1
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
2
|
Hort MA, Alves BDS, Ramires Júnior OV, Falkembach MC, Araújo GDMS, Fernandes CLF, Tavella RA, Bidone J, Dora CL, da Silva Júnior FMR. In vivo toxicity evaluation of nanoemulsions for drug delivery. Drug Chem Toxicol 2019; 44:585-594. [PMID: 31476915 DOI: 10.1080/01480545.2019.1659806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lipid nanocarriers (LNs), for example nanoemulsions (NE), are an emerging tool for drug delivery due to their ability to incorporate drugs, protect the drug from degradation, improve bioavailability, and control release. Although LNs are widely studied and applied, especially in the pharmaceutical field, knowledge about their toxicity is scarce. Moreover, the majority of studies focus on their efficiency rather than safety. Thus, the aim of this study was to evaluate the possible toxic effects of NE in vivo. Male Wistar rats (2 months old, 250 g) were treated once daily for 21 days with NE via oral or intraperitoneal delivery at 200, 400 or 800 mg lipid/kg body weight. At the end of the experiment, biochemical, hematological, oxidative stress, and genotoxicity parameters were analyzed. Our results showed that treatment with NE did not modify organ weight or biochemical parameters when compared to controls. The highest NE dose (800 mg/kg) via intraperitoneal injection caused changes in hematological parameters, namely increased plasma proteins, platelets, total leukocytes, and neutrophils, findings that suggest an inflammatory reaction. Further, the same dose evoked lipid peroxidation in the liver. Taken together, the results from this study suggest that NEs can be considered safe for oral administration, but high doses via the parenteral route can cause toxic effects. This study contributes to knowledge about NE toxicity and provides important data about their safe use in the pharmaceutical field.
Collapse
Affiliation(s)
- Mariana Appel Hort
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Barbara da Silva Alves
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Osmar Vieira Ramires Júnior
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Mariana Correa Falkembach
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Gabriela de Moraes Soares Araújo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Caroline Lopes Feijo Fernandes
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Ronan Adler Tavella
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Juliana Bidone
- Departamento de Farmácia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Cristiana Lima Dora
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande - FURG, Rio Grande, Brazil
| |
Collapse
|
3
|
Leal M, Rocha J, Corte C, Aires A, Rocha J, Zanatta R, Carpes J, Szinwelski G, Stefanello S, Pivoto F. Distribution of selenium in sheep treated with dipheny diselenide. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT The aim of the present study was to report the in vivo distribution of selenium in sheep. For this, animals were allocated into two groups (control group and treated group) and kept in metabolic cages for a period of 37 days. The treated group received a single dose (6µmol/kg) of Diphenyl Diselenide, intravenously. Plasma and erythrocytes samples were collected at different times. Adipose tissue, muscles (latissimusdorsi, semitendinosus, and supra-scapular) heart, liver, lung, kidney, intestine and brain were sampled at 30 days post-treatment, in order to determine the selenium concentration. The results demonstrated that the selenium, from the Diphenyl Diselenide group, was higher in erythrocytes (4.8mg/L, six hours post-treatment) when compared with the control sheep. The deposition of selenium occurred in the liver (7.01µg/g), brain (3.53µg/g) and kidney (2.02µg/g). After 30 days of a single intravenous injection of Diphenyl Diselenide, liver was the main organ of selenium deposition.
Collapse
Affiliation(s)
| | | | | | - A.R. Aires
- Universidade Federal de Santa Maria, Brazil
| | | | | | | | | | | | | |
Collapse
|
4
|
Mariano DOC, de Souza D, Meinerz DF, Allebrandt J, de Bem AF, Hassan W, Rodrigues OED, da Rocha JBT. The potential toxicological insights about the anti-HIV drug azidothymidine-derived monoselenides in human leukocytes: Toxicological insights of new selenium-azidothymidine analogs. Hum Exp Toxicol 2016; 36:910-918. [DOI: 10.1177/0960327116674529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a worldwide disease characterized by impairments of immune function. AIDS can be associated with oxidative stress (OS) that can be linked to selenium (Se) deficiency. Se is fundamental for the synthesis of selenoproteins, such as glutathione peroxidase and thioredoxin reductase. These enzymes catalyze the decomposition of reactive oxygen species and contribute to maintain equilibrium in cell redox status. Literature data indicate that organoselenium compounds, such as ebselen and diphenyl diselenide, have antioxidant properties in vitro and in vivo models associated with OS. Nevertheless, selenocompounds can also react and oxidize thiols groups, inducing toxicity in mammals. Here, we tested the potential cytotoxic and genotoxic properties of six analogs of the prototypal anti-HIV drug azidothymidine (AZT) containing Se (5′-Se-(phenyl)zidovudine; 5′-Se-(1,3,5-trimethylphenyl)zidovudine; 5′-Se-(1-naphtyl)zidovudine; 5′-Se-(4-chlorophenyl)zidovudine) (C4); 5′-Se-(4-methylphenyl)zidovudine (C5); and 5′-(4-methylbenzoselenoate)zidovudine). C5 increased the rate of dithiothreitol oxidation (thiol oxidase activity) and C2-C4 and C6 (at 100 µM) increased DNA damage index (DI) in human leukocytes. Moreover, C5 (200 µM) decreased human leukocyte viability to about 50%. Taken together, these results indicated the low in vitro toxicity in human leukocytes of some Se-containing analogs of AZT.
