapse
Affiliation(s)
- Constant K Attchelouwa
- Unité de formation et de Recherche en Sciences Biologiques, Département Biochimie/Génétique, Université Péléforo Gon Coulibaly, BP 1328, Korhogo, Côte d'Ivoire
| | - Clémentine A Kouakou-Kouamé
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Lacinan Ouattara
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Tiemele L S Amoikon
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Florent K N'guessan
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Stephane Marcotte
- Normandie Univ, INSA de Rouen, Université de Rouen, CNRS, COBRA (UMR, 6014) Avenue de l'Université, 76800, Saint- Etienne- du-Rouvray, France
| | - Melissa Charmel
- Normandie Univ, INSA de Rouen, Université de Rouen, CNRS, COBRA (UMR, 6014) Avenue de l'Université, 76800, Saint- Etienne- du-Rouvray, France
| | - Marcellin K Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| |
Collapse
|
11
|
Bockwoldt JA, Meng C, Ludwig C, Kupetz M, Ehrmann MA. Proteomic Analysis Reveals Enzymes for β-D-Glucan Formation and Degradation in Levilactobacillus brevis TMW 1.2112. Int J Mol Sci 2022; 23:ijms23063393. [PMID: 35328813 PMCID: PMC8951740 DOI: 10.3390/ijms23063393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial exopolysaccharide (EPS) formation is crucial for biofilm formation, for protection against environmental factors, or as storage compounds. EPSs produced by lactic acid bacteria (LAB) are appropriate for applications in food fermentation or the pharmaceutical industry, yet the dynamics of formation and degradation thereof are poorly described. This study focuses on carbohydrate active enzymes, including glycosyl transferases (GT) and glycoside hydrolases (GH), and their roles in the formation and potential degradation of O2-substituted (1,3)-β-D-glucan of Levilactobacillus (L.) brevis TMW 1.2112. The fermentation broth of L. brevis TMW 1.2112 was analyzed for changes in viscosity, β-glucan, and D-glucose concentrations during the exponential, stationary, and early death phases. While the viscosity reached its maximum during the stationary phase and subsequently decreased, the β-glucan concentration only increased to a plateau. Results were correlated with secretome and proteome data to identify involved enzymes and pathways. The suggested pathway for β-glucan biosynthesis involved a β-1,3 glucan synthase (GT2) and enzymes from maltose phosphorylase (MP) operons. The decreased viscosity appeared to be associated with cell lysis as the β-glucan concentration did not decrease, most likely due to missing extracellular carbohydrate active enzymes. In addition, an operon was discovered containing known moonlighting genes, all of which were detected in both proteome and secretome samples.
Collapse
Affiliation(s)
- Julia A. Bockwoldt
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354 Freising, Germany;
| | - Chen Meng
- Bayerisches Zentrum für Biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, 85354 Freising, Germany; (C.M.); (C.L.)
| | - Christina Ludwig
- Bayerisches Zentrum für Biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, 85354 Freising, Germany; (C.M.); (C.L.)
| | - Michael Kupetz
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, 85354 Freising, Germany;
| | - Matthias A. Ehrmann
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354 Freising, Germany;
- Correspondence:
| |
Collapse
|
12
|
|
13
|
Takesue N, Suzuki K, Mizutani M, Nakamura Y. Iron Enhances the Growth of the Genus Pectinatus in Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2019554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nobuchika Takesue
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd, Moriya, Ibaraki, Japan
| | - Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| | - Masanori Mizutani
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd, Moriya, Ibaraki, Japan
| | - Yuichi Nakamura
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd, Moriya, Ibaraki, Japan
| |
Collapse
|
14
|
Kordialik-Bogacka E. Biopreservation of beer: Potential and constraints. Biotechnol Adv 2022; 58:107910. [PMID: 35038561 DOI: 10.1016/j.biotechadv.2022.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
The biopreservation of beer, using only antimicrobial agents of natural origin to ensure microbiological stability, is of great scientific and commercial interest. This review article highlights progress in the biological preservation of beer. It describes the antimicrobial properties of beer components and microbiological spoilage risks. It discusses novel biological methods for enhancing beer stability, using natural antimicrobials from microorganisms, plants, and animals to preserve beer, including legal restrictions. The future of beer preservation will involve the skilled knowledge-based exploitation of naturally occurring components in beer, supplementation with generally regarded as safe antimicrobial additives, and mild physical treatments.
