1
|
Gupta A, Mahajan P, Bhagyawant SS, Saxena N, Johri AK, Kumar S, Verma SK. Recombinant YopE and LcrV vaccine candidates protect mice against plague and yersiniosis. Heliyon 2024; 10:e31446. [PMID: 38826713 PMCID: PMC11141369 DOI: 10.1016/j.heliyon.2024.e31446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
No licensed vaccine exists for the lethal plague and yersiniosis. Therefore, a combination of recombinant YopE and LcrV antigens of Yersinia pestis was evaluated for its vaccine potential in a mouse model. YopE and LcrV in formulation with alum imparted a robust humoral immune response, with isotyping profiles leaning towards the IgG1 and IgG2b subclasses. It was also observed that a significantly enhanced expression of IFN-γ, TNF-α, IL-6, IL-2, and IL-1β from the splenic cells of vaccinated mice, as well as YopE and LcrV-explicit IFN-γ eliciting T-cells. The cocktail of YopE + LcrV formulation conferred complete protection against 100 LD50Y. pestis infection, while individually, LcrV and YopE provided 80 % and 60 % protection, respectively. Similarly, the YopE + LcrV vaccinated animal group had significantly lower colony forming unit (CFU) counts in the spleen and blood compared to the groups administered with YopE or LcrV alone when challenged with Yersinia pseudotuberculosis and Yersinia enterocolitica. Histopathologic evidence reinforces these results, indicating the YopE + LcrV formulation provided superior protection against acute lung injury as early as day 3 post-challenge. In conclusion, the alum-adjuvanted YopE + LcrV is a promising vaccine formulation, eliciting a robust antibody response including a milieu of pro-inflammatory cytokines and T-cell effector functions that contribute to the protective immunity against Yersinia infections. YopE and LcrV, conserved across all three human-pathogenic Yersinia species, provide cross-protection. Therefore, our current vaccine (YopE + LcrV) targets all three pathogens: Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica. However, the efficacy should be tested in other higher mammalian models.
Collapse
Affiliation(s)
- Ankit Gupta
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sameer S. Bhagyawant
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011, MP, India
| | - Nandita Saxena
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Subodh Kumar
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Shailendra Kumar Verma
- Microbiology Division, Defence Research & Developmental Establishment, Jhansi Road, Gwalior, 474002, MP, India
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| |
Collapse
|
2
|
Laskin JD, Ozkuyumcu K, Zhou P, Croutch CR, Heck DE, Laskin DL, Joseph LB. Skin Models Used to Define Mechanisms of Action of Sulfur Mustard. Disaster Med Public Health Prep 2023; 17:e551. [PMID: 37849329 PMCID: PMC11420828 DOI: 10.1017/dmp.2023.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Sulfur mustard (SM) is a threat to both civilian and military populations. Human skin is highly sensitive to SM, causing delayed erythema, edema, and inflammatory cell infiltration, followed by the appearance of large fluid-filled blisters. Skin wound repair is prolonged following blistering, which can result in impaired barrier function. Key to understanding the action of SM in the skin is the development of animal models that have a pathophysiology comparable to humans such that quantitative assessments of therapeutic drugs efficacy can be assessed. Two animal models, hairless guinea pigs and swine, are preferred to evaluate dermal products because their skin is morphologically similar to human skin. In these animal models, SM induces degradation of epidermal and dermal tissues but does not induce overt blistering, only microblistering. Mechanisms of wound healing are distinct in these animal models. Whereas a guinea pig heals by contraction, swine skin, like humans, heals by re-epithelialization. Mice, rats, and rabbits are also used for SM mechanistic studies. However, healing is also mediated by contraction; moreover, only microblistering is observed. Improvements in animal models are essential for the development of therapeutics to mitigate toxicity resulting from dermal exposure to SM.
