1
|
Zhang Q, Wu T, Luo C, Xie H, Wang D, Peng J, Wu K, Huang W. Ecotoxicological risk assessment of the novel psychoactive substance Esketamine: Emphasis on fish skeletal, behavioral, and vascular development. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135823. [PMID: 39278034 DOI: 10.1016/j.jhazmat.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Novel psychoactive substances (NPS), such as Esketamine (Esket), often contaminate the aquatic ecosystems following human consumption, raising concerns about the residues and potential ecological hazards to non-target organisms. The study used zebrafish as a model organism to investigate the developmental toxicity and ecotoxicological effects of acute Esket exposure. Our findings demonstrate that exposure to Esket significantly affected the early development and angiogenesis of zebrafish embryos/larvae. The mandible length was significantly decreased, and the angles between the pharyngeal arch cartilages were narrowed compared to the control group (all P < 0.05). Additionally, Esket resulted in a decrease of 47.6-89.8 % in the number of neural crest cells (NCC). Transcriptome analysis indicated altered expression of genes associated with cartilage and osteoblast growth. Moreover, Esket significantly inhibited swimming ability in zebrafish larvae and was accompanied by behavioral abnormalities and molecular alterations in the brain. Potential mechanisms underlying Esket-induced behavioral disorders involve neurotransmitter system impairment, abnormal cartilage development and function, aberrant vascular development, as well as perturbations in oxidative stress and apoptosis signaling pathways. Notably, the dysregulation of skeleton development through the bone morphogenetic protein (BMP) signaling pathway is identified as the primary mechanistic behind Esket-induced behavioral disorder. This study enhances our understanding of Esket's ecotoxicology profile and provides a comprehensive assessment of the environmental risks associated with NPS.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, PR China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
2
|
Li X, Zeng L, Qu Z, Zhang F. Huoxin pill protects verapamil-induced zebrafish heart failure through inhibition of oxidative stress-triggered inflammation and apoptosis. Heliyon 2024; 10:e23402. [PMID: 38169776 PMCID: PMC10758798 DOI: 10.1016/j.heliyon.2023.e23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure (HF) is a major and growing public health concern. Although advances in medical and surgical therapies have been achieved over the last decades, there is still no firmly evidence-based treatment with many traditional Chinese medicines (TCMs) for HF. Huoxin Pill (HXP), a TCM, has been widely used to treat patients with coronary heart disease and angina pectoris. However, the underlying molecular mechanism is poorly understood. In this study, using a verapamil-induced zebrafish HF model, we validated the efficacy and revealed the underlying mechanism of HXP in the treatment of HF. Zebrafish embryos were pretreated with different concentrations of HXP followed by verapamil administration, and we found that HXP significantly improved cardiac function in HF zebrafish, such as by effectively alleviating venous congestion and increasing heart rates. Mechanistically, HXP evidently inhibited verapamil-induced ROS and H2O2 production and upregulated CAT activity in HF zebrafish. Moreover, transgenic lines Tg(mpx:EGFP) and Tg(nfkb:EGFP) were administered for inflammation evaluation, and we found that neutrophil infiltration in HF zebrafish hearts and the activated NF-kB level could be reduced by HXP. Furthermore, HXP significantly downregulated the level of cell apoptosis in HF zebrafish hearts, as assessed by AO staining. Molecularly, RT‒qPCR results showed that pretreatment with HXP upregulated antioxidant-related genes such as gpx-1a and gss and downregulated the expression of the stress-related gene hsp70, proinflammatory genes such as tnf-α, il-6 and lck, and apoptosis-related indicators such as apaf1, puma and caspase9. In conclusion, HXP exerts a protective effect on verapamil-induced zebrafish HF through inhibition of oxidative stress-triggered inflammation and apoptosis.