Collapse
Affiliation(s)
- Edyta Kordialik-Bogacka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 171/173 Wolczanska Street, 90-530 Lodz, Poland.
| |
Collapse
|
15
|
Abstract
In the beer brewing industry, microbial spoilage presents a consistent threat that must be monitored and controlled to ensure the palatability of a finished product. Many of the predominant beer spoilage microbes have been identified and characterized, but the mechanisms of contamination and persistence remain an open area of study. Postproduction, many beers are distributed as kegs that are attached to draft delivery systems in retail settings where ample opportunities for microbial spoilage are present. As such, restaurants and bars can experience substantial costs and downtime for cleaning when beer draft lines become heavily contaminated. Spoilage monitoring on the retail side of the beer industry is often overlooked, yet this arena may represent one of the largest threats to the profitability of a beer if its flavor profile becomes substantially distorted by contaminating microbes. In this study, we sampled and cultured microbial communities found in beers dispensed from a retail draft system to identify the contaminating bacteria and yeasts. We also evaluated their capability to establish new biofilms in a controlled setting. Among four tested beer types, we identified over a hundred different contaminant bacteria and nearly 20 wild yeasts. The culturing experiments demonstrated that most of these microbes were viable and capable of joining new biofilm communities. These data provide an important reference for monitoring specific beer spoilage microbes in draft systems and we provide suggestions for cleaning protocol improvements. IMPORTANCE Beer production, packaging, and service are each vulnerable to contamination by microbes that metabolize beer chemicals and impart undesirable flavors, which can result in the disposal of entire batches. Therefore, great effort is taken by brewmasters to reduce and monitor contamination during production and packaging. A commonly overlooked quality control stage of a beer supply chain is at the retail service end, where beer kegs supply draft lines in bars and restaurants under nonsterile conditions. We found that retail draft line contamination is rampant and that routine line cleaning methods are insufficient to efficiently suppress beer spoilage. Thus, many customers unknowingly consume spoiled versions of the beers they consume. This study identified the bacteria and yeast that were resident in retail draft beer samples and also investigated their abilities to colonize tubing material as members of biofilm communities.
Collapse
|
16
|
Shimokawa M, Suzuki K, Motoyama Y. Development of Culture-Independent Detection Method for Beer Spoilage Lactic Acid Bacteria. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.2006559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Masaki Shimokawa
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya, Japan
| | - Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Japan
| | - Yasuo Motoyama
- Quality Assurance Department, Nippon Freeze Drying Co., Ltd, Azumino, Japan
| |
Collapse
|
17
|
Luan C, Cao W, Luo N, Tu J, Hao J, Bao Y, Hao F, Wang D, Jiang X. Genomic Insights into the Adaptability of the Spoilage Bacterium Lactobacillus acetotolerans CN247 to the Beer Microenvironment. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1997280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chunguang Luan
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Weihua Cao
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
- Department of Food Science, Northeast Forestry University, Harbin, China
| | - Na Luo
- Guangzhou Pearl River Brewery Co., Ltd, Guangzhou, China
| | - Jingxia Tu
- Guangzhou Pearl River Brewery Co., Ltd, Guangzhou, China
| | - Jianqin Hao
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Yihong Bao
- Department of Food Science, Northeast Forestry University, Harbin, China
| | - Feike Hao
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Deliang Wang
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Xin Jiang
- Department of Traditional Fermentation Food, China National Research Institute of Food and Fermentation Industries, Beijing, China
| |
Collapse
|
18
|
Schlörmann W, Bockwoldt JA, Mayr MF, Lorkowski S, Dawczynski C, Rohn S, Ehrmann MA, Glei M. Fermentation profile, cholesterol-reducing properties and chemopreventive potential of β-glucans from Levilactobacillus brevis and Pediococcus claussenii - a comparative study with β-glucans from different sources. Food Funct 2021; 12:10615-10631. [PMID: 34585204 DOI: 10.1039/d1fo02175c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate whether β-glucans obtained from the lactic acid bacteria (LAB) Levilactobacillus (L.) brevis and Pediococcus (P.) claussenii exhibit similar physiological effects such as cholesterol-binding capacity (CBC) as the structurally different β-glucans from oat, barley, and yeast as well as curdlan. After in vitro fermentation, fermentation supernatants (FSs) and/or -pellets (FPs) were analyzed regarding the concentrations of short-chain fatty acids (SCFAs), ammonia, bile acids, the relative abundance of bacterial taxa and chemopreventive effects (growth inhibition, apoptosis, genotoxicity) in LT97 colon adenoma cells. Compared to other glucans, the highest CBC was determined for oat β-glucan (65.9 ± 8.8 mg g-1, p < 0.05). Concentrations of SCFA were increased in FSs of all β-glucans (up to 2.7-fold). The lowest concentrations of ammonia (down to 0.8 ± 0.3 mmol L-1) and bile acids (2.5-5.2 μg mL-1) were detected in FSs of the β-glucans from oat, barley, yeast, and curdlan. The various β-glucans differentially modulated the relative abundance of bacteria families and reduced the Firmicutes/Bacteroidetes ratio. Treatment of LT97 cells with the FSs led to a significant dose-dependent growth reduction and increase in caspase-3 activity without exhibiting genotoxic effects. Though the different β-glucans show different fermentation profiles as well as cholesterol- and bile acid-reducing properties, they exhibit comparable chemopreventive effects.