Collapse
Affiliation(s)
- Jeffrey D. Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Kevin Ozkuyumcu
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | | | - Diane E. Heck
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Laurie B. Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| |
Collapse
|
3
|
Gupta A, Vijayaraghavan R, Gautam A. Combination therapy of N-acetyl-L-cysteine and S-2(2-aminoethylamino) ethylphenyl sulfide for sulfur mustard induced oxidative stress in mice. Toxicol Rep 2021; 8:599-606. [PMID: 33842212 PMCID: PMC8020435 DOI: 10.1016/j.toxrep.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Sulfur mustard (SM) is chemically, bis(2-chloroethyl) sulfide and a strong alkylating agent that causes cytotoxicity and blisters on skin. In laboratory animal models, SM is extremely lethal. Since no specific antidote has been proposed, decontamination upon contact is the recommended procedure. Several antidotes have been screened for SM, and in that sulfanyl compounds, N-acetyl-l-cysteine (NAC) and S-2(2-aminoethylamino) ethylphenyl sulfide (DRDE-07) showed good protection. Since they showed protection at high doses, the aim of this study was to evaluate the efficacy in combination at low dose, for percutaneously administered SM in mice. Material and Methods 4 LD50 of SM (32.4 mg/kg) was administered, and NAC (50 mg/kg), DRDE-07 (25 and 50 mg/kg) and their combinations were evaluated as 30 min pre-treatment by single oral administration. Result After 72 h of SM exposure, significant decrease in body weight, decrease in hepatic reduced glutathione, and increase in hepatic malondialdehyde were observed (P < 0.001), showing oxidative stress. The combination of NAC (100 mg/kg) and DRDE-07 (50 mg/kg) showed significant protection (P < 0.01). The severe histopathological lesions induced by SM in liver, spleen and skin were also considerably reduced by the combination. Conclusion The combination of NAC and DRDE-07 having sulfanyl groups, will be promising antioxidants and an effective antidote for SM toxicity.
Collapse
Affiliation(s)
- Alka Gupta
- Department of Pharmacy, Sarojini Naidu Medical College, Mantola, Agra, 282002, India
- Corresponding author.
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, India
| | - Anshoo Gautam
- Division of CBRN, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| |
Collapse
|
4
|
Soni AK, Bhaskar ASB, Pathak U, Nagar DP, Gupta AK, Kannan GM. Pulmonary protective efficacy of S-2[2-aminoethylamino] ethyl phenyl sulphide (DRDE-07) and its analogues against sulfur mustard induced toxicity in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103333. [PMID: 32062414 DOI: 10.1016/j.etap.2020.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/27/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Our previous study showed that percutaneous sulfur mustard (SM) exposure induced pulmonary toxicity, which was attenuated by DRDE-07 (S-2[2-aminoethylamino] ethyl phenyl sulphide) pretreatment. The present study aimed to evaluate the protective efficacy of DRDE-07 and its analogues viz., DRDE-30 (S-2(2-aminoethyl amino)ethyl propyl sulphide) and DRDE-35 (S-2(2-aminoethyl amino)ethyl butyl sulphide) against SM. Thirty minutes before percutaneous SM (0.8 LD50) exposure, female Swiss mice were orally gavaged with DRDE-07 and its analogues(0.2 LD50). Animals were sacrificed on day 3 and 7, BAL fluid (BALF) and lung tissue were collected for biochemical, histopathological studies. As results, DRDE-07 and its analogues were beneficial in reducing the number of BALF inflammatory cells, protein level, lactate dehydrogenase (LDH) activity, myeloperoxidase (MPO) and β-glucuronidase activity, while content of BALF and lung reduced glutathione level (GSH) were significantly protected. The pretreatment of DRDE-07 and its analogues inhibited the recruitment of inflammatory cells into the lung. The beneficial effects of DRDE-07 and its analogues were attributed to their antioxidant and anti-inflammatory activity. Among the analogues, DRDE-30 exhibited significant beneficial effects as compared to the other two compounds. These analogues may be considered as prototype candidate molecules as there is no effective antidote for SM toxicity.
