1
|
Boadi WY, Stevenson C, Johnson D, Mohamed MA. Flavonoids Reduce Lipid Peroxides and Increase Glutathione Levels in Pooled Human Liver Microsomes (HLMs). ADVANCES IN BIOLOGICAL CHEMISTRY 2021; 11:283-295. [PMID: 36340955 PMCID: PMC9634994 DOI: 10.4236/abc.2021.116019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effects of each of the flavonoids; genistein (G), quercetin (Q) and kaempferol (K) at several doses on lipid peroxides (LP) and reduced glutathione (GSH) in pooled human liver microsomes (HLMs) were investigated following the oxidative damage for 4, 6, 18 and 24 hr. HLMs (1 mg/ml) were exposed to each of the above flavonoids at 0, 5, 10, 15, 20 or 25 μM and incubated for the respective times as previously stated. Our hypothesis was that HLMs exposed to the flavonoids for the respective exposure times can decrease LP and increase GSH in HLMs to better cope with the oxidative stress. The results of our studies indicate that each of the flavonoids significantly (p < 0.01) decreased LP compared to their respective controls. The highest decrease in LP was observed for K followed by Q and G. Significant increases (p < 0.01) in GSH were observed for the flavonoid doses tested with the highest levels observed for Q for the 24-hr. incubation. The findings suggest that the flavonoids modulate oxidative stress in HLMs by decreasing LP and such decreases in LPs may be due to the increasing and or the replenished levels of GSH in the said cells to better cope with the oxidative stress.
Collapse
Affiliation(s)
- William Yaw Boadi
- Departments of Biological Sciences, Tennessee State University, Nashville, USA
| | - Camille Stevenson
- Departments of Chemistry, Tennessee State University, Nashville, USA
| | - Dontrez Johnson
- Departments of Chemistry, Tennessee State University, Nashville, USA
| | | |
Collapse
|
2
|
Sharifi-Rad J, Quispe C, Imran M, Rauf A, Nadeem M, Gondal TA, Ahmad B, Atif M, Mubarak MS, Sytar O, Zhilina OM, Garsiya ER, Smeriglio A, Trombetta D, Pons DG, Martorell M, Cardoso SM, Razis AFA, Sunusi U, Kamal RM, Rotariu LS, Butnariu M, Docea AO, Calina D. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3268136. [PMID: 34336089 PMCID: PMC8315847 DOI: 10.1155/2021/3268136] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Genistein is an isoflavone first isolated from the brooming plant Dyer's Genista tinctoria L. and is widely distributed in the Fabaceae family. As an isoflavone, mammalian genistein exerts estrogen-like functions. Several biological effects of genistein have been reported in preclinical studies, such as the antioxidant, anti-inflammatory, antibacterial, and antiviral activities, the effects of angiogenesis and estrogen, and the pharmacological activities on diabetes and lipid metabolism. The purpose of this review is to provide up-to-date evidence of preclinical pharmacological activities with mechanisms of action, bioavailability, and clinical evidence of genistein. The literature was researched using the most important keyword "genistein" from the PubMed, Science, and Google Scholar databases, and the taxonomy was validated using The Plant List. Data were also collected from specialized books and other online resources. The main positive effects of genistein refer to the protection against cardiovascular diseases and to the decrease of the incidence of some types of cancer, especially breast cancer. Although the mechanism of protection against cancer involves several aspects of genistein metabolism, the researchers attribute this effect to the similarity between the structure of soy genistein and that of estrogen. This structural similarity allows genistein to displace estrogen from cellular receptors, thus blocking their hormonal activity. The pharmacological activities resulting from the experimental studies of this review support the traditional uses of genistein, but in the future, further investigations are needed on the efficacy, safety, and use of nanotechnologies to increase bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-, 23561 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari-, Pakistan
| | | | - Bashir Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-, 25120 KPK, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia
| | | | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Oxana Mihailovna Zhilina
- Department of Organic Chemistry, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Ekaterina Robertovna Garsiya
- Department of Pharmacognosy, Botany and Technology of Phytopreparations, Pyatigorsk Medical-Pharmaceutical Institute (PMPI), Branch of Volgograd State Medical University, Ministry of Health of Russia, Pyatigorsk 357532, Russia