Collapse
Affiliation(s)
- W Schlörmann
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - J A Bockwoldt
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M F Mayr
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany.
| | - S Lorkowski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Straße 25, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - C Dawczynski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Junior Research Group Nutritional Concepts, Dornburger Straße 29, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - S Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M A Ehrmann
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M Glei
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
19
|
Identification of Type II Toxin-Antitoxin Loci in Levilactobacillus brevis. Interdiscip Sci 2021; 14:80-88. [PMID: 34664198 DOI: 10.1007/s12539-021-00486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Levilactobacillus brevis are present in various environments, such as beer, fermented foods, silage, and animal host. Like other lactic acid bacteria, L. brevis might adopt the viable but nonculturable (VBNC) state under unfavorable conditions. The toxin-antitoxin (TA) system, known to regulate cell growth in response to environmental stresses, is found to control the dynamic of the VBNC state. Here, we investigate the type II TA locus prevalence and compare the TA diversity in L. brevis genomes. Using the TAfinder software, we identified a total of 273 putative type II TA loci in 110 replicons of 21 completely sequenced genomes. Genome size does not appear to correlate with the amount of putative type II TA in L. brevis. Besides, type II TA loci are distributed differently among the chromosomes and plasmids. The most prevalent toxin domain is MazF-like in the chromosomes, and RelE/RelE-like in the plasmids; while for antitoxin, Xre-like and Phd-like domains are the most common in the chromosomes and plasmids, respectively. We also observed a unique GNAT-like/ArsR-like TA pair that presents only in the L. brevis chromosome. Detection of 273 putative type II TA loci in 21 complete genomes of Levilactobacillus brevis.
Collapse
|
20
|
Quain DE. The enhanced susceptibility of alcohol‐free and low alcohol beers to microbiological spoilage: implications for draught dispense. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David E. Quain
- International Centre for Brewing Science, School of Biosciences University of Nottingham, Sutton Bonington Campus Loughborough Leicestershire LE12 5RD UK
| |
Collapse
|
21
|
Shimokawa M, Suzuki K. Preceding Subculture Conditions Affect Growth Characteristics of Beer Spoilage Lactic Acid Bacteria in Quality Control Culture Media: Comparative Study on Hard-to-Culture and Culturable Secundilactobacillus ( Lactobacillus) paracollinoides Strains. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1903785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Masaki Shimokawa
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Moriya, Japan
| | - Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Japan
| |
Collapse
|
22
|
Rodríguez-Saavedra M, Pérez-Revelo K, Valero A, Moreno-Arribas MV, González de Llano D. A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage. Foods 2021; 10:foods10081926. [PMID: 34441703 PMCID: PMC8391359 DOI: 10.3390/foods10081926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In this study, a growth/no growth (G/NG) binary logistic regression model to predict this susceptibility was developed. Values of beer physicochemical parameters such as pH, alcohol content (% ABV), bitterness units (IBU), and yeast-fermentable extract (% YFE) obtained from the analysis of twenty commercially available craft beers were used to prepare 22 adjusted beers at different levels of each parameter studied. These preparations were assigned as a first group of samples, while 17 commercially available beers samples as a second group. The results of G/NG from both groups, after artificially inoculating with one wild yeast and different lactic acid bacteria (LAB) previously adapted to grow in a beer-type beverage, were used to design the model. The developed G/NG model correctly classified 276 of 331 analyzed cases and its predictive ability was 100% in external validation. This G/NG model has good sensitivity and goodness of fit (87% and 83.4%, respectively) and provides the potential to predict craft beer susceptibility to microbial spoilage.
Collapse
Affiliation(s)
- Magaly Rodríguez-Saavedra
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain; (M.R.-S.); (K.P.-R.); (M.V.M.-A.)
| | - Karla Pérez-Revelo
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain; (M.R.-S.); (K.P.-R.); (M.V.M.-A.)
| | - Antonio Valero
- Department of Food Science and Technology, Campus de Rabanales, University of Cordoba, Edificio Darwin, 14014 Córdoba, Spain;
| | - M. Victoria Moreno-Arribas
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain; (M.R.-S.); (K.P.-R.); (M.V.M.-A.)
| | - Dolores González de Llano
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC-UAM), C/Nicolás Cabrera 9, 28049 Madrid, Spain; (M.R.-S.); (K.P.-R.); (M.V.M.-A.)