Collapse
Affiliation(s)
- Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| |
Collapse
|
3
|
Inorganic arsenic alters the development of dopaminergic neurons but not serotonergic neurons and induces motor neuron development via Sonic hedgehog pathway in zebrafish. Neurosci Lett 2023; 795:137042. [PMID: 36587726 DOI: 10.1016/j.neulet.2022.137042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The mechanism of inorganic arsenic-induced neurotoxicity at the cellular level is not known. In zebrafish, teratological effects of inorganic arsenic have been shown at various concentrations. Here, we used similar concentrations of inorganic arsenic to evaluate the effects on specific neuron types. Exposure of zebrafish embryos at 5 h post fertilization (hpf) to sodium arsenite induced developmental toxicity (reduced body length) in 72 hpf larvae, beginning at a concentration of 300 mg/L concentration. Mortality or overt morphological deformity was detected at 500 mg/L sodium arsenite. While 200 mg/L sodium arsenite induced development of tyrosine hydroxylase-positive (dopaminergic) neurons, there was no significant effect on the development of 5-hydroxytryptamine (serotonergic) neurons. Sodium arsenite reduced acetylcholinesterase activity. In the hb9-GFP transgenic larvae, both 200 and 400 mg/L sodium arsenite produced supernumerary motor neurons in the spinal cord. Inhibition of the Sonic hedgehog (Shh) pathway that is essential for motor neuron development, by Gant61, prevented sodium arsenite-induced supernumerary motor neuron development. Inductively coupled plasma mass spectrometry (ICP-MS) revealed that with 200 mg/L and 400 mg/L sodium arsenite treatment, each larva had an average of 387.8 pg and 847.5 pg arsenic, respectively. The data show for the first time that inorganic arsenic alters the development of dopaminergic and motor neurons in the zebrafish larvae and the latter occurs through the Shh pathway. These results may help understand why arsenic-exposed populations suffer from psychiatric disorders and motor neuron disease and Shh may, potentially, serve as a plasma biomarker of arsenic toxicity.
Collapse
|
4
|
Huang W, Wu T, Wu K. Zebrafish (Danio rerio): A potential model to assess developmental toxicity of ketamine. CHEMOSPHERE 2022; 291:133033. [PMID: 34822872 DOI: 10.1016/j.chemosphere.2021.133033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023]
Abstract
Ketamine is a non-competitive antagonist of NMDA glutamate receptor. It is used as an anesthetic, analgesic, sedative, and anti-depressive agent in clinical practice and also an illegal recreational drug. The increasing use has contributed to the measurable levels of ketamine in both wastewaters and hospital effluents, thereby classified as an emergent contaminant. Lately, the potential toxicity of ketamine has raised serious concerns about its iatrogenic or illicit use during pregnancy, neonatal and childhood stages. However, to assess its long-term toxicity potentially by the use of early life stages in human and rodents is limited. In this regard, the zebrafish has been considered as excellent model organism for biosafety assessments of ketamine due to it boasts an in vivo model with the advantages of an in vitro assay. In this review, we summarize the current understanding of the reported toxicity studies with ketamine in early life stage of zebrafish. The adverse effects of ketamine are known to cause overall developmental and multi-organ toxicity, including cardio-, neuro-, and skeletal toxicity. Furthermore, multiple mechanisms are found to be responsible for perpetrating toxicity of ketamine. The current findings confluence to emphasize the zebrafish embryo as an appealing model system for developmental toxicity testing in higher vertebrates.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou, 515041, Guangdong, PR China
| |
Collapse
|
5
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
6
|
Li L, Gu N, Dong H, Li B, T V G K. Analysis of the effects of acoustic levitation to simulate the microgravity environment on the development of early zebrafish embryos. RSC Adv 2020; 10:44593-44600. [PMID: 35517124 PMCID: PMC9058438 DOI: 10.1039/d0ra07344j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/19/2021] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
In this work, an acoustic standing wave field (ASWF) is used to simulate the space environment, which shows characteristics such as microgravity and the absence of containment and contact. Zebrafish embryos, used as the species under study in this work, were raised within the acoustic field by the authors, allowing the biological effects on such early zebrafish embryos, at each developmental stage and within the ASWF creating the acoustic levitation (AL) technology used, to be studied. In this way, the biological safety of thee specimens, simulating the space environment, could be carefully evaluated. Some important indexes of the process of zebrafish development, such as mortality, malformation rate, hatching rate, voluntary movement and heart rate were detected and analyzed. It has been found that the ASWF exerted considerable influence on the zebrafish embryos at the early development stage, influencing features such as the cleavage, blastula and gastrul stage, over the period 0-8 hour post fertilization (hpf). The zebrafish appear to show some features of teratogenesis, as well as lethal effects and a significant decrease of the hatching rate, after being treated by using the AL that was applied. Furthermore, it was observed that voluntary movements and the embryo heart rates apparently increased under these conditions. However, as the development of the embryo progressed into the bursa pharyngea stage (at 24-32 hpf), the influence of the ASWF creating the AL on zebrafish seemed almost to be insignificant, as there was no obvious difference between the characteristics of the experimental group and the control group. The experiment carried out has provided a scientific reference for the application of AL in this field, allowing the biological safety aspects of such zebrafish embryo development within a space environment to be evaluated.