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma 07122, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepción 4070386, Chile
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse Jigawa State, Nigeria
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
3
|
Yu H, Guo Z, Wang S, Fernando GSN, Channa S, Kazlauciunas A, Martin DP, Krasnikov SA, Kulak A, Boesch C, Sergeeva NN. Fabrication of Hybrid Materials from Titanium Dioxide and Natural Phenols for Efficient Radical Scavenging against Oxidative Stress. ACS Biomater Sci Eng 2019; 5:2778-2785. [PMID: 33405610 DOI: 10.1021/acsbiomaterials.9b00535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress caused by free radicals is one of the great threats to inflict intracellular damage. Here, we report a convenient approach to the synthesis, characterization, and evaluation of the radical activity of titanium-based composites. We have investigated the potential of natural antioxidants (curcumin, quercetin, catechin, and vitamin E) as radical scavengers and stabilizers. The titanium oxide composites were prepared via three steps including sol-gel synthesis, carboxylation, and esterification. The characterization of the titanium-phenol composites was carried out by FTIR, PXRD, UV-vis and SEM methods. The radical scavenging ability of the novel materials was evaluated using DPPH and an in vitro LPO assay using isolated rat liver mitochondria. The novel materials exhibit both a higher stability and an antioxidant activity in comparison to bare TiO2. It was found that curcumin and quercetin based composites show the highest antioxidant efficiency among the composites under study followed by catechin and vitamin E based materials. The results from an MTT assay carried out on the Caco-2 cell line indicate that the composites do not contribute to the cytotoxicity in vitro. This study demonstrates that a combination of powerful antioxidants with titanium dioxide can change its functional properties and provide a convenient strategy against oxidative stress.
Collapse
Affiliation(s)
- Huayang Yu
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Zhili Guo
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Shuqi Wang
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | | | - Simran Channa
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Algy Kazlauciunas
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - David P Martin
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Sergey A Krasnikov
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Alexander Kulak
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Natalia N Sergeeva
- Department of Colour Science, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|
4
|
Kojadinovic MI, Arsic AC, Debeljak-Martacic JD, Konic-Ristic AI, Kardum ND, Popovic TB, Glibetic MD. Consumption of pomegranate juice decreases blood lipid peroxidation and levels of arachidonic acid in women with metabolic syndrome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1798-1804. [PMID: 27476699 DOI: 10.1002/jsfa.7977] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Pomegranate juice is a rich source of polyphenols and is thus a promising dietary antioxidant with numerous health-promoting effects. These include a beneficial impact on cardiovascular health that could be partly attributed to the effects of polyphenols on lipid metabolism. The aim of this study was to investigate whether consumption of pomegranate juice for 6 weeks could modify lipid peroxidation and phospholipid fatty acid composition of plasma and erythrocytes in subjects with metabolic syndrome. Twenty-three women, aged 40-60 years, were enrolled and randomly assigned into two groups: the intervention group, in which each participant consumed 300 mL of juice per day for 6 weeks; and a control group. RESULTS A statistically significant decrease in the relative amount of arachidonic acid (P < 0.05) and an increase in the relative amount of saturated fatty acids (P < 0.05) were observed in the intervention group at the end of the consumption period. In addition, pomegranate juice significantly increased the relative amount of total mono-unsaturated fatty acids (P < 0.05), and significantly decreased the levels of thiobarbituric acid reactive substances in erythrocytes (P < 0.05). The status of blood lipids and the values for blood pressure were not changed during the study. CONCLUSION The results obtained indicate a positive impact of the consumption of pomegranate juice on lipid peroxidation and fatty acid status in subjects with metabolic syndrome and suggest potential anti-inflammatory and cardio-protective effects. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Milica I Kojadinovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| | - Aleksandra C Arsic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| | - Jasmina D Debeljak-Martacic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| | - Aleksandra I Konic-Ristic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| | - Nevena Dj Kardum