Collapse
Affiliation(s)
- A K Soni
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - A S B Bhaskar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - U Pathak
- Synthetic Chemistry Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - D P Nagar
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - A K Gupta
- Process Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002, India
| | - G M Kannan
- Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474 002, India.
| |
Collapse
|
5
|
Etemad L, Moshiri M, Balali-Mood M. Advances in treatment of acute sulfur mustard poisoning - a critical review. Crit Rev Toxicol 2020; 49:191-214. [PMID: 31576778 DOI: 10.1080/10408444.2019.1579779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfur mustard (SM) is a blistering chemical warfare agent that was used during the World War I and in the Iraq-Iran conflict. The aim of this paper is to discuss and critically review the published results of experiments on the treatment of SM poisoning based on our clinical and research experience. The victims must remove from the contaminated zone immediately. The best solution for decontamination is large amounts of water, using neutral soap and 0.5% sodium hypochlorite. Severely intoxicated patients should be treated according to advanced life support protocols and intensive care therapy for respiratory disorders and the chemical burn. Sodium thiosulfate infusion (100-500 mg/kg/min) should be started up to 60 min after SM exposure. However, N-acetyle cysteine (NAC) is recommended, none of them acts as specific or effective antidote. The important protective and conservative treatment of SM-induced pulmonary injuries include humidified oxygen, bronchodilators, NAC as muculytic, rehydration, mechanical ventilation, appropriate antibiotics and respiratory physiotherapy as clinically indicated. Treatment of acute SM ocular lesions start with topical antibiotics; preferably sulfacetamide eye drop, continue with lubricants, and artificial tears. Treatment for cutaneous injuries include: moist dressing; preferably with silver sulfadiazine cream, analgesic, anti-pruritic, physically debridement, debridase, Laser debridement, followed by skin autologous split-thickness therapy as clinically indicated. The new suggested medications and therapeutic approaches include: anti-inflammatory agents, Niacinamide, Silibinin, Calmodulin antagonists, Clobetasol, full-thickness skin grafting for skin injuries; Doxycycline; Bevacizumab, and Colchicine for ocular injuries. Recommended compounds based on animal studies include Niacinamide, Aprotinin, des-aspartate-angiotensin-I, Gamma-glutamyltransferase, vitamin E, and vitamin D. In vitro studies revealed that Dimethylthiourea, L-nitroarginine, Methyl-ester, Sodium pyruvate, Butylated hydroxyanisole, ethacrynic acid, and macrolide antibiotics are effective. However, none of them, except macrolide antibiotics have been proved clinically. Avoidance of inappropriate polypharmacy is advisable.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences , Birjand , Iran
| |
Collapse
|
6
|
Singh VK, Seed TM. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf 2019; 18:1077-1090. [PMID: 31526195 DOI: 10.1080/14740338.2019.1666104] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A radiation countermeasure that can be used prior to radiation exposure to protect the population from the harmful effects of radiation exposure remains a major unmet medical need and is recognized as an important area for research. Despite substantial advances in the research and development for finding nontoxic, safe, and effective prophylactic countermeasures for the acute radiation syndrome (ARS), no such agent has been approved by the United States Food and Drug Administration (FDA). Area covered: Despite the progress made to improve the effectiveness of amifostine as a radioprotector for ARS, none of the strategies have resolved the issue of its toxicity/side effects. Thus, the FDA has approved amifostine for limited clinical indications, but not for non-clinical uses. This article reviews recent strategies and progress that have been made to move forward this potentially useful countermeasure for ARS. Expert opinion: Although the recent investigations have been promising for fielding safe and effective radiation countermeasures, additional work is needed to improve and advance drug design and delivery strategies to get FDA approval for broadened, non-clinical use of amifostine during a radiological/nuclear scenario.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
7
|
Development of a novel chimeric PA-LF antigen of Bacillus anthracis, its immunological characterization and evaluation as a future vaccine candidate in mouse model. Biologicals 2019; 61:38-43. [PMID: 31416791 DOI: 10.1016/j.biologicals.2019.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Tremendous efforts are being made to develop an anthrax vaccine with long term protection. The main component of traditional anthrax vaccine is protective antigen (PA) with the trace amount of other proteins and bacterial components. In this study, we developed a recombinant PA-LF chimera antigen of Bacillus anthracis by fusing the PA domain 2-4 with lethal factor (LF) domain 1 and evaluated its protective potential against B. anthracis in mouse model. The anti-PA-LF chimera serum reacted with both PA and LF antigen, individually. The chimera elicited a strong antibody titer in mice with predominance of IgG1 isotype followed by IgG2b, IgG2a and IgG3. Cytokines were assessed in splenocytes of immunized mice and a significant up-regulation in the expression of IL-4, IL-10, IFN-γ and TNF-α was observed. The PA-LF chimera immunized mice exhibited 80% survival after challenge with virulent spores of B. anthracis. Pathological studies showed normal architecture in vital organs (spleen, lung, liver and kidney) of recovered immunized mice on 20 DPI after spore challenge. These findings suggested that PA-LF chimera of B. anthracis elicited good humoral as well as cell mediated immune response in mice, and thus, can be a potent vaccine candidate against anthrax.