- Correspondence:
| |
Collapse
|
23
|
Kurniawan YN, Shinohara Y, Sakai H, Magarifuchi T, Suzuki K. Applications of the Third-Generation DNA Sequencing Technology to the Detection of Hop Tolerance Genes and Discrimination of Saccharomyces Yeast Strains. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1939606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yohanes Novi Kurniawan
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| | - Yuji Shinohara
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| | - Hiroaki Sakai
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| | - Tetsuro Magarifuchi
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| | - Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| |
Collapse
|
24
|
Biocontrol effect of Pythium oligandrum on artificial Fusarium culmorum infection during malting of wheat. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Puligundla P, Smogrovicova D, Mok C. Recent innovations in the production of selected specialty (non-traditional) beers. Folia Microbiol (Praha) 2021; 66:525-541. [PMID: 34097198 DOI: 10.1007/s12223-021-00881-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Customer demand for product diversity is the key driving force for innovations in the brewing industry. Specialty beers are regarded as a distinct group of beers different from two major types, lagers and ales, without established definitions or boundaries. Specialty beers, including low- to no-alcohol beer, low carbohydrate beer, gluten-free beer, sour beer, probiotic beer, and enriched beer, are exclusively brewed and developed keeping in mind their functionality, the health and wellbeing of the consumer, and emerging market trends. Compared with conventional beer-brewing, the production of specialty beers is technologically challenging and usually requires additional process steps, unique microorganisms, and special equipment, which in turn may incur additional costs. In addition, the maintenance of quality and stability of the products as well as consumer acceptability of the products are major challenges to successful commercialization. A harmonious integration of traditional brewing practices and modern technological approaches may hold potential for future developments. In the present review, latest developments in the fermentative production of selected specialty beers are discussed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Daniela Smogrovicova
- Institute of Biotechnology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
26
|
Staniszewski A, Kordowska-Wiater M. Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application. Foods 2021; 10:1306. [PMID: 34200217 PMCID: PMC8228341 DOI: 10.3390/foods10061306] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Besides the well-known and tested lactic acid bacteria, yeasts may also be probiotics. The subject of probiotic and potentially probiotic yeasts has been developing and arising potential for new probiotic products with novel properties, which are not offered by bacteria-based probiotics available on the current market. The paper reviews the first probiotic yeast Saccharomyces cerevisiae var. boulardii, its characteristics, pro-healthy activities and application in functional food production. This species offers such abilities as improving digestion of certain food ingredients, antimicrobial activities and even therapeutic properties. Besides Saccharomyces cerevisiae var. boulardii, on this background, novel yeasts with potentially probiotic features are presented. They have been intensively investigated for the last decade and some species have been observed to possess probiotic characteristics and abilities. There are yeasts from the genera Debaryomyces, Hanseniaspora, Pichia, Meyerozyma, Torulaspora, etc. isolated from food and environmental habitats. These potentially probiotic yeasts can be used for production of various fermented foods, enhancing its nutritional and sensory properties. Because of the intensively developing research on probiotic yeasts in the coming years, we can expect many discoveries and possibly even evolution in the segment of probiotics available on the market.
Collapse
Affiliation(s)
| | - Monika Kordowska-Wiater
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| |
Collapse
|
27
|
Umegatani M, Takesue N, Asano S, Tadami H, Uemura K. Study of Beer Spoilage Lactobacillus nagelii Harboring Hop Resistance Gene horA. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1915073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Minami Umegatani
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Nobuchika Takesue
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Shizuka Asano
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Hideyo Tadami
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| | - Kazuhiko Uemura
- Research Laboratories for Alcohol Beverages, Asahi Breweries Ltd., Moriya, Japan
| |
Collapse
|
28
|
Xu Z, Lu Z, Soteyome T, Ye Y, Huang T, Liu J, Harro JM, Kjellerup BV, Peters BM. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: coexistence-relevant mechanisms. Crit Rev Microbiol 2021; 47:386-396. [PMID: 33663335 DOI: 10.1080/1040841x.2021.1893265] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coordination of single or multiple microorganisms are required for the manufacture of traditional fermented foods, improving the flavour and nutrition of the food materials. However, both the additional economic benefits and safety concerns have been raised by microbiotas in fermented products. Among the fermented products, Lactobacillus and Saccharomyces cerevisiae are one of the stable microbiotas, suggesting their interaction is mediated by coexistence-relevant mechanisms and prevent to be excluded by other microbial species. Thus, aiming to guide the manufacture of fermented foods, this review will focus on interactions of coexistence-relevant mechanisms between Lactobacillus and S. cerevisiae, including metabolites communications, aggregation, and polymicrobial biofilm. Also, the molecular regulatory network of the coexistence-relevant mechanisms is discussed according to omics researches.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Kurniawan YN, Shinohara Y, Takesue N, Sakai H, Magarifuchi T, Suzuki K. Development of a Rapid and Accurate Nanopore-based Sequencing Platform for on-Field Identification of Beer-Spoilage Bacteria in the Breweries. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1904491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Yuji Shinohara