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| | - Tamara B Popovic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| | - Marija D Glibetic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Tadeusa Koscuska 1, 11129, Belgrade, Serbia
| |
Collapse
|
5
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2016; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Islam MS, Karim MR, Boadi W, Falekun S, Mirza AH. Biological Evaluation of New Schiff Bases: Synthesized from 4-Amino-3,5-dimethyl-1,2,4-triazole, Phenathroline and Bipyridine Dicarboxaldehydes. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abc.2016.66016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Boadi WY, Amartey PK, Lo A. Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Drug Chem Toxicol 2015; 39:239-47. [PMID: 27063963 DOI: 10.3109/01480545.2015.1082135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT AND OBJECTIVE Many studies have shown that cellular redox potential is largely determined by glutathione (GSH), which accounts for more than 90% of cellular nonprotein thiols. The aim of this study was to delineate the effect of three flavonoids - namely, quercetin, kaempferol and genistein - and exogenous GSH on oxidative damage by the Fenton's pathway through the GSH and GSH-redox cycle enzymes in 3T3-L1 cells. MATERIALS AND METHODS 3T3-L1 preadipocytes were exposed to each flavonoid and GSH at concentrations of 0, 5, 10, 15, 20 and 25 µM and then GSH levels and activities of glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rx) and superoxide dismutase (SOD) were measured. RESULTS Exogenous GSH did not have significant effect on intracellular GSH although slight decrease was observed at 15-25 µM doses. However, each of the three flavonoids sustained intracellular GSH levels in the cells as compared to the respective controls. Quercetin had the most profound effect, followed by kaempferol and genistein in that order. GSH-Px, GSH-Rx and SOD activities increased for all the doses tested compared to their respective controls. Again, quercetin had the maximum increase in enzyme activities followed by kaempferol and genistein for the enzymes tested. DISCUSSION AND CONCLUSION These findings suggest that the flavonoids play an important role in diminishing oxidation-induced biochemical damages. The enhancement of these enzymes may increase the resistance of the organism against oxidative damage by the Fenton's pathway.
Collapse
Affiliation(s)
- William Y Boadi
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| | - Paul K Amartey
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| | - Andrew Lo
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| |
Collapse
|
8
|
Khusniyati E, Sari AA, Yueniwati Y, Noorhamdani N, Nurseta T, Keman K. The effects of Vigna unguiculata on cardiac oxidative stress and aorta estrogen receptor-β expression of ovariectomized rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(14)60037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Boadi WY, Johnson D. Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin. J Diet Suppl 2014; 11:272-87. [PMID: 25026201 DOI: 10.3109/19390211.2014.937046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University , Nashville, Tennessee , USA
| | | |
Collapse
|
10
|
Lim TG, Kim JE, Jung SK, Li Y, Bode AM, Park JS, Yeom MH, Dong Z, Lee KW. MLK3 is a direct target of biochanin A, which plays a role in solar UV-induced COX-2 expression in human keratinocytes. Biochem Pharmacol 2013; 86:896-903. [PMID: 23948065 PMCID: PMC4241970 DOI: 10.1016/j.bcp.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Solar UV (sUV) is an important environmental carcinogen. Recent studies have shown that sUV is associated with numerous human skin disorders, such as wrinkle formation and inflammation. In this study, we found that the isoflavone, biochanin A, inhibited the expression of sUV-induced COX-2, which is a well-characterized sUV-induced enzyme, in both human HaCaT keratinocytes and JB6 P+ mouse skin epidermal cells. Several studies have demonstrated the beneficial effects of biochanin A. However, its direct molecular target is unknown. We found that biochanin A inhibited sUV-induced phosphorylation of MKK4/JNK/c-Jun and MKK3/6/p38/MSK1. Mixed-lineage kinase 3 (MLK3) is an upstream kinase of MKK4 and MKK3/6. Thus, we evaluated the effect of biochanin A on MLK3. We found that sUV-induced MLK3 phosphorylation was not affected, whereas MLK3 kinase activity was significantly suppressed by biochanin A. Furthermore, direct binding of biochanin A in the MLK3 ATP-binding pocket was detected using pull-down assays. Computer modeling supported our observation that MLK3 is a novel target of biochanin A. These results suggest that biochanin A exerts chemopreventive effects by suppressing sUV-induced COX-2 expression mediated through MLK3 inhibition.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jong-Eun Kim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Yan Li