Collapse
|
8
|
Arora A, Bhuria V, Hazari PP, Pathak U, Mathur S, Roy BG, Sandhir R, Soni R, Dwarakanath BS, Bhatt AN. Amifostine Analog, DRDE-30, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice. Front Pharmacol 2018; 9:394. [PMID: 29740320 PMCID: PMC5928292 DOI: 10.3389/fphar.2018.00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Bleomycin (BLM) is an effective curative option in the management of several malignancies including pleural effusions; but pulmonary toxicity, comprising of pneumonitis and fibrosis, poses challenge in its use as a front-line chemotherapeutic. Although Amifostine has been found to protect lungs from the toxic effects of radiation and BLM, its application is limited due to associated toxicity and unfavorable route of administration. Therefore, there is a need for selective, potent, and safe anti-fibrotic drugs. The current study was undertaken to assess the protective effects of DRDE-30, an analog of Amifostine, on BLM-induced lung injury in C57BL/6 mice. Whole body micro- computed tomography (CT) was used to non-invasively observe tissue damage, while broncheo-alveolar lavage fluid (BALF) and lung tissues were assessed for oxidative damage, inflammation and fibrosis. Changes in the lung density revealed by micro-CT suggested protection against BLM-induced lung injury by DRDE-30, which correlated well with changes in lung morphology and histopathology. DRDE-30 significantly blunted BLM-induced oxidative stress, inflammation and fibrosis in the lungs evidenced by reduced oxidative damage, endothelial barrier dysfunction, Myeloperoxidase (MPO) activity, pro-inflammatory cytokine release and protection of tissue architecture, that could be linked to enhanced anti-oxidant defense system and suppression of redox-sensitive pro-inflammatory signaling cascades. DRDE-30 decreased the BLM-induced augmentation in BALF TGF-β and lung hydroxyproline levels, as well as reduced the expression of the mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the suppression of epithelial to mesenchymal transition (EMT) as one of its anti-fibrotic effects. The results demonstrate that the Amifostine analog, DRDE-30, ameliorates the oxidative injury and lung fibrosis induced by BLM and strengthen its potential use as an adjuvant in alleviating the side effects of BLM.
Collapse
Affiliation(s)
- Aastha Arora
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, India.,Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Puja P Hazari
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, India
| | - Uma Pathak
- Synthetic Chemistry Division, Defence Research and Development Establishment, Gwalior, India
| | - Sweta Mathur
- Synthetic Chemistry Division, Defence Research and Development Establishment, Gwalior, India
| | - Bal G Roy
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Ravi Soni
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, India
| | | | - Anant N Bhatt
- Institute of Nuclear Medicine & Allied Sciences, New Delhi, India
| |
Collapse
|
9
|
Kannan GM, Kumar P, Bhaskar ASB, Pathak U, Kumar D, Nagar DP, Pant SC, Ganesan K. Prophylactic efficacy of S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07) against sulfur mustard induced lung toxicity in mice. Drug Chem Toxicol 2015; 39:182-9. [DOI: 10.3109/01480545.2015.1070169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Halme M, Pesonen M, Hakala U, Pasanen M, Vähäkangas K, Vanninen P. Applying human and pig hepatic in vitro experiments for sulfur mustard study: screening and identification of metabolites by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1279-1287. [PMID: 26405789 DOI: 10.1002/rcm.7218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Sulfur mustard is a chemical warfare agent (CWA) with high toxicity and complex metabolism. This study aimed at identification of new metabolic biomarkers for sulfur mustard using in in vitro exposures and various mass spectrometric techniques. METHODS Human and pig liver subcellular fractions were used as biocatalysts. Metabolites were screened by liquid chromatography and tandem mass spectrometry (LC/MS/MS) using positive electrospray ionization (ESI). For structural identification, product ion scans (MS/MS, MS(3) ) and accurate mass measurements using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) were acquired. RESULTS Sulfur mustard is metabolized in vitro by S-oxidation and glutathione (GSH) conjugations. One S-oxidized metabolite, bis(2-chloroethyl) sulfoxide (m/z 175), was formed in both species only when liver microsomes were present in incubations, and it was the main metabolite if GSH was not added into the reaction mixture. However, conjugation with GSH was found to be a spontaneous reaction in physiological pH and buffered solution. Three GSH conjugates of sulfur mustard were detected and identified, among which two were novel; 2-((2-(S-glutathionyl)ethyl)thio)ethanol (m/z 412) and 2-((2-(S-glutathionyl)ethyl)thio)ethyl phosphate (m/z 492). CONCLUSIONS To our knowledge, this was the first time that S-oxidized metabolites and GSH conjugates of sulfur mustard have been detected and identified from human samples in vitro by LC/MS/MS. The usefulness of the GSH conjugates to serve as biomarkers for sulfur mustard exposure in human samples requires further studies.
