1
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Characteristics and health effects of BTEX in a hot spot for urban pollution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:133-143. [PMID: 29510308 DOI: 10.1016/j.ecoenv.2018.02.065] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/07/2022]
Abstract
This study reports a spatiotemporal characterization of toluene, benzene, ethylbenzene, and xylenes concentrations (BTEX) in an urban hot spot in Iran, specifically at an bus terminal region in Shiraz. Sampling was carried out according to NIOSH Compendium Method 1501. The inverse distance weighting (IDW) method was applied for spatial mapping. The Monte Carlo simulation technique was applied to evaluate carcinogenic and non-carcinogenic risk owing to BTEX exposure. The highest average BTEX concentrations were observed for benzene in the morning (at 7:00-9:00 A.M. local time) (26.15 ± 17.65 µg/m3) and evening (at 6:00-8:00 P.M. local time) (34.44 ± 15.63 µg/m3). The benzene to toluene ratios in the morning and evening were 2.02 and 3.07, respectively. The main sources of BTEX were gas stations and a municipal solid waste transfer station. The inhalation lifetime cancer risk (LTCR) for benzene in the morning and evening were 1.96 × 10-4 and 2.49 × 10-4, respectively, which exceeds the recommended value by US EPA and WHO. The hazard quotient (HQ) of all these pollutants was less than 1. The results of this work have implications for public health near 'hot spots' such as IKBT where large populations are exposed to carcinogenic emissions.
Collapse
|
3
|
Zorn-Kruppa M, Houdek P, Wladykowski E, Engelke M, Bartok M, Mewes KR, Moll I, Brandner JM. Determining the Depth of Injury in Bioengineered Tissue Models of Cornea and Conjunctiva for the Prediction of All Three Ocular GHS Categories. PLoS One 2014; 9:e114181. [PMID: 25494045 PMCID: PMC4262406 DOI: 10.1371/journal.pone.0114181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022] Open
Abstract
The depth of injury (DOI) is a mechanistic correlate to the ocular irritation response. Attempts to quantitatively determine the DOI in alternative tests have been limited to exvivo animal eyes by fluorescent staining for biomarkers of cell death and viability in histological cross sections. It was the purpose of this study to assess whether DOI could also be measured by means of cell viability detected by the MTT assay using 3-dimensional (3D) reconstructed models of cornea and conjunctiva. The formazan-free area of metabolically inactive cells in the tissue after topical substance application is used as the visible correlate of the DOI. Areas of metabolically active or inactive cells are quantitatively analyzed on cryosection images with ImageJ software analysis tools. By incorporating the total tissue thickness, the relative MTT-DOI (rMTT-DOI) was calculated. Using the rMTT-DOI and human reconstructed cornea equivalents, we developed a prediction model based on suitable viability cut-off values. We tested 25 chemicals that cover the whole range of eye irritation potential based on the globally harmonized system of classification and labelling of chemicals (GHS). Principally, the MTT-DOI test method allows distinguishing between the cytotoxic effects of the different chemicals in accordance with all 3 GHS categories for eye irritation. Although the prediction model is slightly over-predictive with respect to non-irritants, it promises to be highly valuable to discriminate between severe irritants (Cat. 1), and mild to moderate irritants (Cat. 2). We also tested 3D conjunctiva models with the aim to specifically address conjunctiva-damaging substances. Using the MTT-DOI method in this model delivers comparable results as the cornea model, but does not add additional information. However, the MTT-DOI method using reconstructed cornea models already provided good predictability that was superior to the already existing established invitro/exvivo methods.