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Myeong Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
11
|
Schaffer LF, Peroza LR, Boligon AA, Athayde ML, Alves SH, Fachinetto R, Wagner C. Harpagophytum procumbens Prevents Oxidative Stress and Loss of Cell Viability In Vitro. Neurochem Res 2013; 38:2256-67. [DOI: 10.1007/s11064-013-1133-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 12/23/2022]
|
12
|
Boadi WY, Harris S, Anderson JB, Adunyah SE. Lipid peroxides and glutathione status in human progenitor mononuclear (U937) cells following exposure to low doses of nickel and copper. Drug Chem Toxicol 2013; 36:155-62. [PMID: 22632594 PMCID: PMC4175708 DOI: 10.3109/01480545.2012.660947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of Cu(2+), Ni(2+) or Cu(2+) + Ni(2+) on lipid peroxide and glutathione (GSH) levels in U937 cells were investigated. Cells were treated with 0, 5, 10, and 20 µM of Cu(2+) and/or Ni(2+) and H(2)O(2) (0.01 mM) and incubated for 24 hours at 37°C. Lipid peroxides were measured by the thiobarbituric acid assay (TBA). GSH intracellular levels were assayed by the GSH assay kit from EMD/Calbiochem (San Diego, California, USA). Cu(2+) or Ni(2+) significantly (P < 0.01) increased lipid peroxides in a dose-dependent manner, compared to controls. The effect was more pronounced for Cu(2+), compared to the Ni(2+)-treated samples. Cu(2+) + Ni(2+) increased lipid peroxides in a significant (P < 0.001), dose-dependent manner, compared to Cu(2+) or Ni(2+) alone (i.e., ratio of 2.5:1-fold for combined versus single treatments, respectively). Cu(2+) or Ni(2+) significantly decreased GSH levels in U937 cells, with the effect being pronounced for Cu(2+). Cu(2+) + Ni(2+) metal ions significantly (P < 0.001) depleted cells of GSH in a dose-dependent manner. Ethylene diamine tetraacetic acid (EDTA) at 50 or 100 µM moderately reduced the Cu(2+)- or Ni(2+)-induced effects on GSH levels. Interestingly, GSH levels generally decreased to half (except for the combined metal dose of 20 µM at 100 µM EDTA) of its level at the highest metal concentration tested for both the single or combined treatments. In conclusion, multiple exposures of cells to metal ions may be lethal to cells, compared to their single treatments.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
13
|
Wang HC, Brumaghim JL. Polyphenol Compounds as Antioxidants for Disease Prevention: Reactive Oxygen Species Scavenging, Enzyme Regulation, and Metal Chelation Mechanisms in E. coliand Human Cells. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hsiao C. Wang
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| | - Julia L. Brumaghim
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| |
Collapse
|
14
|
Al-Nakkash L, Markus B, Batia L, Prozialeck WC, Broderick TL. Genistein induces estrogen-like effects in ovariectomized rats but fails to increase cardiac GLUT4 and oxidative stress. J Med Food 2010; 13:1369-75. [PMID: 20954809 PMCID: PMC3133466 DOI: 10.1089/jmf.2009.0271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/26/2010] [Indexed: 02/05/2023] Open
Abstract
This study aimed to determine whether a 2-week genistein treatment induced estrogen-like effects in ovariectomized (OVX) Sprague-Dawley rats, after 2 weeks of subcutaneous genistein injections (250 mg/kg of body weight/day). Uterine weight, uterine-to-body weight ratio, femur weight, and femur-to-body weight ratio were all significantly increased with genistein in OVX rats. Body weight was significantly decreased with genistein in OVX rats. Genistein had no effect on the weights of heart, heart-to-body ratio, and fat pad but significantly decreased heart rate and pulse pressure. Genistein had no effect on cardiac GLUT4 protein, oxidative stress, plasma glucose, nonesterified fatty acids, or low-density lipoprotein levels; however, plasma insulin levels were significantly increased. Our results show that a 2-week genistein treatment produced favorable estrogen-like effects on some physical and physiological characteristics in OVX rats. However, based on our experimental conditions, the effects of genistein were not associated with changes in cardiac GLUT4 or oxidative stress.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona, USA.