Collapse
Affiliation(s)
- DOC Mariano
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - D de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - DF Meinerz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - J Allebrandt
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - AF de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - W Hassan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - OED Rodrigues
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - JBT da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
5
|
Cytotoxicity and genotoxicity evaluation of organochalcogens in human leucocytes: a comparative study between ebselen, diphenyl diselenide, and diphenyl ditelluride. BIOMED RESEARCH INTERNATIONAL 2013; 2013:537279. [PMID: 24350274 PMCID: PMC3856129 DOI: 10.1155/2013/537279] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/06/2013] [Indexed: 11/20/2022]
Abstract
Organochalcogens, particularly ebselen, have been used in experimental and clinical trials with borderline efficacy. (PhSe)2 and (PhTe)2 are the simplest of the diaryl dichalcogenides and share with ebselen pharmacological properties. In view of the concerns with the use of mammals in studies and the great number of new organochalcogens with potential pharmacological properties that have been synthesized, it becomes important to develop screening protocols to select compounds that are worth to be tested in vivo. This study investigated the possible use of isolated human white cells as a preliminary model to test organochalcogen toxicity. Human leucocytes were exposed to 5–50 μM of ebselen, (PhSe)2, or (PhTe)2. All compounds were cytotoxic (Trypan's Blue exclusion) at the highest concentration tested, and Ebselen was the most toxic. Ebselen and (PhSe)2 were genotoxic (Comet Assay) only at 50 μM, and (PhTe)2 at 5–50 μM. Here, the acute cytotoxicity did not correspond with in vivo toxicity of the compounds. But the genotoxicity was in the same order of the in vivo toxicity to mice. These results indicate that in vitro genotoxicity in white blood cells should be considered as an early step in the investigation of potential toxicity of organochalcogens.
Collapse
|
6
|
de Oliveira J, Moreira ELG, Mancini G, Hort MA, Latini A, Ribeiro-do-Valle RM, Farina M, da Rocha JBT, de Bem AF. Diphenyl diselenide prevents cortico-cerebral mitochondrial dysfunction and oxidative stress induced by hypercholesterolemia in LDL receptor knockout mice. Neurochem Res 2013; 38:2028-36. [PMID: 23881289 DOI: 10.1007/s11064-013-1110-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 12/26/2022]
Abstract
Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr(-/-)) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr(-/-) mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr(-/-) mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.
Collapse
Affiliation(s)
- Jade de Oliveira
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
da Rosa EJF, da Silva MH, Carvalho NR, Bridi JC, da Rocha JB, Carbajo-Pescador S, Mauriz JL, González-Gallego J, Soares FAA. Reduction of acute hepatic damage induced by acetaminophen after treatment with diphenyl diselenide in mice. Toxicol Pathol 2012; 40:605-13. [PMID: 22301948 DOI: 10.1177/0192623311436179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, the authors evaluated the ability of diphenyl diselenide (PhSe)(2) to reverse acute hepatic failure induced by acetaminophen (APAP) in mice. The animals received an APAP dose of 600 mg/kg intraperitoneally (i.p.), and then 1 hour later, they received 15.6 mg/kg i.p. of (PhSe)(2). Three hours after (PhSe)(2) administration, the animals were sacrificed and blood and liver samples were collected for analysis. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. The levels of reduced glutathione (GSH) and oxidized glutathione (GSSG), thiobarbituric acid-reactive substances (TBARS), 2',7'-dichlorofluorescein (DFC), catalase activity (CAT), and myeloperoxidase (MPO) activity were determined in the liver. A methyl-tetrazolium reduction (MTT) assay was also performed on the liver. Histopathological studies were conducted in all groups. Exposure of animals to APAP induced oxidative stress, increased lipid peroxidation (LPO), and the generation of reactive species, reduced the levels of GSH, and caused an increase in the MPO activity. Treatment with (PhSe)(2) reduced LPO and the formation of reactive species and inhibited the processes of inflammation, reducing the hepatic damage induced by APAP. The results of this study show that (PhSe)(2) is a promising therapeutic option for the treatment of acute hepatic failure.