Collapse
Affiliation(s)
- Mia Halme
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland
| | - Maija Pesonen
- Research and Development, Centre for Military Medicine, Finnish Defence Forces, P.O. Box 50, FI-00301, Helsinki, Finland
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ullastiina Hakala
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland
| | - Markku Pasanen
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kirsi Vähäkangas
- School of Pharmacy/Toxicology, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Paula Vanninen
- VERIFIN, Finnish Institute for Verification of the Chemical Weapons Convention, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014, Finland
| |
Collapse
|
11
|
Batra L, Verma SK, Nagar DP, Saxena N, Pathak P, Pant SC, Tuteja U. HSP70 domain II of Mycobacterium tuberculosis modulates immune response and protective potential of F1 and LcrV antigens of Yersinia pestis in a mouse model. PLoS Negl Trop Dis 2014; 8:e3322. [PMID: 25474358 PMCID: PMC4256173 DOI: 10.1371/journal.pntd.0003322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023] Open
Abstract
No ideal vaccine exists to control plague, a deadly dangerous disease caused by Yersinia pestis. In this context, we cloned, expressed and purified recombinant F1, LcrV antigens of Y. pestis and heat shock protein70 (HSP70) domain II of M. tuberculosis in E. coli. To evaluate the protective potential of each purified protein alone or in combination, Balb/C mice were immunized. Humoral and cell mediated immune responses were evaluated. Immunized animals were challenged with 100 LD50 of Y. pestis via intra-peritoneal route. Vaccine candidates i.e., F1 and LcrV generated highly significant titres of anti-F1 and anti-LcrV IgG antibodies. A significant difference was noticed in the expression level of IL-2, IFN-γ and TNF-α in splenocytes of immunized animals. Significantly increased percentages of CD4+ and CD8+ T cells producing IFN-γ in spleen of vaccinated animals were observed in comparison to control group by flow cytometric analysis. We investigated whether the F1, LcrV and HSP70(II) antigens alone or in combination can effectively protect immunized animals from any histopathological changes. Signs of histopathological lesions noticed in lung, liver, kidney and spleen of immunized animals on 3rd day post challenge whereas no lesions in animals that survived to day 20 post-infection were observed. Immunohistochemistry showed bacteria in lung, liver, spleen and kidney on 3rd day post-infection whereas no bacteria was observed on day 20 post-infection in surviving animals in LcrV, LcrV+HSP70(II), F1+LcrV, and F1+LcrV+HSP70(II) vaccinated groups. A significant difference was observed in the expression of IL-2, IFN-γ, TNF-α, and CD4+/CD8+ T cells secreting IFN-γ in the F1+LcrV+HSP70(II) vaccinated group in comparison to the F1+LcrV vaccinated group. Three combinations that included LcrV+HSP70(II), F1+LcrV or F1+LcrV+HSP70(II) provided 100% protection, whereas LcrV alone provided only 75% protection. These findings suggest that HSP70(II) of M. tuberculosis can be a potent immunomodulator for F1 and LcrV containing vaccine candidates against plague.