Collapse
Affiliation(s)
- Li Li
- School of Life Sciences and Technology, Harbin Institute of Technology Harbin 150080 China
| | - Ning Gu
- School of Life Sciences and Technology, Harbin Institute of Technology Harbin 150080 China
| | - Huijuan Dong
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology Harbin 150080 China
| | - Bingsheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
- Key Laboratory of UV Light Emitting Materials and Technology Under Ministry of Education, Northeast Normal University Changchun 130024 China
| | - Kenneth T V G
- School of Mathematics, Computer Science and Engineering, City, University of London London EC1V 0HB UK
| |
Collapse
|
7
|
Gu Q, Ali SF, Kanungo J. Effects of acetyl L-carnitine on zebrafish embryos: Phenotypic and gene expression studies. J Appl Toxicol 2020; 41:256-264. [PMID: 32691447 DOI: 10.1002/jat.4041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023]
Abstract
Acetyl L-carnitine (ALCAR), a dietary supplement and an antioxidant, plays a vital role in the bioenergetic process that produces ATP. Although there are reports on antioxidant toxicity, there is no information on the potential toxicity of ALCAR. Here, using zebrafish embryos, we explored whether ALCAR modulated ATP synthesis, generation of reactive oxygen species (ROS) and expression of specific genes related to major signaling pathways that control metabolism, growth, differentiation, apoptosis and oxidative stress. First, we show that ALCAR elicits a physiologic response, as ATP levels increased after ALCAR treatment. Simultaneously, an increase in the expression of ROS, a by-product of ATP synthesis, was observed in the ALCAR-treated embryos. Consistent with higher ROS expression, the level of cysteine, a precursor of glutathione, was significantly reduced. ALCAR did not have any drastic effect on overall development and heart rate. Polymerase chain reaction-based gene expression array analyses showed no significant change in the expression of 83 genes related to 10 major signaling pathways including: the transforming growth factor β (TGFβ), Wingless and Int-1 (Wnt), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), Janus kinase/signal transducers and activators of transcription (JAK/STAT), p53, Notch, Hedgehog, Peroxisome proliferator-activated receptor (PPAR), oxidative stress, and hypoxia pathways. Our results show that the expression of 83 genes related to these major signaling pathways did not change significantly.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
8
|
N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish. Food Chem Toxicol 2020; 144:111559. [PMID: 32640352 DOI: 10.1016/j.fct.2020.111559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
There is a strong association between calcium channel blockers (CCBs) and heart failure. CCB toxicity is very common due to overdose and underlying medical conditions. CCBs also have been shown to affect the nervous system. Recently, we demonstrated that the antioxidant N-acetylcysteine (NAC) prevented ketamine-induced cardiotoxicity, developmental toxicity and neurotoxicity. Functionally, we attributed NAC's beneficial effect to its ability to increase cellular calcium. Here, we hypothesized that if there was an involvement of calcium in NAC's preventative effects on ketamine toxicity, NAC might also ameliorate toxicities induced by verapamil, an L-type CCB used to treat hypertension. Using zebrafish embryos, we show that in the absence of NAC, verapamil (up to 100 μM) dose-dependently reduced heart rate and those effects were prevented by NAC co-treatment. Furthermore, a 2-h treatment with NAC rescued reduction of heart rate induced by pre-treatment of 50 and 100 μM of verapamil for 18 h. Verapamil up to 100 μM and NAC up to 1.5 mM did not have any adverse effects on the expression of tyrosine hydroxylase in the noradrenergic neurons of the arch-associated cluster (AAC) located near the heart. NAC did not change cysteine levels in the embryos suggesting that the beneficial effect of NAC on verapamil toxicity may not involve its antioxidant property. In our search for compounds that can prevent CCB toxicity, this study, for the first time, demonstrates protective effects of NAC against verapamil's adverse effects on the heart.