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Ibaraki, Japan
| | - Nobuchika Takesue
- Research Laboratories for Alcohol Beverages, Asahi Breweries, Ltd, Ibaraki, Japan
| | - Hiroaki Sakai
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Ibaraki, Japan
| | - Tetsuro Magarifuchi
- Analytical Science Laboratories, Asahi Quality and Innovations, Ltd, Ibaraki, Japan
| | - Koji Suzuki
- Asahi Quality and Innovations, Ltd, Ibaraki, Japan
| |
Collapse
|
30
|
β-Glucan Production by Levilactobacillus brevis and Pediococcus claussenii for In Situ Enriched Rye and Wheat Sourdough Breads. Foods 2021; 10:foods10030547. [PMID: 33800822 PMCID: PMC7998486 DOI: 10.3390/foods10030547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Sourdough fermentation is a common practice spread across the globe due to quality and shelf life improvement of baked goods. Above the widely studied exopolysaccharide (EPS) formation, which is exploited for structural improvements of foods including baked goods, β-glucan formation, by using lactic acid bacteria (LAB), offers additional values. Through renunciation of sucrose addition for bacterial β-d-glucan formation, which is required for the production of other homopolysaccharides, residual sweetness of baked goods can be avoided, and predicted prebiotic properties can be exploited. As promising starter cultures Levilactobacillus (L.) brevis TMW (Technische Mikrobiologie Weihenstephan) 1.2112 and Pediococcus (P.) claussenii TMW 2.340 produce O2-substituted (1,3)-β-d-glucan upon fermenting wheat and rye doughs. In this study, we have evaluated methods for bacterial β-glucan quantification, identified parameters influencing the β-glucan yield in fermented sourdoughs, and evaluated the sourdough breads by an untrained sensory panel. An immunological method for the specific detection of β-glucan proved to be suitable for its quantification, and changes in the fermentation temperature were related to higher β-glucan yields in sourdoughs. The sensory analysis resulted in an overall acceptance of the wheat and rye sourdough breads fermented by L.brevis and P.claussenii with a preference of the L. brevis fermented wheat sourdough bread and tart-flavored rye sourdough bread.
Collapse
|
31
|
Thomas K, Ironside K, Clark L, Bingle L. Preliminary microbiological and chemical analysis of two historical stock ales from Victorian and Edwardian brewing. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keith Thomas
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Kayleigh Ironside
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| | - Lisa Clark
- Brewlab Unit One West Quay Court, Sunderland Enterprise Park Sunderland SR5 2TE UK
| | - Lewis Bingle
- Faculty of Health Sciences and Wellbeing University of Sunderland Chester Road Sunderland SR1 3SD UK
| |
Collapse
|
32
|
Zheng F, Wang T, Niu C, Jia Y, Zheng R, Liu C, Wang J, Li Q. Proteomic Analysis of Hop Bitter Compound Iso-α-acid Tolerance in Beer Spoilage Lactobacillus casei 2-9-5. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2020.1864710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Tianmu Wang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yun Jia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ruilong Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
33
|
Suzuki K, Shinohara Y, Kurniawan YN. Role of Plasmids in Beer Spoilage Lactic Acid Bacteria: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Koji Suzuki
- Asahi Quality and Innovations, Ltd., Moriya, Japan
| | - Yuji Shinohara
- Department of Safety Technology Development, Analytical Science Laboratories, Asahi Quality and Innovations, Ltd., Moriya, Japan
| | - Yohanes Novi Kurniawan
- Department of Safety Technology Development, Analytical Science Laboratories, Asahi Quality and Innovations, Ltd., Moriya, Japan
| |
Collapse
|
34
|
Wang Z, Chao Y, Deng Y, Piao M, Chen T, Xu J, Zhang R, Zhao J, Deng Y. Formation of viable, but putatively non-culturable (VPNC) cells of beer-spoilage lactobacilli growing in biofilms. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Rodríguez-Saavedra M, González de Llano D, Beltran G, Torija MJ, Moreno-Arribas MV. Pectinatus spp. - Unpleasant and recurrent brewing spoilage bacteria. Int J Food Microbiol 2020; 336:108900. [PMID: 33129006 DOI: 10.1016/j.ijfoodmicro.2020.108900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Traditionally, beer has been recognised as a beverage with high microbiological stability because of the hostile growth environment posed by beer and increasing attention being paid to brewery hygiene. However, the microbiological risk has increased in recent years because of technological advances toward reducing oxygen in beers, besides the increase in novel beer styles production, such as non-pasteurised, flash pasteurised, cold sterilised, mid-strength, and alcoholic-free beer, that are more prone to spoilage bacteria. Moreover, using innovative beer ingredients like fruits and vegetables is an added cause of microbial spoilage. To maintain quality and good brand image, beer spoilage microorganisms are a critical concern for breweries worldwide. Pectinatus and Megasphaera are Gram-negative bacteria mostly found in improper brewing environments, leading to consumer complaints and financial losses. Because of the lack of compiled scientific knowledge on Pectinatus spoilage ability, this review provides a comprehensive overview of the occurrence, survival mechanisms, and the factors affecting beer spoilage Pectinatus species in the brewing process.