Collapse
Affiliation(s)
- Michaela Zorn-Kruppa
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
- * E-mail:
| | - Pia Houdek
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| | - Ewa Wladykowski
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| | - Maria Engelke
- Jacobs University Bremen gGmbH, School of Engineering and Sciences, 28759 Bremen, Germany
| | - Melinda Bartok
- Jacobs University Bremen gGmbH, School of Engineering and Sciences, 28759 Bremen, Germany
| | | | - Ingrid Moll
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| | - Johanna M. Brandner
- University Medical Center Hamburg-Eppendorf, Department of Dermatology and Venerology, 20246 Hamburg, Germany
| |
Collapse
|
4
|
Kolle SN, Kandárová H, Wareing B, van Ravenzwaay B, Landsiedel R. In-house validation of the EpiOcular(TM) eye irritation test and its combination with the bovine corneal opacity and permeability test for the assessment of ocular irritation. Altern Lab Anim 2011; 39:365-387. [PMID: 21942548 DOI: 10.1177/026119291103900410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In 2009, the Bovine Corneal Opacity and Permeability (BCOP) test was accepted by the regulatory bodies for the identification of corrosive and severe ocular irritants (Global Harmonised System [GHS] Category 1). However, no in vitro test is currently accepted for the differentiation of ocular irritants (GHS Category 2) and non-irritants (GHS No Category). Human reconstructed tissue models have been suggested for incorporation into a tiered testing strategy to ultimately replace the Draize rabbit eye irritation test (OECD TG 405). The purpose of this study was to evaluate whether the EpiOcular(TM) reconstructed cornea-like tissue model and the COLIPA pre-validated EpiOcular Eye Irritation Test (EpiOcular-EIT) could be used as suitable components of this testing strategy. The in-house validation of the EpiOcular-EIT was performed by using 60 test substances, including a broad variety of chemicals and formulations for which in vivo data (from the Draize rabbit eye irritation test) were available. The test substances fell into the following categories: 18 severe irritants/corrosives (Category 1), 21 irritants (Category 2), and 21 non-irritants (No Category). Test substances that decreased tissue viability to ≤ 60% (compared to the negative control tissue) were considered to be eye irritants (Category 1/2). Test substances resulting in tissue viability of > 60% were considered to be non-irritants (No Category). For the assessed dataset and the classification cut-off of 60% viability, the EpiOcular-EIT provided 98% and 84% sensitivity, 64% and 90% specificity, and 85% and 86% overall accuracy for the literature reference and BASF proprietary substances, respectively. Applying a 50% tissue viability cut-off to distinguish between irritants and non-irritants resulted in 93% and 82% sensitivity, 68% and 100% specificity, and 84% and 88% accuracy for the literature reference and BASF proprietary substances, respectively. Further, in the EpiOcular-EIT (60% cut-off), 100% of severely irritating substances under-predicted by the BCOP assay were classified as Category 1/2. The results obtained in this study, based on 60 test substances, indicate that the EpiOcular-EIT and the BCOP assay can be combined in a testing strategy to identify strong/severe eye irritants (Category 1), moderate and mild eye irritants (Category 2), and non-irritants (No Category) in routine testing. In particular, when the bottom-up strategy with the 60% viability cut-off was employed, none of the severely irritating substances (Category 1) were under-predicted to be non-irritant. Sensitivity for Category 1/2 substances was 100% for literature reference substances and 89% for BASF SE proprietary substances.
Collapse
Affiliation(s)
- Susanne N Kolle
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | | | | | | |
Collapse
|
5
|
Vidal ML, Bassères A, Narbonne JF. Potential biomarkers of trichloroethylene and toluene exposure in Corbicula fluminea. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2001; 9:87-97. [PMID: 11167153 DOI: 10.1016/s1382-6689(00)00068-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Freshwater clams Corbicula fluminea were exposed in aquariums to four doses of trichloroethylene-TCE-(1.56 up to 100 mg/1) or toluene-TOL-(7.5 up to 60 mg/1) for 5 days. At the end of exposure, components of (de)toxification metabolism of phases I and II, parameters related to oxidative stress and propionylcholinesterase activity were assayed. Determination of TCE and TOL concentrations in water revealed an important evaporative loss during the experiment, characteristic of acute and occasional contaminations by such products occurring in the environment. Appropriate statistical methods such as ANOVA, Tukey test and discriminant analysis underlined the relevance of cytochromes P450 and P418, NADH-cytochrome c reductase, catalase, peroxided and peroxidizable lipids and net peroxidation as biomarkers of exposure to these solvents in C. fluminea. This experiment emphasised the importance of a multi-biomarker approach in environmental surveys and will be completed further by mesocosm studies.