Collapse
Affiliation(s)
- Lalit Batra
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Shailendra K. Verma
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Durgesh P. Nagar
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Nandita Saxena
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Prachi Pathak
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | - Satish C. Pant
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| |
Collapse
|
12
|
Vijayan V, Pathak U, Meshram GP. Mutagenicity and antimutagenicity studies of DRDE-07 and its analogs against sulfur mustard in the in vitro Ames Salmonella/microsome assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 773:39-45. [DOI: 10.1016/j.mrgentox.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 08/09/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
13
|
Sawale SD, Ambhore PD, Pawar PP, Pathak U, Deb U, Satpute RM. Ameliorating effect of S-2(ω-aminoalkylamino) alkylaryl sulfide (DRDE-07) on sulfur mustard analogue, 2-chloroethyl ethyl sulfide-induced oxidative stress and inflammation. Toxicol Mech Methods 2013; 23:702-10. [DOI: 10.3109/15376516.2013.843109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Anand T, Vijayaraghavan R, Rao PVL, Bansal I, Bhattacharya BK. Attenuation of sulfur mustard toxicity by S-2(2-aminoethylamino)ethyl phenyl sulfide (DRDE-07) in mouse liver. Toxicol Mech Methods 2011; 21:596-605. [PMID: 21554084 DOI: 10.3109/15376516.2011.576713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sulfur mustard (SM) (bis-(2-chloroethyl) sulfide) is a chemical warfare agent. Evaluation of toxicity and protective effect of DRDE-07 (S-2(2-aminoethylamino)ethyl phenyl sulfide) was studied in mouse liver after SM challenging. Female mice were given orally 0.2 LD(50) of DRDE-07 (249 mg/kg body weight) and exposed percutaneously with 1.0 LD(50) of SM (8.1 mg/kg body weight). Gene expression profiles were determined using global genome microarray analysis at 3 days post-exposure. DRDE-07 alone treated animal showed significant upregulation to metabolism of xenobiotics by cytochrome P450 pathways. Genes related to cell adhesion molecules (CAMs), were downregulated. DRDE-07 pretreated SM exposed animals showed upregulation of xenobiotic cytochrome P450 pathway genes. Antigen presenting, cell adhesion molecules, cytokine, cytokine receptor metabolism, fatty acid metabolism, glutathione metabolism, cell cycle signaling pathway genes showed downregulation. The present study showed that SM-induced toxicity in mouse liver was attenuated by the pretreatment with DRDE-07.
Collapse
Affiliation(s)
- T Anand
- Defence R & D Establishment, Gwalior, India.
| | | | | | | | | |
Collapse
|
15
|
Halme M, Karjalainen M, Kiljunen H, Vanninen P. Development and validation of efficient stable isotope dilution LC–HESI–MS/MS method for the verification of β-lyase metabolites in human urine after sulfur mustard exposure. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:908-14. [DOI: 10.1016/j.jchromb.2011.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/22/2011] [Accepted: 02/25/2011] [Indexed: 11/29/2022]
|
16
|
Designing of mouse model: a new approach for studying sulphur mustard-induced skin lesions. Burns 2011; 37:851-64. [PMID: 21334815 DOI: 10.1016/j.burns.2010.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/20/2010] [Accepted: 12/10/2010] [Indexed: 01/12/2023]
Abstract
This study was planned to design a mouse model for studying sulphur mustard (SM)-induced skin injury. SM was applied dermally at dose of 5 or 10 mg kg(-1) in polyethyleneglycol-300 (PEG-300) or dimethylsulphoxide (DMSO) or acetone once. The changes in body weight, organ body weight indices (OBWI) and haematological and oxidative stress parameters were investigated over a period of 3-7 days and supported by histopathological observations. Exposure to SM in PEG-300 or DMSO resulted in a significant depletion in body weight, OBWI, hepatic glutathione (GSH) and elevation in hepatic lipid peroxidation, without affecting the blood GSH and hepatic oxidised glutathione (GSSG) levels. Interestingly, no aforesaid change was observed after dermal application of SM diluted in acetone. These biochemical changes were supported by the histological observations, which revealed pronounced toxic effect and damage to liver, kidney and spleen after dermal application of SM diluted in PEG-300 or DMSO. The skin showed similar microscopic changes after dermal application of SM in all the three diluents, however; the severity of lesions was found to be time and dose dependent. It can be concluded that dermal exposure of SM diluted in acetone can be used to mimic SM-induced skin toxicity without systemic toxicity in a mouse model.