Collapse
|
9
|
Robinson BL, Gu Q, Tryndyak V, Ali SF, Dumas M, Kanungo J. Nifedipine toxicity is exacerbated by acetyl l-carnitine but alleviated by low-dose ketamine in zebrafish in vivo. J Appl Toxicol 2019; 40:257-269. [PMID: 31599005 DOI: 10.1002/jat.3901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
Calcium channel blocker (CCB) poisoning is a common and sometimes life-threatening emergency. Our previous studies have shown that acetyl l-carnitine (ALCAR) prevents cardiotoxicity and developmental toxicity induced by verapamil, a CCB used to treat patients with hypertension. Here, we tested whether toxicities of nifedipine, a dihydropyridine CCB used to treat hypertension, can also be mitigated by co-treatment with ALCAR. In the zebrafish embryos at three different developmental stages, nifedipine induced developmental toxicity with pericardial sac edema in a dose-dependent manner, which were surprisingly exacerbated with ALCAR co-treatment. Even with low-dose nifedipine (5 μm), when the pericardial sac looked normal, ALCAR co-treatment showed pericardial sac edema. We hypothesized that toxicity by nifedipine, a vasodilator, may be prevented by ketamine, a known vasoconstrictor. Nifedipine toxicity in the embryos was effectively prevented by co-treatment with low (subanesthetic) doses (25-100 μm added to the water) of ketamine, although a high dose of ketamine (2 mm added to the water) partially prevented the toxicity.As expected of a CCB, nifedipine either in the presence or absence of ketamine-reduced metabolic reactive oxygen species (ROS), a downstream product of calcium signaling, in the rapidly developing digestive system. However, nifedipine induced ROS in the trunk region that showed significantly stunted growth indicating that the tissues under stress potentially produced pathologic ROS. To the best of our knowledge, these studies for the first time show that nifedipine and the dietary supplement ALCAR together induce adverse effects while providing evidence on the therapeutic efficacy of subanesthetic doses of ketamine against nifedipine toxicity in vivo.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Qiang Gu
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas
| | - Syed F Ali
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| | | | - Jyotshna Kanungo
- Division of Neurotoxicology, US Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
10
|
Dasgupta S, Vliet SMF, Cheng V, Mitchell CA, Kirkwood J, Vollaro A, Hur M, Mehdizadeh C, Volz DC. Complex Interplay Among Nuclear Receptor Ligands, Cytosine Methylation, and the Metabolome in Driving Tris(1,3-dichloro-2-propyl)phosphate-Induced Epiboly Defects in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10497-10505. [PMID: 31385694 PMCID: PMC6721996 DOI: 10.1021/acs.est.9b04127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production-volume organophosphate flame retardant (OPFR) that induces epiboly defects during zebrafish embryogenesis, leading to the disruption of dorsoventral patterning. Therefore, the objectives of this study were to (1) identify the potential mechanisms involved in TDCIPP-induced epiboly defects and (2) determine whether coexposure to triphenyl phosphate (TPHP)-an OPFR commonly detected with TDCIPP-enhances or mitigates epiboly defects. Although TDCIPP-induced epiboly defects were not associated with adverse impacts on cytoskeletal protein abundance in situ, the coexposure of embryos to TPHP partially blocked TDCIPP-induced epiboly defects. As nuclear receptors are targets for both TPHP and TDCIPP, we exposed the embryos to TDCIPP in the presence or absence of 69 nuclear receptor ligands and, similar to TPHP, found that ciglitazone (a peroxisome proliferator-activated receptor γ agonist) and 17β-estradiol (E2; an estrogen receptor α agonist) nearly abolished TDCIPP-induced epiboly defects. Moreover, E2 and ciglitazone mitigated TDCIPP-induced effects on CpG hypomethylation within the target loci prior to epiboly, and ciglitazone altered TDCIPP-induced effects on the abundance of two polar metabolites (acetylcarnitine and cytidine-5-diphosphocholine) during epiboly. Overall, our results point to a complex interplay among nuclear receptor ligands, cytosine methylation, and the metabolome in both the induction and mitigation of epiboly defects induced by TDCIPP.
