1
|
Li T, Zhou S, Wang L, Zhao T, Wang J, Shao F. Docetaxel, cyclophosphamide, and epirubicin: application of PBPK modeling to gain new insights for drug-drug interactions. J Pharmacokinet Pharmacodyn 2024; 51:367-384. [PMID: 38554227 DOI: 10.1007/s10928-024-09912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024]
Abstract
The new adjuvant chemotherapy of docetaxel, epirubicin, and cyclophosphamide has been recommended for treating breast cancer. It is necessary to investigate the potential drug-drug Interactions (DDIs) since they have a narrow therapeutic window in which slight differences in exposure might result in significant differences in treatment efficacy and tolerability. To guide clinical rational drug use, this study aimed to evaluate the DDI potentials of docetaxel, cyclophosphamide, and epirubicin in cancer patients using physiologically based pharmacokinetic (PBPK) models. The GastroPlus™ was used to develop the PBPK models, which were refined and validated with observed data. The established PBPK models accurately described the pharmacokinetics (PKs) of three drugs in cancer patients, and the predicted-to-observed ratios of all the PK parameters met the acceptance criterion. The PBPK model predicted no significant changes in plasma concentrations of these drugs during co-administration, which was consistent with the observed clinical phenomenon. Besides, the verified PBPK models were then used to predict the effect of other Cytochrome P450 3A4 (CYP3A4) inhibitors/inducers on these drug exposures. In the DDI simulation, strong CYP3A4 modulators changed the exposure of three drugs by 0.71-1.61 fold. Therefore, patients receiving these drugs in combination with strong CYP3A4 inhibitors should be monitored regularly to prevent adverse reactions. Furthermore, co-administration of docetaxel, cyclophosphamide, or epirubicin with strong CYP3A4 inducers should be avoided. In conclusion, the PBPK models can be used to further investigate the DDI potential of each drug and to develop dosage recommendations for concurrent usage by additional perpetrators or victims.
Collapse
Affiliation(s)
- Tongtong Li
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Lu Wang
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
| | - Tangping Zhao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China
| | - Jue Wang
- Division of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Feng Shao
- Phase I Clinical Trial Unit, The First Affiliated Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Department of Clinical Pharmacology, School of Pharmacy College, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Zhang X, Li N, Zhang G, Li J, Liu Y, Wang M, Ren X. Nano Strategies for Artemisinin Derivatives to Enhance Reverse Efficiency of Multidrug Resistance in Breast Cancer. Curr Pharm Des 2023; 29:3458-3466. [PMID: 38270162 DOI: 10.2174/0113816128282248231205105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Artemisinin (ART) has been found to exert anti-tumor activity by regulating the cell cycle, inducing apoptosis, inhibiting angiogenesis and tumor invasion and metastasis. Its derivatives (ARTs) can regulate the expression of drug-resistant proteins and reverse the multidrug resistance (MDR) of tumor cells by inhibiting intracellular drug efflux, inducing apoptosis and autophagy of tumor cells, thus enhancing the sensitivity of tumor cells to chemotherapy and radiotherapy. Recent studies have shown that nanodrugs play an important role in the diagnosis and treatment of cancer, which can effectively solve the shortcomings of poor hydrophilicity and low bioavailability of ARTs in the human body, prolong the in vivo circulation time, improve the targeting of drugs (including tumor tissues or specific organelles), and control the release of drugs in target tissues, thereby reducing the side effect. This review systematically summarized the latest research progress of nano-strategies of ARTs to enhance the efficiency of MDR reversal in breast cancer (BC) from the following two aspects: (1) Chemicals encapsulated in nanomaterials based on innovative anti-proliferation mechanism: non-ABC transporter receptor candidate related to ferroptosis (dihydroartemisinin/DHA analogs). (2) Combination therapy strategy of nanomedicine (drug-drug combination therapy, drug-gene combination, and chemical-physical therapy). Self-assembled nano-delivery systems enhance therapeutic efficacy through increased drug loading, rapid reactive release, optimized delivery sequence, and realization of cascade-increasing effects. New nanotechnology methods must be designed for specific delivery routines to achieve targeting administration and overcome MDR without affecting normal cells. The significance of this review is to expect that ART and ARTs can be widely used in clinical practice. In the future, nanotechnology can help people to treat multidrug resistance of breast cancer more accurately and efficiently.