Collapse
|
17
|
Dorandeu F, Taysse L, Boudry I, Foquin A, Hérodin F, Mathieu J, Daulon S, Cruz C, Lallement G. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection. Hum Exp Toxicol 2010; 30:470-90. [PMID: 20547654 DOI: 10.1177/0960327110373615] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).
Collapse
Affiliation(s)
- F Dorandeu
- Département de Toxicologie et risque chimique, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, La Tronche, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sharma M, Vijayaraghavan R, Agrawal OP. Comparative toxic effect of nitrogen mustards (HN-1, HN-2, and HN-3) and sulfur mustard on hematological and biochemical variables and their protection by DRDE-07 and its analogues. Int J Toxicol 2010; 29:391-401. [PMID: 20466873 DOI: 10.1177/1091581810365730] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The chemical warfare agents sulfur mustard (SM) and nitrogen mustards (HN-1, HN-2, and HN-3) are highly reactive vesicants. The study was planned to investigate the protective efficacy of amifostine, DRDE-07 and their analogues, and few conventional antidotes (30 minutes pretreatment) against dermally applied SM and nitrogen mustards in preventing hematological and biochemical changes in mice. Mustard agents (1.0 median lethal dose [LD(50)]) induced a significant decrease in the body weight and spleen weight. A significant decrease in the white blood cell (WBC) count and an increase in serum transaminases and alkaline phosphatases (ALPs) were observed. A significant decrease in reduced (GSH) and oxidized glutathione (GSSG) and an increase in thiobarbituric acid reactive substances were also observed. All the mustard agents increased DNA fragmentation. The effects of SM were significantly ameliorated by DRDE-07 analogues, and with nitrogen mustards the protection was partial. Overall, DRDE-30 (propyl analogue) followed by DRDE-35 (butyl analogue) are favored as safer and better compounds.
Collapse
Affiliation(s)
- Manoj Sharma
- Defence Research and Development Establishment, Gwalior 474002, India
| | | | | |
Collapse
|
19
|
Kumar P, Gautam A, Prakash Chandra Jatav, kumar A, Ganeshan K, Pathak U, Vijayaraghavan R. Ameliorative effect of DRDE 07 and its analogues on the systemic toxicity of sulphur mustard and nitrogen mustard in rabbit. Hum Exp Toxicol 2010; 29:747-55. [DOI: 10.1177/0960327109359641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive research efforts, there is no unanimous approval of any animal model to evaluate the toxicity of sulphur mustard [SM; bis (2-chloroethyl) sulphide] or nitrogen mustard [HN-3; tris-(2-chloroethyl) amine] and screening of various prophylactic and therapeutic agents against them. In this study, differential toxicity of mustard agents in higher animal model that is male rabbit was determined. Protective efficacy of DRDE 07 [S-2(2-aminoethylamino) ethyl phenyl sulphide] and its analogues were also evaluated against SM and HN-3 toxicity. Differential toxicity study of SM and HN-3 reveals that both the compounds were more toxic by percutaneous route as compared to subcutaneous route. Till date, there is no recommended drug to counteract SM induced toxicity or mortality in vivo. However, DRDE 07 (an amifostine analogue) and its analogues are found to be very effective protective agents against percutaneously exposed SM in rabbits. The present experiments also showed that SM does not cause skin injury alone but also can cause systemic toxicity as well. DRDE 07 and many of its analogues may prove as prototype compounds for the development of better prophylactic and therapeutic drugs to counter the toxicity of SM or HN-3. In conclusion, rodents and rabbits can be used for the screening of drugs against the blistering agents.