| | | | | | | | | |
Collapse
|
15
|
Li W, Frame LT, Hirsch S, Cobos E. Genistein and hematological malignancies. Cancer Lett 2010; 296:1-8. [DOI: 10.1016/j.canlet.2010.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 02/04/2023]
|
16
|
Lu MP, Wang R, Song X, Chibbar R, Wang X, Wu L, Meng QH. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr Res 2009; 28:464-71. [PMID: 19083447 DOI: 10.1016/j.nutres.2008.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/19/2008] [Accepted: 03/11/2008] [Indexed: 12/14/2022]
Abstract
Soy isoflavone-containing diets have been reported to be beneficial in diabetes. This present study investigated the hypoglycemic effects of isoflavones in streptozotocin (STZ)-induced diabetes. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of 100 mg/kg STZ. Diabetic rats were then randomly divided into 3 groups and received a special diet supplemented with casein (control), low-isoflavone soy (LIS) protein, and high-isoflavone soy protein (HIS) for 8 weeks. Compared with the control or LIS groups, those rats on the HIS diet had significantly increased body weight and serum insulin levels and reduced serum glucose and methylglyoxal levels. Serum glutathione levels were also increased in rats given the HIS diet compared with those in the control or LIS (P < .01). Serum high-density lipoprotein cholesterol level was significantly higher in HIS-fed rats than that of the control or LIS rats (P < .05). More importantly, the death rate and incidence of cataracts in the diabetic rats were markedly decreased in the HIS group. In conclusion, ingestion of high-isoflavone soy protein not only lowers glucose levels but also reduces the incidence of cataracts in diabetic rats. The beneficial effects of soy isoflavones are attributed to increased insulin secretion, a better glycemic control, and antioxidant protection.
Collapse
Affiliation(s)
- Mei-Ping Lu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon SK, Canada S7N 0W8
| | | | | | | | | | | | | |
Collapse
|
17
|
Mishra P, Kar A, Kale RK. Prevention of chemically induced mammary tumorigenesis by daidzein in pre-pubertal rats: the role of peroxidative damage and antioxidative enzymes. Mol Cell Biochem 2009; 325:149-57. [PMID: 19214712 DOI: 10.1007/s11010-009-0029-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 01/15/2009] [Indexed: 01/04/2023]
Abstract
Isoflavones are biologically active plant derived compounds that have several health promoting effects. In the present study hitherto unknown effects of one of the well known isoflavonoids, daidzein, has been evaluated on its chemo-preventive action against breast cancers in pre-pubertal rats. Either daidzein (500 mug/g bwt) or vehicle, dimethyl sulphoxide (DMSO), was administered at 16th, 18th, and 20th day post-partum and the chemopreventive efficacy was evaluated in dimethylbenz[a]nthracene (DMBA) induced Sprague-Dawley rats, at 50th day. To elucidate the mechanism of action, the antioxidative status was also examined in the liver and mammary gland of prebubertal rats using two different doses of daidzein (0.5 mg/kg bwt and 50 mg/kg bwt, p.o.) for 10 days. The specific activity of antioxidant enzymes as well as reduced glutathione (GSH) level and peroxidative damage were evaluated spectrophotometrically, both in liver as well as in mammary gland. Animals treated with daidzein pre-pubertally, showed a significant reduction in the tumorigenesis of mammary gland up to 37.4% as compared to animals induced for tumors with DMBA. In animals treated with 50 mg/kg of daidzein, a significant increase in the specific activities of the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione transferase (GST), DT-diaphorase (DTD), and in GSH content were observed in both liver and mammary gland. Expectedly, the specific activity of lactate dehydrogenase (LDH) and level of peroxidative damage was decreased, as compared to that of control group of animals. Our results suggest that, daidzein can be considered as a potent chemopreventive agent against mammary carcinogenesis in pre-pubertal animals, with modulation of antioxidant enzymes being one of its mechanisms of actions.