Collapse
Affiliation(s)
- Magaly Rodríguez-Saavedra
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain
| | - Dolores González de Llano
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain.
| |
Collapse
|
36
|
Zheng F, Wang T, Niu C, Zheng R, Liu C, Wang J, Li Q. Roles of Divalent-Cation Transporter Genes mntB and mntC of Beer Spoilage Bacteria in Resisting Hop Bitter Compound Iso-α-Acid. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1814049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Tianmu Wang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Ruilong Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China
- Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
37
|
Persistence and β-glucan formation of beer-spoiling lactic acid bacteria in wheat and rye sourdoughs. Food Microbiol 2020; 91:103539. [DOI: 10.1016/j.fm.2020.103539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
|
38
|
Kahle EM, Zarnkow M, Jacob F. Beer Turbidity Part 1: A Review of Factors and Solutions. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1803468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eva-Maria Kahle
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Alte Akademie 3, 85354 Freising-Weihenstephan, Germany
| | - Martin Zarnkow
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Alte Akademie 3, 85354 Freising-Weihenstephan, Germany
| | - Fritz Jacob
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Alte Akademie 3, 85354 Freising-Weihenstephan, Germany
| |
Collapse
|
39
|
Suzuki K. Emergence of New Spoilage Microorganisms in the Brewing Industry and Development of Microbiological Quality Control Methods to Cope with This Phenomenon: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1782101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| |
Collapse
|
40
|
Abstract
Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods. These include poor process control, lack of consistency in product quality, and lengthy fermentation times. This review summarizes the methods for traditional sour beer production with a focus on the use of lactobacilli to generate this beverage. In addition, the review describes the use of selected pure cultures of microorganisms with desirable properties in conjunction with careful application of processing steps. Together, this facilitates the production of sour beer with a higher level of process control and more rapid fermentation compared to traditional methods.
Collapse
|
41
|
Kawtharani H, Snini SP, Heang S, Bouajila J, Taillandier P, Mathieu F, Beaufort S. Phenyllactic Acid Produced by Geotrichum candidum Reduces Fusarium sporotrichioides and F. langsethiae Growth and T-2 Toxin Concentration. Toxins (Basel) 2020; 12:E209. [PMID: 32224845 PMCID: PMC7232515 DOI: 10.3390/toxins12040209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Fusariumsporotrichioides and F. langsethiae are present in barley crops. Their toxic metabolites, mainly T-2 toxin, affect the quality and safety of raw material and final products such as beer. Therefore, it is crucial to reduce Fusarium spp. proliferation and T-2 toxin contamination during the brewing process. The addition of Geotrichum candidum has been previously demonstrated to reduce the proliferation of Fusarium spp. and the production of toxic metabolites, but the mechanism of action is still not known. Thus, this study focuses on the elucidation of the interaction mechanism between G.candidum and Fusarium spp. in order to improve this bioprocess. First, over a period of 168 h, the co-culture kinetics showed an almost 90% reduction in T-2 toxin concentration, starting at 24 h. Second, sequential cultures lead to a reduction in Fusarium growth and T-2 toxin concentration. Simultaneously, it was demonstrated that G. candidum produces phenyllactic acid (PLA) at the early stages of growth, which could potentially be responsible for the reduction in Fusarium growth and T-2 toxin concentration. To prove the PLA effect, F. sporotrichioides and F.langsethiae were cultivated in PLA supplemented medium. The expected results were achieved with 0.3 g/L of PLA. These promising results contribute to a better understanding of the bioprocess, allowing its optimization at an up-scaled industrial level.
Collapse
Affiliation(s)
| | | | | | | | | | - Florence Mathieu
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (H.K.); (S.P.S.); (S.H.); (J.B.); (P.T.)
| | - Sandra Beaufort
- Laboratoire de Génie Chimique, UMR 5503, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (H.K.); (S.P.S.); (S.H.); (J.B.); (P.T.)