Collapse
Affiliation(s)
- Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Sara M. F. Vliet
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Constance A. Mitchell
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Jay Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, United States
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, United States
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, United States
| | - Chris Mehdizadeh
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - David C. Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
- Phone: (951) 827-4450; Fax: (951) 827-4652;
| |
Collapse
|
11
|
Robinson B, Gu Q, Ali SF, Dumas M, Kanungo J. Ketamine-induced attenuation of reactive oxygen species in zebrafish is prevented by acetyl l-carnitine in vivo. Neurosci Lett 2019; 706:36-42. [PMID: 31078678 DOI: 10.1016/j.neulet.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Ketamine, an anesthetic, is a non-competitive antagonist of the calcium-permeable N-methyl-d-aspartate (NMDA) receptor. High concentrations of ketamine have been implicated in cardiotoxicity and neurotoxicity. Often, these toxicities are thought to be mediated by reactive oxygen species (ROS). However, findings to the contrary showing ketamine reducing ROS in mammalian cells and neurons in vitro, are emerging. Here, we determined the effects of ketamine on ROS levels in zebrafish larvae in vivo. Based on our earlier studies demonstrating reduction in ATP levels by ketamine, we hypothesized that as a calcium antagonist, ketamine would also prevent ROS generation, which is a by-product of ATP synthesis. To confirm that the detected ROS in a whole organism, such as the zebrafish larva, is specific, we used diphenyleneiodonium (DPI) that blocks ROS production by inhibiting the NADPH Oxidases (NOX). Upon 20 h exposure, DPI (5 and 10 μM) and ketamine at (1 and 2 mM) reduced ROS in the zebrafish larvae in vivo. Using acetyl l-carnitine (ALCAR), a dietary supplement, that induces mitochondrial ATP synthesis, we show elevated ROS generation with increasing ALCAR concentrations. Combined, ketamine and ALCAR counter-balanced ROS generation in the larvae suggesting that ketamine and ALCAR have opposing effects on mitochondrial metabolism, which may be key to maintaining ROS homeostasis in the larvae and affords ALCAR the ability to prevent ketamine toxicity. These results for the first time show ketamine's antioxidative and ALCAR's prooxidative effects in a live vertebrate.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- The Bionetics Corporation, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
12
|
Marcon M, Mocelin R, de Oliveira DL, da Rosa Araujo AS, Herrmann AP, Piato A. Acetyl-L-carnitine as a putative candidate for the treatment of stress-related psychiatric disorders: Novel evidence from a zebrafish model. Neuropharmacology 2019; 150:145-152. [PMID: 30917915 DOI: 10.1016/j.neuropharm.2019.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 01/21/2023]
Abstract
Stress-related psychiatric disorders are mental conditions that affect mood, cognition and behavior and arise because of the impact of prolonged stress on the central nervous system (CNS). Acetyl-L-carnitine (ALC) is an acetyl ester of L-carnitine that easily crosses the blood-brain barrier and was recently found to be decreased in patients with major depressive disorder. ALC plays a role in energy metabolism and is widely consumed as a nutritional supplement to improve physical performance. In this study, our objective was to evaluate the effects of ALC treatment (0.1 mg/L, 10 min) for 7 days on behavior and oxidative stress in zebrafish subjected to unpredictable chronic stress (UCS) protocol. Behavioral outcomes were assessed in the novel tank test, and parameters of oxidative status (lipid peroxidation and antioxidant defenses) were evaluated in the brain using colorimetric methods. According to our previous findings, UCS increased anxiety-like behavior and lipid peroxidation, while it decreased non-protein thiol levels and superoxide dismutase activity. However, ALC reversed the anxiety-like behavior and oxidative damage in stressed animals, while it was devoid of effect in control animals. Although our data reinforce the neuroprotective potential of ALC in the treatment of psychiatric disorders related to stress, further investigations are required to clarify its mechanisms of action and confirm its efficacy.