Collapse
Affiliation(s)
- Prachi Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| | | | | |
Collapse
|
18
|
Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2008; 46:309-17. [PMID: 19133271 DOI: 10.1016/j.yjmcc.2008.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 01/10/2023]
Abstract
Flavonoids have long been acknowledged for their unique antioxidant properties, and possess other activities that may be relevant to heart ischemia-reperfusion. They may prevent production of oxidants (e.g. by inhibition of xanthine oxidase and chelation of transition metals), inhibit oxidants from attacking cellular targets (e.g. by electron donation and scavenging activities), block propagation of oxidative reactions (by chain-breaking antioxidant activity), and reinforce cellular antioxidant capacity (through sparing effects on other antioxidants and inducing expression of endogenous antioxidants). Flavonoids also possess anti-inflammatory and anti-platelet aggregation effects through inhibiting relevant enzymes and signaling pathways, resulting ultimately in lower oxidant production and better re-establishment of blood in the ischemic zone. Finally, flavonoids are vasodilatory through a variety of mechanisms, one of which is likely interaction with ion channels. These multifaceted activities of flavonoids raise their utility as possible therapeutic interventions to ameliorate ischemia-reperfusion injury.
Collapse
|
19
|
Lu MP, Wang R, Song X, Wang X, Wu L, Meng QH. Modulation of methylglyoxal and glutathione by soybean isoflavones in mild streptozotocin-induced diabetic rats. Nutr Metab Cardiovasc Dis 2008; 18:618-23. [PMID: 18060748 DOI: 10.1016/j.numecd.2007.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 04/21/2007] [Accepted: 05/16/2007] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Evidence shows that methylglyoxal (MG), a very reactive metabolite of glucose, plays a critical role in the pathogenesis of diabetes and diabetic complications. Although soy isoflavones have beneficial effects in diabetes, the role of soy isoflavones in regulating MG levels is unknown. The present study investigates the effects of soy protein isoflavones on MG and reduced glutathione (GSH). METHODS AND RESULTS Mild diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of 35 mg/kg streptozotocin (STZ). The diabetic rats were then randomly divided into three groups and received a special diet supplemented with casein (control), low-isoflavone soy protein (LIS), or high-isoflavone soy protein (HIS) for eight weeks, respectively. Compared to the control or LIS group, HIS diet significantly increased serum insulin levels (p<0.01 or 0.05) and reduced serum glucose and MG levels (p<0.05). Serum GSH levels were increased in HIS-fed rats compared with the control or LIS group (p<0.01). Serum total cholesterol and homocysteine levels were significantly lower in HIS and LIS rats than those of the control rats. CONCLUSIONS Both LIS and HIS diets can lower serum lipid and homocysteine levels in this mild diabetic model. HIS diet enhances insulin secretion and reduces glucose level. Moreover, the HIS diet has potential in reducing MG and increasing GSH levels. In addition to its hypoglycemic effect, the antioxidant protection may provide beneficial effects in preventing the development of diabetic complications.