| |
Collapse
|
42
|
Kramer T, Kelleher P, van der Meer J, O'Sullivan T, Geertman JMA, Duncan SH, Flint HJ, Louis P. Comparative genetic and physiological characterisation of Pectinatus species reveals shared tolerance to beer-associated stressors but halotolerance specific to pickle-associated strains. Food Microbiol 2020; 90:103462. [PMID: 32336380 DOI: 10.1016/j.fm.2020.103462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 11/19/2022]
Abstract
Obligate anaerobic bacteria from the genus Pectinatus have been known to cause beer spoilage for over 40 years. Whole genome sequencing was performed on eleven beer spoilage strains (nine Pectinatus frisingensis, one Pectinatus cerevisiiphilus and one Pectinatus haikarae isolate), as well as two pickle spoilage species (Pectinatus brassicae MB591 and Pectinatus sottacetonis MB620) and the tolerance of all species to a range of environmental conditions was tested. Exploration of metabolic pathways for carbohydrates, amino acids and vitamins showed little difference between beer spoilage- and pickle spoilage-associated strains. However, genes for certain carbohydrate- and sulphur-containing amino acid-associated enzymes were only present in the beer spoilage group and genes for specific transporters and regulatory genes were uniquely found in the pickle spoilage group. Transporters for compatible solutes, only present in pickle-associated strains, likely explain their experimentally observed higher halotolerance compared to the beer spoilers. Genes involved in biofilm formation and ATP Binding Cassette (ABC) transporters potentially capable of exporting hop-derived antimicrobial compounds were found in all strains. All species grew in the presence of alcohol up to 5% alcohol by volume (ABV) and hops extract up to 80 ppm of iso-α-acids. Therefore, the species isolated from pickle processes may pose novel hazards in brewing.
Collapse
Affiliation(s)
- Timo Kramer
- University of Aberdeen, The Rowett Institute, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom
| | - Philip Kelleher
- APC Microbiome Ireland, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | | | - Tadhg O'Sullivan
- Heineken Supply Chain B.V., Burgemeester Smeetsweg 1, 2382 PH, Zoeterwoude, the Netherlands
| | - Jan-Maarten A Geertman
- Heineken Supply Chain B.V., Burgemeester Smeetsweg 1, 2382 PH, Zoeterwoude, the Netherlands
| | - Sylvia H Duncan
- University of Aberdeen, The Rowett Institute, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom
| | - Harry J Flint
- University of Aberdeen, The Rowett Institute, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom
| | - Petra Louis
- University of Aberdeen, The Rowett Institute, Foresterhill, AB25 2ZD, Aberdeen, United Kingdom.
| |
Collapse
|
43
|
Dysvik A, La Rosa SL, Liland KH, Myhrer KS, Østlie HM, De Rouck G, Rukke EO, Westereng B, Wicklund T. Co-fermentation Involving Saccharomyces cerevisiae and Lactobacillus Species Tolerant to Brewing-Related Stress Factors for Controlled and Rapid Production of Sour Beer. Front Microbiol 2020; 11:279. [PMID: 32153550 PMCID: PMC7048013 DOI: 10.3389/fmicb.2020.00279] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/06/2020] [Indexed: 11/22/2022] Open
Abstract
Increasing popularity of sour beer urges the development of novel solutions for controlled fermentations both for fast acidification and consistency in product flavor and quality. One possible approach is the use of Saccharomyces cerevisiae in co-fermentation with Lactobacillus species, which produce lactic acid as a major end-product of carbohydrate catabolism. The ability of lactobacilli to ferment beer is determined by their capacity to sustain brewing-related stresses, including hop iso-α acids, low pH and ethanol. Here, we evaluated the tolerance of Lactobacillus brevis BSO464 and Lactobacillus buchneri CD034 to beer conditions and different fermentation strategies as well as their use in the brewing process in mixed fermentation with a brewer's yeast, S. cerevisiae US-05. Results were compared with those obtained with a commercial Lactobacillus plantarum (WildBrewTM Sour Pitch), a strain commonly used for kettle souring. In pure cultures, the three strains showed varying susceptibility to stresses, with L. brevis being the most resistant and L. plantarum displaying the lowest stress tolerance. When in co-fermentation with S. cerevisiae, both L. plantarum and L. brevis were able to generate sour beer in as little as 21 days, and their presence positively influenced the composition of flavor-active compounds. Both sour beers were sensorially different from each other and from a reference beer fermented by S. cerevisiae alone. While the beer produced with L. plantarum had an increased intensity in fruity odor and dried fruit odor, the L. brevis beer had a higher total flavor intensity, acidic taste and astringency. Remarkably, the beer generated with L. brevis was perceived as comparable to a commercial sour beer in multiple sensory attributes. Taken together, this study demonstrates the feasibility of using L. brevis BSO464 and L. plantarum in co-fermentation with S. cerevisiae for controlled sour beer production with shortened production time.
Collapse
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristine S. Myhrer
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Hilde Marit Østlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Gert De Rouck
- Faculty of Engineering Technology, KU Leuven, Ghent, Belgium
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
44
|
Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020; 8:microorganisms8020274. [PMID: 32085437 PMCID: PMC7074673 DOI: 10.3390/microorganisms8020274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 01/07/2023] Open
Abstract
Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final product concentration and render industrial yeast strains unable to be reused. Alternative approaches to controlling contamination, including the use of antibiotics, have been developed and proposed as solutions. However, more efficient and industry-friendly approaches are needed for use in industrial applications. This review covers: (i) general information about industrial uses of yeast fermentation, (ii) microbial contamination and its effects on yeast fermentation, and (iii) currently used and suggested approaches/strategies for controlling microbial contamination at the industrial and/or laboratory scale.