Collapse
Affiliation(s)
- M -L. Vidal
- Laboratoire de Physico-Toxicochimie des Systèmes Naturels (LPTC), UPRES-A 5472 CNRS, Département de Toxicologie Biochimique, Université Bordeaux 1, Avenue des Facultés, 33405, Talence, France
| | | | | |
Collapse
|
6
|
Bogadi-Sare A, Turk R, Karacić V, Zavalić M, Trutin-Ostović K. Red blood cell glycerol lysis and hematologic effects in occupational benzene exposure. Toxicol Ind Health 1997; 13:485-94. [PMID: 9249930 DOI: 10.1177/074823379701300402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Forty-nine female workers in the shoemaking industry, exposed to a solvent mixture containing benzene and twenty-seven non-exposed controls, were investigated. Concentrations of benzene and toluene in the working atmosphere, as well as benzene and toluene in blood and phenols in pre- and post-shift urine as parameters of biological monitoring, were determined. In order to assess hematotoxic risk, a complete blood cell count with differential, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, reticulocytes, serum iron, alkaline phosphatase in neutrophils and red blood cell glycerol lysis time were determined in all subjects. Benzene concentrations in the workplace atmosphere at the shoemaking factory ranged from 1.9 to 14.8 ppm (median = 5.9). Significant difference in benzene in blood (p = 0.005) and phenol in post-shift urine (p = 0.003) between exposed workers and controls confirmed exposure to benzene. Hemoglobin level (p = 0.02) and mean corpuscular hemoglobin concentration (p = 0.0002) in the shoe workers were lower, and band neutrophils (p = 0.005) and mean corpuscular volume (p = 0.03) higher, than in controls. Red blood cell glycerol lysis time was significantly higher (p = 0.000001) in shoe workers (X +/- SD = 41.6 +/- 8.9) than in controls (X +/- SD = 31.1 +/- 6.5) and showed a significant correlation with exposure biomarkers. The results confirm that benzene exposure below 15 ppm may produce qualitative abnormalities, particularly macroerythrocytosis and increased red cell glycerol resistance, in the absence of an overt quantitative decrease in circulating blood cells. Increased resistance to the hemolytic action of glycerol is a potentially useful biological monitoring procedure in medical surveillance of benzene exposed workers. The results of this study suggest that potential threshold concentration for hematologic effects of benzene is lower than 15 ppm.
Collapse
Affiliation(s)
- A Bogadi-Sare
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
7
|
Morata TC, Nylén P, Johnson AC, Dunn DE. Auditory and vestibular functions after single or combined exposure to toluene: a review. Arch Toxicol 1995; 69:431-43. [PMID: 8526738 DOI: 10.1007/s002040050196] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toluene is a widely used organic solvent, heavily employed in many manufacturing industries. Recently, evidence has begun to accumulate on the deleterious effect of toluene exposure has on the auditory and vestibular systems. Although little published information exists regarding these effects, the reported findings indicate a need for further investigation. The results of such investigations may dramatically affect occupational hearing conservation practices and legislation. Both human and animal studies will be summarized in discussing the effects of toluene alone or in combination with noise or other chemicals. Gaps in scientific knowledge are highlighted to assist future research.
Collapse
Affiliation(s)
- T C Morata
- National Institute for Occupational Safety and Health, Division of Biomedical and Behavioral Science, Cincinnati, Ohio 45226-1998, USA
| | | | | | | |
Collapse
|
8
|
Poon R, Chu I, Bjarnason S, Potvin M, Vincent R, Miller RB, Valli VE. Inhalation toxicity study of methanol, toluene, and methanol/toluene mixtures in rats: effects of 28-day exposure. Toxicol Ind Health 1994; 10:231-45. [PMID: 7855870 DOI: 10.1177/074823379401000310] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The inhalation toxicity of methanol and toluene was investigated in rats. Young Sprague Dawley rats of both sexes were exposed to vapors of methanol (300 ppm, 3000 ppm), toluene (30 ppm, 300 ppm) or methanol/toluene (300/30 ppm, 300/300 ppm, 3000/30 ppm, and 3000/300 ppm) six hrs per day, five days/week for four weeks. Control animals inhaled air only. Increased serum alkaline phosphatase activity was observed in males exposed to high-dose toluene, and decreased creatinine was noted in the group exposed to high-dose methanol/toluene. The thyroid gland in females appeared to be a target organ for inhaled methanol, toluene, and methanol/toluene, although the changes were confined to a mild, and occasionally moderate, reduction in follicle size. Histopathological changes of the nasal passages, consisting of subepithelial nonsuppurative inflammation, occurred in higher incidences in rats exposed to methanol/toluene than in those exposed to the individual vapors. Inhalation of methanol, toluene, or methanol/toluene produced no changes in liver weights, hepatic mixed-function oxidases, or serum aspartate transaminase activities, and onlly minimal changes in liver histopathology. The only liver changes were decreased liver weight and increased cytoplasmic density of the periportal areas in females exposed to high-dose methanol/toluene. These data indicated that exposure to methanol, toluene, or a mixture of both produced mild biochemical effects and histological changes in the thyroid and nasal passage. No apparent interactive effects were observed.
Collapse
Affiliation(s)
- R Poon
- Environmental Health Directorate, Health Protection Branch, Ottawa, Canada
| | | | | | | | | | | | | |
Collapse
|