Collapse
Affiliation(s)
- Xueyan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guoqin Zhang
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiayang Li
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- Haihe Laboratory of Modern Chinese Medicine, Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Eckstrum K, Striz A, Ferguson M, Zhao Y, Sprando R. Evaluation of the utility of the Beta Human Liver Emulation System (BHLES) for CFSAN's regulatory toxicology program. Food Chem Toxicol 2022; 161:112828. [PMID: 35066125 DOI: 10.1016/j.fct.2022.112828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Microphysiological systems (MPS), such as organ-on-a-chip platforms, are an emerging alternative model that may be useful for predicting human physiology and/or toxicity. Due to the interest in these platforms, the Center for Food Safety and Applied Nutrition partnered with Emulate to evaluate the utility of the Beta Human Liver Emulation System (BHLES) for its regulatory science program. Using known hepatotoxic compounds (usnic acid, benzbromarone, tamoxifen, and acetaminophen) and compounds that have no reported human cases of liver toxicity (dimethyl sulfoxide, theophylline, and aminohippurate) the platforms' performance was evaluated. Chemical toxicity was assessed by albumin secretion, urea and LDH release, nuclei number, mitochondrial membrane potential, and apoptosis. System/platform performance was evaluated in terms of sensitivity and specificity, power, and variability and repeatability. Chemical interactions with the Chip material were also assessed. Preliminary findings suggested that for the model test compounds selected, the BHLES was able to accurately predict toxicity, demonstrated high sensitivity and specificity, high power, and low variability. However, some compounds interacted with the Chip material indicating variable exposure levels that should be accounted for when planning experimentation. The details of the evaluation are presented herein.
Collapse
Affiliation(s)
- Kirsten Eckstrum
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Anneliese Striz
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Martine Ferguson
- Office of Analytics and Outreach, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yang Zhao
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Robert Sprando
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
4
|
Wu J, Yang Y, Yuan X, Xu H, Chen Q, Ren R, Zhang Q, Hou Z, Jiao F, Yin D. Role of particle aggregates in herbal medicine decoction showing they are not useless: considering Coptis chinensis decoction as an example. Food Funct 2020; 11:10480-10492. [PMID: 33174570 DOI: 10.1039/d0fo02179b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A large number of plants and fungi are homologs of medicine and food, and are used in the form of decoctions for complementary foods, dietary cures, and disease therapy in traditional medicine. Besides the widespread concern around the physiological and pharmacological actions of the active ingredients, the phase change in decoction and its influences on the active ingredients' absorption should not be ignored. Lots of particle aggregates are generated during the decoction of herbal medicine and then end up being taken together with the active ingredients. The question arises, "Is the absorption of active ingredients associated with the particle aggregates in decoction?" The present study takes the Coptis chinensis decoction (CCD), the particle aggregates in CCD (CCD-Ps), and the water-insoluble active ingredient of Berberine (Ber) as typical examples to investigate the effects of particle aggregates in herbal medicine decoction on the active ingredient absorption in the intestine and the underlying mechanisms. The CCD-Ps are mainly composed of polysaccharide, with commonly features of a hundred-nanometers size and negatively charged. A series of Coptis chinensis polysaccharide (CCP) composed particle aggregates (CCP-Ps) were self-assembled to mimic the CCD-Ps. In situ single-pass intestinal perfusion experiments exhibited that, both the CCD-Ps and CCP-Ps exhibited charge-dependent promotion on Ber absorption in the intestine, through regulating the tight junctions (TJs) between intestinal epithelia cells. Caco-2 cell monolayer model experiments revealed that the particle aggregates not only promoted paracellular Ber transport through TJs regulation but also improved the transcellular Ber transport through active transport and endocytosis. The present study provides a novel viewpoint to explain the scientific implications of herbal medicine decoction, in which the particles aggregated in decoction are not useless but rather act as an effective and important enhancer for adsorption of the active ingredients through multiple mechanisms.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Xiangshan Road, Yaohai District, Hefei 230031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Paškevičiūtė M, Petrikaitė V. Overcoming transporter-mediated multidrug resistance in cancer: failures and achievements of the last decades. Drug Deliv Transl Res 2019; 9:379-393. [PMID: 30194528 DOI: 10.1007/s13346-018-0584-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is a complex phenomenon caused by numerous reasons in cancer chemotherapy. It is related to the abnormal tumor metabolism, precisely increased glycolysis and lactic acid production, extracellular acidification, and drug efflux caused by transport proteins. There are few strategies to increase drug delivery into cancer cells. One of them is the inhibition of carbonic anhydrases or certain proton transporters that increase extracellular acidity by proton extrusion from the cells. This prevents weakly basic chemotherapeutic drugs from ionization and increases their penetration through the cancer cell membrane. Another approach is the inhibition of MDR proteins that pump the anticancer agents into the extracellular milieu and decrease their intracellular concentration. Physical methods, such as ultrasound-mediated sonoporation, are being developed, as well. To increase the efficacy of sonoporation, various microbubbles are used. Ultrasound causes microbubble cavitation, i.e., periodical pulsation of the microbubble, and destruction which results in formation of temporary pores in the cellular membrane and increased permeabilization to drug molecules. This review summarizes the main approaches to reverse MDR related to the drug penetration along with its applications in preclinical and clinical studies.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania. .,Institute of Biotechnology, Vilnius University, Saulėtekio Ave. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