Collapse
|
45
|
Lodolo EJ. Sustainability through Management of Water, Process and Product Hygiene on Food and Beverage Sites. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2019. [DOI: 10.1080/03610470.2019.1683707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elizabeth J. Lodolo
- Next Renewable Generation (Pty) Ltd, Rosebank, South Africa
- Department of Microbial, Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa
| |
Collapse
|
46
|
Bertuzzi T, Mulazzi A, Rastelli S, Donadini G, Rossi F, Spigno G. Targeted healthy compounds in small and large-scale brewed beers. Food Chem 2019; 310:125935. [PMID: 31835228 DOI: 10.1016/j.foodchem.2019.125935] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Abstract
The determination of targeted healthy compounds in the most popular small and large-scale brewed beer sold in Italy was carried out. Nitrogen compounds, fermentable sugars, total phenolic content and antioxidant capacity, β-glucans, pyridoxine, folates and silicon were quantified. Further, amine content was determined since raw materials and brewing technology can affect their level. Significantly higher values for total phenolic content, antioxidant activity, nitrogen, folate and putrescine content were found for small scale beers. However, the statistical results were affected by the different beer styles in the small scale and large scale brewed beer groups, since the content of these components can vary between beer styles. Positive Pearson correlation was found between total phenolic content and EBC colour. Wide variations in pyridoxine, β-glucans and fermentable sugars levels were observed both for small and large scale beers, while average silicon content of two groups was similar.
Collapse
Affiliation(s)
- T Bertuzzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, UCSC, Via E. Parmense, 84, 29122 Piacenza, Italy.
| | - A Mulazzi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, UCSC, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - S Rastelli
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, UCSC, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - G Donadini
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, UCSC, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - F Rossi
- DIANA, Department of Animal Science, Food and Nutrition, Faculty of Agricultural, Food and Environmental Sciences, UCSC, Via E. Parmense, 84, 29122 Piacenza, Italy
| | - G Spigno
- DiSTAS, Department for Sustainable Food Process, Faculty of Agricultural, Food and Environmental Sciences, UCSC, Via E. Parmense, 84, 29122 Piacenza, Italy
| |
Collapse
|
47
|
Yu Z, Luo Q, Xiao L, Sun Y, Li R, Sun Z, Li X. Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality. Food Sci Nutr 2019; 7:3950-3957. [PMID: 31890173 PMCID: PMC6924307 DOI: 10.1002/fsn3.1256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023] Open
Abstract
To meet demands for fresh flavor and unique taste from beer consumer, there is an increase in the popularity of craft beer, which is more susceptible to microbial contamination than the industry beer. A beer-spoilage strain was isolated from craft beer and identified as Staphylococcus xylosus strain BS7. The isolate BS7 showed that high beer-spoilage ability at low temperature (4°C), low pH (4.0) and high ethanol concentration (7.0%, v/v). Compared with the other known strains of S. xylosus, strain BS7 was resistant to hop compounds and had an evolutionary stability in hop resistance. Strain BS7 was able to grow quickly and utilizes nutrients in commercial beer, produces organic acids and biogenic amines, and changes beer flavor profile. These results suggest that S. xylosus strain BS7 is a beer-spoilage strain with the danger, which can lead to the beer-spoilage issues during craft beer production.
Collapse
Affiliation(s)
- Zhimin Yu
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Qiuying Luo
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Li Xiao
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Yumei Sun
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Rong Li
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Zhen Sun
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| | - Xianzhen Li
- School of Biological EngineeringDalian Polytechnic UniversityDalianChina
| |
Collapse
|
48
|
Alcine Chan MZ, Chua JY, Toh M, Liu SQ. Survival of probiotic strain Lactobacillus paracasei L26 during co-fermentation with S. cerevisiae for the development of a novel beer beverage. Food Microbiol 2019; 82:541-550. [DOI: 10.1016/j.fm.2019.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 11/30/2022]
|
49
|
Dysvik A, Liland KH, Myhrer KS, Westereng B, Rukke EO, de Rouck G, Wicklund T. Pre-fermentation with lactic acid bacteria in sour beer production. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Dysvik
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Ås Norway
| | - Kristine S. Myhrer
- NOFIMA - Norwegian Institute of Food, Fisheries and Aquaculture Research; PB 210 N-1431 Ås Norway
| | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| | - Elling-Olav Rukke
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| | - Gert de Rouck
- Faculty of Engineering Technology; KU Leuven Technology campus Gent; Gebroeders De Smetstraat 1 B9000 Ghent Belgium
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science; Norwegian University of Life Sciences; P.O. Box 5003 N-1433 Aas Norway
| |
Collapse
|
50
|
Induction of viable but putatively non-culturable Lactobacillus acetotolerans by thermosonication and its characteristics. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|