1
|
Wang W, Chen J, Bao Y, Ma W, Xie Y, Wang W, Li M, Shen K. MicroRNA sequencing analysis in pediatric patients with influenza-associated acute necrotizing encephalopathy: Potential biomarkers for early diagnosis and therapy. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 130:105734. [PMID: 40120635 DOI: 10.1016/j.meegid.2025.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Acute necrotizing encephalopathy (ANE) secondary to influenza infection is characterized by fulminant neurological deterioration and a high mortality rate. The underlying mechanisms remain unclear, and specific treatments are currently lacking. Therefore, understanding the pathogenesis and identifying diagnostic and therapeutic targets for influenza-induced ANE are crucial. Peripheral blood samples were collected from two groups: influenza-infected patients without ANE (mild) and influenza infection with ANE patients (severe). Differentially expressed genes (DEG) were identified through microRNA sequencing analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The expression levels of the four specific miRNAs were validated using qRT-PCR. In the severe group, 24 genes were up-regulated, and 67 genes were down-regulated compared to the mild group. The expression levels of hsa-miR-1290, hsa-miR-4657, has-miR-1231, and hsa-miR-342-3p were validated by qRT-PCR, and the levels of has-miR-4657 and hsamiR- 342-3p showed significant differences between severe and mild groups. GO analysis demonstrated that the DEGs were predominantly involved in the positive regulation of cellular processes, intracellular anatomical structure, and protein binding. KEGG pathway analysis revealed that DEGs were mainly enriched in calcium signaling pathway and axon guidance. The down-regulated hsa-miR-4657 and hsa-miR-342-3p might be associated with the development of ANE in pediatric patients with influenza by regulation of calcium pathways and axon guidance.
Collapse
Affiliation(s)
- Wei Wang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China; Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Jiehua Chen
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Weike Ma
- Department of Critical care medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Ying Xie
- Department of Cardiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjian Wang
- Department of Respiratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Meng Li
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, China.
| | - Kunling Shen
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Karatayev O, Collier AD, Targoff SR, Leibowitz SF. Neurological Disorders Induced by Drug Use: Effects of Adolescent and Embryonic Drug Exposure on Behavioral Neurodevelopment. Int J Mol Sci 2024; 25:8341. [PMID: 39125913 PMCID: PMC11313660 DOI: 10.3390/ijms25158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Clinical studies demonstrate that the risk of developing neurological disorders is increased by overconsumption of the commonly used drugs, alcohol, nicotine and cannabis. These drug-induced neurological disorders, which include substance use disorder (SUD) and its co-occurring emotional conditions such as anxiety and depression, are observed not only in adults but also with drug use during adolescence and after prenatal exposure to these drugs, and they are accompanied by long-lasting disturbances in brain development. This report provides overviews of clinical and preclinical studies, which confirm these adverse effects in adolescents and the offspring prenatally exposed to the drugs and include a more in-depth description of specific neuronal systems, their neurocircuitry and molecular mechanisms, affected by drug exposure and of specific techniques used to determine if these effects in the brain are causally related to the behavioral disturbances. With analysis of further studies, this review then addresses four specific questions that are important for fully understanding the impact that drug use in young individuals can have on future pregnancies and their offspring. Evidence demonstrates that the adverse effects on their brain and behavior can occur: (1) at low doses with short periods of drug exposure during pregnancy; (2) after pre-conception drug use by both females and males; (3) in subsequent generations following the initial drug exposure; and (4) in a sex-dependent manner, with drug use producing a greater risk in females than males of developing SUDs with emotional conditions and female offspring after prenatal drug exposure responding more adversely than male offspring. With the recent rise in drug use by adolescents and pregnant women that has occurred in association with the legalization of cannabis and increased availability of vaping tools, these conclusions from the clinical and preclinical literature are particularly alarming and underscore the urgent need to educate young women and men about the possible harmful effects of early drug use and to seek novel therapeutic strategies that might help to limit drug use in young individuals.
Collapse
Affiliation(s)
| | | | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA; (O.K.); (S.R.T.)