Collapse
Affiliation(s)
- Matheus Marcon
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ricieri Mocelin
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo L de Oliveira
- Programa de Pós-graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Programa de Pós-graduação em Fisiologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-graduação em Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| |
Collapse
|
13
|
Robinson B, Dumas M, Gu Q, Kanungo J. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish. Neurosci Lett 2018; 682:56-61. [PMID: 29890257 PMCID: PMC6102060 DOI: 10.1016/j.neulet.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/11/2023]
Abstract
N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
14
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicol Teratol 2017; 69:63-72. [PMID: 29225006 DOI: 10.1016/j.ntt.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022]
Abstract
Ketamine, a phencyclidine derivative, is an antagonist of the Ca2+-permeable N-methyl-d-aspartate (NMDA)-type glutamate receptors. It is a pediatric anesthetic and has been implicated in developmental neurotoxicity. Ketamine has also been shown to deplete ATP in mammalian cells. Our previous studies showed that acetyl l-carnitine (ALCAR) prevented ketamine-induced cardiotoxicity and neurotoxicity in zebrafish embryos. Based on our finding that ALCAR's protective effect was blunted by oligomycin A, an inhibitor of ATP synthase, we further investigated the effects of ketamine and ALCAR on ATP levels, mitochondria and ATP synthase in zebrafish embryos. The results demonstrated that ketamine reduced ATP levels in the embryos but not in the presence of ALCAR. Ketamine reduced total mitochondrial protein levels and mitochondrial potential, which were prevented with ALCAR co-treatment. To determine the cause of ketamine-induced ATP deficiency, we explored the status of ATP synthase. The results showed that a subunit of ATP synthase, atp5α1, was transcriptionally down-regulated by ketamine, but not in the presence of ALCAR, although ketamine caused a significant upregulation in another ATP synthase subunit, atp5β and total ATP synthase protein levels. Most of the ATP generated by heart mitochondria are utilized for its contraction and relaxation. Ketamine-treated embryos showed abnormal heart structure, which was abolished with ALCAR co-treatment. This study offers evidence for a potential mechanism by which ketamine could cause ATP deficiency mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
15
|
Robinson BL, Dumas M, Ali SF, Paule MG, Gu Q, Kanungo J. Cyclosporine exacerbates ketamine toxicity in zebrafish: Mechanistic studies on drug-drug interaction. J Appl Toxicol 2017; 37:1438-1447. [PMID: 28569378 DOI: 10.1002/jat.3488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/07/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug commonly used in organ transplant patients to prevent allograft rejections. Ketamine is a pediatric anesthetic that noncompetitively inhibits the calcium-permeable N-methyl-d-aspartic acid receptors. Adverse drug-drug interaction effects between ketamine and CsA have been reported in mammals and humans. However, the mechanism of such drug-drug interaction is unclear. We have previously reported adverse effects of combination drugs, such as verapamil/ketamine and shown the mechanism through intervention by other drugs in zebrafish embryos. Here, we show that ketamine and CsA in combination produce developmental toxicity even leading to lethality in zebrafish larvae when exposure began at 24 h post-fertilization (hpf), whereas CsA did not cause any toxicity on its own. We also demonstrate that acetyl l-carnitine (ALCAR) completely reversed the adverse effects. Both ketamine and CsA are CYP3A4 