Collapse
Affiliation(s)
- Pravin Kumar
- Defence Research and Development Establishment, Gwalior - 474002, India
| | - Anshoo Gautam
- Defence Research and Development Establishment, Gwalior - 474002, India,
| | | | - Abdhesh kumar
- Defence Research and Development Establishment, Gwalior - 474002, India
| | - K. Ganeshan
- Defence Research and Development Establishment, Gwalior - 474002, India
| | - Uma Pathak
- Defence Research and Development Establishment, Gwalior - 474002, India
| | - R. Vijayaraghavan
- Defence Research and Development Establishment, Gwalior - 474002, India
| |
Collapse
|
20
|
Bhutia YD, Vijayaraghavan R, Pathak U. Analgesic and anti-inflammatory activity of amifostine, DRDE-07, and their analogs, in mice. Indian J Pharmacol 2010; 42:17-20. [PMID: 20606831 PMCID: PMC2885634 DOI: 10.4103/0253-7613.62401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/06/2009] [Accepted: 02/03/2010] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To find out the analgesic and anti-inflammatory activity, if any, of Amifostine [S-2(3 amino propyl amino) ethyl phosphorothioate], DRDE-07 [S-2(3 amino ethyl amino) ethyl phenyl sulphide] and their analogs DRDE-30 and DRDE-35, the probable prophylactic agent for sulphur mustard (SM). MATERIALS AND METHODS In order to find out the analgesic activities of the compounds two methods were employed, namely, acetic acid-induced writhing test and formalin-induced paw licking. The persistent pain model of formalin-induced hind paw licking was carried out to test the effect of the compounds on neurogenic pain or early phase (0 to 5 minutes) and on the peripheral pain or the late phase (15 to 30 minutes). To test the effect of the compound in acute inflammation, carrageenan-induced hind paw edema was carried out. This model of inflammation involves a variety of mediators of inflammation. RESULTS DRDE-07 (81.7%) and DRDE-30 (79.4%) showed significant reduction in the acetic acid-induced writhing test. DRDE-07 (93.1%), DRDE-30 (82%), and DRDE-35 (61.3%) showed significant reduction in the second or late phase of formalin-induced paw licking. All the analogs (more than 60%) including amifostine (43.9%) showed significant reduction of paw edema in the carrageenan-induced paw edema in mice. CONCLUSION The analgesic and anti-inflammatory activity of the antidotes were comparable with aspirin.
Collapse
Affiliation(s)
| | | | - Uma Pathak
- Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
21
|
Sharma M, Vijayaraghavan R, Gautam A. DRDE-07 and its analogues as promising cytoprotectants to nitrogen mustard (HN-2)—An alkylating anticancer and chemical warfare agent. Toxicol Lett 2009; 188:243-50. [DOI: 10.1016/j.toxlet.2009.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022]
|
22
|
Ucar M, Korkmaz A, Reiter RJ, Yaren H, Oter S, Kurt B, Topal T. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol Lett 2007; 173:124-31. [PMID: 17765411 DOI: 10.1016/j.toxlet.2007.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/09/2007] [Accepted: 07/09/2007] [Indexed: 11/23/2022]
Abstract
The cytotoxic mechanism of mustards has not been fully elucidated; recently, we reported that reactive oxygen species, nitric oxide [produced by inducible nitric oxide synthase (iNOS)] and peroxynitrite are involved in the pathogenesis and responsible for mustard-induced toxicity. Melatonin, a potent antioxidant molecule, acts as an iNOS inhibitor and a peroxynitrite scavenger. Using the prototypic nitrogen mustard (mechlorethamine/HN2) as a model and based on its known cytotoxic mechanisms, the present study was performed to test melatonin for its capability in protecting the lungs of injured male Wistar rats. Lung mustard toxicity was induced via an intratracheally injection of HN2 (0.5mg/kg) dissolved in saline (100microl). Control animals were injected the same amount of saline only. Melatonin was administered intraperitoneally with two different doses (20mg/kg or 40mg/kg) beginning 1h before HN2 application and continued every 12h for six replications. Forty-eight hours after the last melatonin injection, the animals were sacrificed and their lungs were taken for further assay, i.e., malondialdehyde (MDA) levels, and superoxide dismutase (SOD), glutathione peroxidase (GPx) and iNOS activity. Additionally their urine was collected for nitrite-nitrate (NO(x)) analysis. HN2 injection caused increased iNOS activity and MDA levels in lung tissue and NO(x) values in urine; lung GPx activity was significantly depressed. Melatonin restored all of these oxidative and nitrosative stress markers in a dose-dependent manner. In conclusion, the results of study provide evidence that melatonin may have the ability to reduce mustard-induced toxicity in the lungs.
Collapse
Affiliation(s)
- Muharrem Ucar
- Department of Public Health, Gülhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|