Collapse
Affiliation(s)
- Mei-Ping Lu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Chemoprevention of mammary tumorigenesis and chemomodulation of the antioxidative enzymes and peroxidative damage in prepubertal Sprague Dawley rats by Biochanin A. Mol Cell Biochem 2008; 312:1-9. [PMID: 18273562 DOI: 10.1007/s11010-008-9714-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/29/2008] [Indexed: 12/20/2022]
Abstract
Although chemopreventive action of Biochanin A against various cancers including that of prostate, breast, colon, and fore-stomach has been reported earlier, none of the studies was made in prepubertal subjects. The present study appears to be the first one on prepubertal rats that indicates the efficacy of the test compound in the prevention of tumorigenesis. The antioxidative status and xenobiotic metabolism were also evaluated to understand the mechanism of Biochanin A induced prevention of cancer. For the tumorigenesis study 500 microg/g bwt of Biochanin A or vehicle dimethyl sulfoxide (DMSO) s.c, was injected at 16th, 18th, and 20th days post-partum followed by the administration of dimethylbenz[a]nthracene (DMBA) (80 microg/g bwt) at 50th day. In another set of experiments, to study the involvement of peroxidative process in the mechanism of action of test compound, different antioxidant parameters were studied following the administration of two different doses of Biochanin A (0.5 and 50 mg/kg bwt, through oral gavage for 10 days) in the prepubertal rats from day 16 post-partum. Results showed a significant reduction in the mammary tumors (more than 40%) in Biochanin A treated animals, as compared to animals treated with DMBA only. Spectrophotometric enzyme estimations revealed that the specific activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione transferase (GST), DT-diaphorase (DTD), and reduced glutathione (GSH) levels were increased, whereas specific activities of lactate dehydrogenase (LDH) and lipid peroxidation (LPO) were decreased significantly, both in liver as well as in mammary gland, in animals treated with Biochanin A prepubertally. These results reveal the possible involvement of the antioxidative and metabolic enzymes in the suppression of cancer burden and incidence in a prepubertal rat model suggesting that the intake of this phytoestrogen at an early stage may help in lowering the risk of mammary tumor.
Collapse
|
21
|
Kraniak JM, Abrams J, Nowak JE, Tainsky MA. Antioxidant agents transiently inhibit aneuploidy progression in Li-Fraumeni cell strains. Mol Carcinog 2006; 45:141-56. [PMID: 16385586 DOI: 10.1002/mc.20145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cultured human fibroblasts from patients with the Li-Fraumeni syndrome (LFS) containing heterozygous germline p53 mutations develop genomic instability, loss of the wild-type p53 allele, and immortalize at a low frequency. Since genomic instability and phenotypic change are observed in presenescent cells without specific exposure to mutagens, we hypothesized that reactive oxygen species (ROS) produced during normal cell metabolism coupled with deficient p53 dependent DNA damage repair pathways make a significant contribution to immortalization related parameters. To test this hypothesis, three LFS cell strains (MDAH087, MDAH041, and MDAH172) were exposed to five compounds with demonstrated antioxidant properties for > or =85% of their proliferative lifetimes. Agent effectiveness was evaluated every five passages during subculturing by analyzing aberrant chromosome number, anchorage independent growth (AIG), and p16 expression. Cytogenetic analysis revealed that of the five antioxidants tested, only oltipraz was significantly effective in transiently delaying a shift to hyperdiploidy in all three cell strains. However, treated populations were not different from untreated controls when measured in the last 10% of their lifetimes. Additionally, no differences were observed in AIG and p16 expression in antioxidant treated or untreated control populations. Epidemiological studies, in vitro and in vivo experimentation and some clinical trials have suggested that antioxidants may inhibit the progression of cancer and other mutation related diseases. This data, however, does not support the hypothesis that the antioxidants tested have chemopreventive potential in cancers that develop genomic instability due to loss of p53.