Collapse
Affiliation(s)
- Edovando J F da Rosa
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Santos Lacerda D, Oliveira Castro V, Mascarenhas M, Guerra RB, Dani C, Coitinho A, Gomez R, Funchal C. Acute administration of the organochalcogen 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one induces biochemical and hematological disorders in male rats. Cell Biochem Funct 2012; 30:315-9. [DOI: 10.1002/cbf.2806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/12/2011] [Accepted: 01/03/2012] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Robson Brum Guerra
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul; Sertão; Rio Grande do Sul; Brazil
| | - Caroline Dani
- Centro Universitário Metodista IPA; Porto Alegre; Rio Grande do Sul; Brazil
| | - Adriana Coitinho
- Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre; Rio Grande do Sul; Brazil
| | - Rosane Gomez
- Instituto de Ciências Básicas da Saúde; Universidade Federal do Rio Grande do Sul; Porto Alegre; Rio Grande do Sul; Brazil
| | - Cláudia Funchal
- Centro Universitário Metodista IPA; Porto Alegre; Rio Grande do Sul; Brazil
| |
Collapse
|
9
|
Rupil LL, de Bem AF, Roth GA. Diphenyl diselenide-modulation of macrophage activation: down-regulation of classical and alternative activation markers. Innate Immun 2012; 18:627-37. [PMID: 22215443 DOI: 10.1177/1753425911431285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Diphenyl diselenide (PhSe)(2), a simple organoselenium compound, possesses interesting pharmacological properties that are under extensive research. As macrophages respond to microenvironmental stimuli and can display activities engaged in the initiation and the resolution of inflammation, in the present report we describe the ability of (PhSe)(2) to modulate the macrophage activation. Our data indicate that (PhSe)(2) could inhibit the NO production in a dose-dependent fashion in peritoneal macrophages activated by LPS or treated with vehicle alone. We could demonstrate that this effect correlated with a reduction in the expression of the inducible NO synthase in (PhSe)(2)-treated cells. Furthermore, (PhSe)(2) suppressed the production of reactive oxygen species, diminished the activity of the arginase enzyme, and the accumulation of nitrotyrosine modified proteins in LPS-stimulated macrophages. This compound also diminished the antigen presentation capacity of classically activated macrophages, as it reduced MHCII and CD86 expression. In addition, (PhSe)(2) modulated the alternative activation phenotype of macrophages. Dexamethasone-activated macrophages presented higher production of IL-10 and CD206, which were both down-regulated by the addition of (PhSe)(2). These results suggest that (PhSe)(2) possesses antioxidant and anti-inflammatory activities in classically-activated macrophages. We could demonstrate that (PhSe)(2) can be also utilized to modulate the alternative activation phenotype of macrophages.
Collapse
Affiliation(s)
- Lucía L Rupil
- Departamento de Química Biológica, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
10
|
Saraiva RA, Bueno DC, Nogara PA, Rocha JBT. Molecular docking studies of disubstituted diaryl diselenides as mammalian δ-aminolevulinic acid dehydratase enzyme inhibitors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1012-1022. [PMID: 22852851 DOI: 10.1080/15287394.2012.697810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
δ-Aminolevulinic acid dehydratase (δ-ALAD) is a metalloprotein that catalyzes porphobilinogen formation. This enzyme is sensitive to pro-oxidants and classically used as a biomarker of lead (Pb) intoxication. Diphenyl diselenide [(PhSe)₂] and analogs bis(4-chlorophenyl) diselenide [(pCl₃PhSe)₂], bis(4-methoxyphenyl)diselenide [(pCH₃OPhSe)₂], and bis[3-(trifluoromethy)phenyl] diselenide [(mCF₃PhSe)₂] inhibit mammalian δ-ALAD by oxidizing enzyme cysteinyl residues, which are involved in diselenide-induced toxicity. 2-Cysteinyl residues from δ-ALAD are believed to sequentially interact with (PhSe)₂. Thus this study utilized protein-ligand docking analyses to determine which cysteinyl residues might be involved in the inhibitory effect of (PhSe)₂ and analogs toward δ-ALAD. All diselenides that interact in a similar manner with the active site of δ-ALAD were examined. Docking simulations indicated an important role for π-π interactions involving Phe208 and cation-π interactions involving Lys199 and Arg209 residues with the aromatic ring of (PhSe)₂ and analogs. Based upon these interactions an approximation between Se atoms and -SH of Cys124, with distances ranging between 3.3 Å and 3.5 Å, was obtained. These data support our previous postulations regarding the mechanism underlying δ-ALAD oxidation mediated by (PhSe)₂ and analogs. Based on protein-ligand docking analyses, data indicated that -SH of Cys124 attacks one of the Se atoms of -SH of (PhSe)₂ releasing one PhSeH (selenophenol). Subsequently, the -SH of Cys132 attacks the sulfur atom of Cys124 (from the bond of E-S-Se-Ph indermediate), generating the second PhSe⁻, and the oxidized and inhibited δ-ALAD. In conclusion, AutoDock Vina 1.1.1 was a useful tool to search for diselenides inhibitors of δ-ALAD, and, most importantly, it provided insight into molecular mechanisms involved in enzyme inhibition.
Collapse
Affiliation(s)
- R A Saraiva
- Laboratório de Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, Brazil.
| | | | | | | |
Collapse
|
11
|
Chanaday NL, de Bem AF, Roth GA. Effect of diphenyl diselenide on the development of experimental autoimmune encephalomyelitis. Neurochem Int 2011; 59:1155-62. [DOI: 10.1016/j.neuint.2011.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 12/27/2022]
|
12
|
Diphenyl Diselenide Effectively Reduces Atherosclerotic Lesions in LDLr −/− Mice by Attenuation of Oxidative Stress and Inflammation. J Cardiovasc Pharmacol 2011; 58:91-101. [DOI: 10.1097/fjc.0b013e31821d1149] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|