6
|
Chaa S, Boufadi MY, Keddari S, Benchaib AH, Soubhye J, Van Antwerpen P, Riazi A. Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
He X, Xiao Y, Zhang X, Du P, Zhang X, Li J, An Y, Le Pivert P. Percutaneous Tumor Ablation: Cryoablation Facilitates Targeting of Free Epirubicin-Ethanol-Ioversol Solution Interstitially Coinjected in a Rabbit VX2 Tumor Model. Technol Cancer Res Treat 2015. [PMID: 26206769 DOI: 10.1177/1533034615593855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This acute study was aimed at exploring the ability of a cryoablative lesion to drive the distribution of a concomitant in situ injection of a free epirubicin-ethanol-ethiodol-methylene blue mixture. We report the feasibility and safety of this new percutaneous computed tomography-guided combinatorial ablative procedure on VX2 tumors. Eight New Zealand white rabbits bearing 16 tumors on both side of the back muscle were randomly selected and treated on the same day with the following procedures: (1) 8 concomitant cryoablation and interstitial chemotherapy and (2) 8 intratumor marginal chemotherapy. For the latter, an injection needle was positioned at the inner distal margin of a first selected tumor side, where the chemotherapy was delivered during 5 serial sequences. For the concomitant therapy, a single cryoneedle maintained the ice front at the tumor margin, where a needle delivered the drug dose during 5 freeze-injection-thaw sequences. Enhanced computed tomography scans on days 3, 7, and 10 assessed the tumor contours and the tracer localization. Two rabbits were killed on days 0, 3, 7, and 10 for gross and histopathological analyses. During the concomitant therapy, ioversol was distributed at the tumor and iceball margins along with the methylene blue. Enhanced computed tomography on days 3, 7, and 10 showed a focal enlarging defect of the tumor marginal enhancing rim. The rim coincided with focal necrosis at histopathology. During the intratumor chemotherapy procedure, computed tomography showed that the tracers distributed mostly over the tumor mass. No marginal necrosis was detected at histopathology. On day 10, the tumor size for the intratumor chemotherapy group was twice that of the concomitant therapy group. No adverse events were observed. In this VX2 tumor model, our image-guided concomitant therapy is feasible and may enhance the effectiveness of a free epirubicin tracer mixture at the tumor margin.
Collapse
Affiliation(s)
- Xiaofeng He
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiao Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Peng Du
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jie Li
- Interventional Drug Delivery Systems & Strategies(ID2S2), Jupiter, FL, USA
| | - Yunxia An
- Department of Pathology, PLA General Hospital, Beijing, China
| | - Patrick Le Pivert
- Interventional Drug Delivery Systems & Strategies(ID2S2), Jupiter, FL, USA
| |
Collapse
|
8
|
Hepatic uptake of epirubicin by isolated rat hepatocytes and its biliary excretion after intravenous infusion in rats. Arch Pharm Res 2014; 37:1599-606. [DOI: 10.1007/s12272-014-0475-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/25/2014] [Indexed: 11/27/2022]
|
9
|
Local recurrence after chemoembolization of hepatocellular carcinoma: uptake of gadoxetic acid as a new prognostic factor. AJR Am J Roentgenol 2014; 202:744-51. [PMID: 24660701 DOI: 10.2214/ajr.13.10848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The purpose of this article is to investigate whether there is a difference in susceptibility to transcatheter arterial chemoembolization between hepatocellular carcinomas (HCCs) showing high uptake and those showing low uptake of gadoxetic acid in the hepatobiliary phase of MRI. MATERIALS AND METHODS One hundred HCCs that achieved optimal chemoembolization, as assessed by immediate CT in 60 patients, were classified as having high (n = 19) or low (n = 81) uptake of gadoxetic acid on MRI performed before chemoembolization. The local recurrence rates were estimated using the Kaplan-Meier method, and differences between the groups were compared using the log-rank test. The following factors were also correlated with the local recurrence rate using the Cox proportional hazards model for a univariate analysis: high uptake of gadoxetic acid, number of feeding arteries, extrahepatic arterial supply, Child-Pugh class, clinical tumor stage, size, location, and iodized oil accumulation in the noncancerous tissue surrounding the lesion. Parameters that were significant at p < 0.05 were entered into a multivariate model. RESULTS The 1- and 3-year local recurrence-free rates were 95% in high-uptake HCCs and 66% and 54%, respectively, in low-uptake HCCs (log-rank test, p < 0.01). The low uptake of gadoxetic acid was the only significant predictor of early local recurrence (hazard ratio = 9.24; p = 0.03) by multivariate analysis. CONCLUSION HCCs showing high uptake of gadoxetic acid appear to be susceptible to chemoembolization.
Collapse
|
10
|
Okumura M, Iwakiri T, Takagi A, Hirabara Y, Kawano Y, Arimori K. Hepatocyte growth factor suppresses the anticancer effect of irinotecan by decreasing the level of active metabolite in HepG2 cells. Biochem Pharmacol 2011; 82:1720-30. [DOI: 10.1016/j.bcp.2011.07.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/25/2022]
|
11
|
Weinreich J, Schott S, Königsrainer I, Zieker D, Königsrainer A, Schott H. Cytostatic activity of the duplex drug linking 2′-deoxy-5-fluorouridine (5FdU) with 3′-C-ethynylcytidine (ECyd) against gastric adenocarcinoma cell lines. Invest New Drugs 2010; 29:1294-302. [DOI: 10.1007/s10637-010-9483-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 06/15/2010] [Indexed: 11/24/2022]
|