Collapse
Affiliation(s)
- Janice M Kraniak
- Program in Molecular Biology and Human Genetics, Barbara Ann Karmanos Cancer Institute and Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
22
|
Chen TJ, Jeng JY, Lin CW, Wu CY, Chen YC. Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cells. Toxicology 2006; 223:113-26. [PMID: 16647178 DOI: 10.1016/j.tox.2006.03.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
In the present study, we investigated the protective mechanism of quercetin (QUE) and its glycosides, rutin (RUT) and quercitrin (QUI), on reactive oxygen species (ROS)-dependent (H(2)O(2)) and -independent (chemical anoxia) cell death in rat glioma C6 cells. Induction of HO-1 protein expression was detected in QUE- but not RUT- or QUI-treated C6 cells, and this was prevented by cycloheximide and actinomycin D. Incubation of C6 cells with QUE, but not RUT or QUI, protected C6 cells from H(2)O(2)- and chemical anoxia-induced cytotoxicity according to the MTT and LDH release assays. Apoptotic characteristics including chromatin condensation, DNA ladders, and hypodiploid cells appeared in H(2)O(2)-and chemical anoxia-treated C6 cells, and those events were significantly suppressed by adding QUE (but not RUT or QUI). Increases in caspase 3, 8, and 9 enzyme activities with decreases in pro-PARP and pro-caspase 3 protein levels and an increase in cleaved D4-GDI protein were identified in H(2)O(2)-and chemical anoxia-treated C6 cells, and these were blocked by the addition of QUE, but not by RUT or QUI. Intracellular peroxide levels increased with H(2)O(2) and decreased with chemical anoxia, and the addition of QUE reduced the intracellular peroxide levels induced by H(2)O(2). Results of an anti-DPPH radical assay showed that QUE, RUT, and QUI dose-dependently inhibited the production of DPPH radicals in vitro; however, QUE (but not RUT or QUI) prevention of DNA damage induced by OH radicals was identified with a plasmid digestion assay. Increases in phosphorylated ERK and p53 protein expressions were detected in H(2)O(2)- but not chemical anoxia-treated C6 cells, and the addition of QUE significantly blocked H(2)O(2)-induced phosphorylated ERK and p53 protein expressions. Adding the HO-1 inhibitors, SnPP, CoPP, and ZnPP, reversed the protective effect of QUE against H(2)O(2)- and chemical anoxia-induced cell death according to the MTT assay and morphological observations. Additionally, QUE exhibited inhibitory effects on LPS/TPA-induced transformation in accordance with a decrease in MMP-9 enzyme activity and iNOS protein expression in C6 cells. Taken together, the results of this study suggest that QUE exhibits an inhibitory effect on both ROS-dependent and -independent cell death, and induction of HO-1 protein expression is involved.
Collapse
Affiliation(s)
- Tong-Jong Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, No.95, Wen-Chung Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Mastrangelo S, Tomassetti M, Carratù MR, Evandri MG, Bolle P. Quercetin reduces chromosome aberrations induced by atrazine in the Allium cepa test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:254-9. [PMID: 16416428 DOI: 10.1002/em.20199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quercetin is a widely distributed plant flavonoid possessing a variety of chemical and biological activities, including chelation, free-radical scavenging, and antioxidant activity. Atrazine is a selective triazine herbicide that has been the subject of an international revision program for human and ecological health risks because of its persistence in the environment. In a previous study, we demonstrated that atrazine was clastogenic in the Allium cepa test. In this present study, we investigated whether quercetin affords protection from the chromosome breaks induced by atrazine. In a preliminary assay, 0.1-20 microg/ml quercetin produced no toxicity or clastogenic activity in the Allium cepa test. Subsequently, we evaluated the effects of 0.5 and 5 microg/ml quercetin on the clastogenicity of 2.5, 5.0, and 7.5 microg/l atrazine. Quercetin (0.5 microg/ml) significantly reduced the frequency of total aberrations induced by 7.5 microg/l atrazine, while both concentrations of quercetin significantly decreased the frequency of fragments induced by 7.5 microg/l atrazine. The results of this study indicate that plant flavonoids such as quercetin may protect against the genotoxic effects of atrazine. Efforts to understand the extent to which plant flavonoids influence the biological activities of genotoxicants and the mechanisms involved in the interactions could help to better discern the advantages and disadvantages of their use and to clarify their possible protective role against pollutants.
Collapse
Affiliation(s)
- Sabina Mastrangelo
- Department of Pharmacology and Human Physiology, University of Bari, Italy
| | | | | | | | | |
Collapse
|
24
|
Weisel T, Baum M, Eisenbrand G, Dietrich H, Will F, Stockis JP, Kulling S, Rüfer C, Johannes C, Janzowski C. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J 2006; 1:388-97. [PMID: 16892265 DOI: 10.1002/biot.200600004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.
Collapse
Affiliation(s)
- Tamara Weisel
- Department of Chemistry, Division of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|