substrates. Although ketamine and CsA independently altered the expression of the hepatic marker CYP3A65, a zebrafish ortholog of human CYP3A4, both drugs together induced further increase in CYP3A65 expression. In the presence of ALCAR, however, CYP3A65 expression was normalized. ALCAR has been shown to prevent ketamine toxicity in mammal and zebrafish. In conclusion, CsA exacerbated ketamine toxicity and ALCAR reversed the effects. These results, providing evidence for the first time on the reversal of the adverse effects of CsA/ketamine interaction by ALCAR, would prove useful in addressing potential occurrences of such toxicities in humans. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
16
|
Shokri M, Moradpour R, Shafaroudi MM, Rezaei N, Tabary SZ. Comparing the Effects of Krebs Plus Verapamil Solution on Endothelial Function of Harvested Human Greater Saphenous Vein with Heparinized Blood, an Invitro Study. Med Arch 2017; 71:188-192. [PMID: 28974831 PMCID: PMC5585787 DOI: 10.5455/medarh.2017.71.188-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Integrity of the great saphenous vein (GSV) endothelium is the most important key element for long-term patency rate of grafts in coronary artery bypass graft (CABG). Storage solutions play an important role in maintaining viability of vein endothelium. Diminished nitric oxide (NO) because of endothelial dysfunction may facilitate vascular inflammation and formation of atherosclerotic plaque. AIM So, we decided to find a reasonable alternative preservative solution instead of heparinized blood (HB) by measuring NO concentration with Griess assay. MATERIAL AND METHOD SVG samples were obtained from 54 patients undergoing elective CABG. 3 mm rings were stored in solutions: heparinized blood (HB), Krebs (K), Krebs + Propranolol (K+P) 6.66 g/l, Krebs + Adrenaline (K+A) 200 µl/l, and Krebs + Verapamil (K+V) 200 µl/l for 30, 45, 60 and 90 min. Nitrite concentration was measured by Griess assay at 540 nm. H&E staining was performed for histologic test. Statistical analysis was performed using SPSS (V16). Results were expressed as (Means ± SE) followed by One-Way ANOVA for finding best preservative solution. Repeated measurement test was used to investigate best time. In all analysis, (P<0.05) was considered significant. RESULTS Average concentration of NO in (K+V) compare with HB (1st control), K (2nd control), (K+A) and (K+P) showed higher rate in all times from 30 to 90 min (16.55±1.85:) and in (K+A, K+P) compare with (HB) and (K) there was no statistically significant difference in the same times. Comparing the average concentration of (NO) between (HB) and (K) showed no significant difference (K+V>HB=K=K+A=K+P). Also, our investigations showed that NO concentration in (K+V) has the highest rate in time 90 min (10.07±0.56, p=0.002):. More than 50 percent of endothelial cells stay normal in (K+V) compare with other solutions. CONCLUSION It seems that (K+V) is the best solution for the maintenance of normal physiology of SVGs endothelial cells. The most appropriate SVGs endothelial function is within 90 minutes after harvesting.
Collapse
Affiliation(s)
- Mitra Shokri
- Department of Anatomy and Cell Biology, Cell and Molecoular Research Center (CMRC), Medical Faculty, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Majid Malekzade Shafaroudi
- Department of Anatomy and Cell Biology, Cell and Molecoular Research Center (CMRC), Medical Faculty, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Rezaei
- Department of Anatomy and Cell Biology, Cell and Molecoular Research Center (CMRC), Medical Faculty, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Ziabakhsh Tabary
- Department of Cardiac Surgery, Mazandaran Heart Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|