| |
Collapse
|
3
|
Wang LJ, Tsai CC, Chao HR, Lee SY, Chen CC, Li SC. MicroRNAs in Umbilical Cord Blood and Development in Full-Term Newborns: A Prospective Study. Biomark Insights 2024; 19:11772719241258017. [PMID: 38863527 PMCID: PMC11165956 DOI: 10.1177/11772719241258017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Background Exploring the epigenetic regulations, such as microRNA, in newborns holds significant promise for enhancing our ability to address and potentially prevent early-life developmental delays. Objectives Hence, this research seeks to investigate if the expression of miRNA in the umbilical cord blood of infants can forecast their developmental outcomes as they grow older. Design and method We enrolled 143 full-term newborns, delivered either via cesarean section (CS) or through natural spontaneous delivery (NSD). We then analyzed the profiles of specific miRNAs (miR-486-5p, miR-126-5p, miR-140-3p, miR-151a-3p, miR-142-5p, and miR-30e-5p) in the umbilical cord blood of these infants. Subsequently, we performed follow-up assessments using Bayley-III scores when the cohort reached 1 year of age. Furthermore, we conducted pathway-enrichment analyses on the target genes associated with these examined miRNAs. Results When comparing newborns delivered via cesarean section (CS) to those born via natural spontaneous delivery (NSD), we observed notable differences. Specifically, newborns through NSD displayed significantly higher ΔCt values for miR-486-5p, alongside lower ΔCt values for miR-126-5p and miR-151a-3p in their cord blood. At 1 year of age, cognitive development was significantly linked to the ΔCt values of miR-140-3p and miR-142-5p, while language development showed a significant association with the ΔCt values of miR-140-3p. Moreover, our pathway enrichment analyses revealed that the target genes of these miRNAs were consistently involved in the pathways related to neurons, such as axon guidance and the neurotrophin signaling pathway. Conclusion In summary, this study represents a pioneering effort in elucidating the potential connections between miRNA levels in cord blood and the health indicators and neurodevelopment of newborns at 1 year of age. Our findings underscore the significance of miRNA levels at birth in influencing mechanisms related to neurodevelopment.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung County, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Altounian M, Bellon A, Mann F. Neuronal miR-17-5p contributes to interhemispheric cortical connectivity defects induced by prenatal alcohol exposure. Cell Rep 2023; 42:113020. [PMID: 37610874 DOI: 10.1016/j.celrep.2023.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Structural and functional deficits in brain connectivity are reported in patients with fetal alcohol spectrum disorders (FASDs), but whether and how prenatal alcohol exposure (PAE) affects axonal development of neurons and disrupts wiring between brain regions is unknown. Here, we develop a mouse model of moderate alcohol exposure during prenatal brain wiring to study the effects of PAE on corpus callosum (CC) development. PAE induces aberrant navigation of interhemispheric CC axons that persists even after exposure ends, leading to ectopic termination in the contralateral cortex. The neuronal miR-17-5p and its target ephrin type A receptor 4 (EphA4) mediate the effect of alcohol on the contralateral targeting of CC axons. Thus, altered microRNA-mediated regulation of axonal guidance may have implications for interhemispheric cortical connectivity and associated behaviors in FASD.
Collapse
Affiliation(s)
| | - Anaïs Bellon
- Aix Marseille University, INSERM, INMED, Marseille, France
| | - Fanny Mann
- Aix Marseille University, CNRS, IBDM, Marseille, France.
| |
Collapse
|
5
|
Gerace E, Curti L, Caffino L, Bigagli E, Mottarlini F, Castillo Díaz F, Ilari A, Luceri C, Dani C, Fumagalli F, Masi A, Mannaioni G. Ethanol-induced AMPA alterations are mediated by mGLU5 receptors through miRNA upregulation in hippocampal slices. Eur J Pharmacol 2023; 955:175878. [PMID: 37433363 DOI: 10.1016/j.ejphar.2023.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Prenatal alcohol exposure (PAE) affects neuronal networks and brain development causing a range of physical, cognitive and behavioural disorders in newborns that persist into adulthood. The array of consequences associated with PAE can be grouped under the umbrella-term 'fetal alcohol spectrum disorders' (FASD). Unfortunately, there is no cure for FASD as the molecular mechanisms underlying this pathology are still unknown. We have recently demonstrated that chronic EtOH exposure, followed by withdrawal, induces a significant decrease in AMPA receptor (AMPAR) expression and function in developing hippocampus in vitro. Here, we explored the EtOH-dependent pathways leading to hippocampal AMPAR suppression. Organotypic hippocampal slices (2 days in cultures) were exposed to EtOH (150 mM) for 7 days followed by 24 h EtOH withdrawal. Then, the slices were analysed by means of RT-PCR for miRNA content, western blotting for AMPA and NMDA related-synaptic proteins expression in postsynaptic compartment and electrophysiology to record electrical properties from CA1 pyramidal neurons. We observed that EtOH induces a significant downregulation of postsynaptic AMPA and NMDA subunits and relative scaffolding protein expression and, accordingly, a decrease of AMPA-mediated neurotransmission. Simultaneously, we found that chronic EtOH induced-upregulation of miRNA 137 and 501-3p and decreased AMPA-mediated neurotransmission are prevented by application of the selective mGlu5 antagonist MPEP during EtOH withdrawal. Our data indicate mGlu5 via miRNA137 and 501-3p expression as key factors in the regulation of AMPAergic neurotransmission that may contribute, at least in part, to the pathogenesis of FASD.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Department of Health Sciences (DSS), University of Florence, Florence, Italy.
| | - Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Karabegović I, Abozaid Y, Maas SCE, Labrecque J, Bos D, De Knegt RJ, Ikram MA, Voortman T, Ghanbari M. Plasma MicroRNA Signature of Alcohol Consumption: The Rotterdam Study. J Nutr 2022; 152:2677-2688. [PMID: 36130258 PMCID: PMC9839997 DOI: 10.1093/jn/nxac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent a class of noncoding RNAs that regulate gene expression and are implicated in the pathogenesis of different diseases. Alcohol consumption might affect the expression of miRNAs, which in turn could play a role in risk of diseases. OBJECTIVES We investigated whether plasma concentrations of miRNAs are altered by alcohol consumption. Given the existing evidence showing the link between alcohol and liver diseases, we further explored the extent to which these associations are mediated by miRNAs. METHODS Profiling of plasma miRNAs was conducted using the HTG EdgeSeq miRNA Whole Transcriptome Assay in 1933 participants of the Rotterdam Study. Linear regression was implemented to explore the link between alcohol consumption (glasses/d) and miRNA concentrations, adjusted for age, sex, cohort, BMI, and smoking. Sensitivity analysis for alcohol categories (nondrinkers, light drinkers, and heavy drinkers) was performed, where light drinkers corresponded to 0-2 glasses/d in men and 0-1 glasses/d in women, and heavy drinkers to >2 glasses/d in men and >1 glass/d in women. Moreover, we utilized the alcohol-associated miRNAs to explore their potential mediatory role between alcohol consumption and liver-related traits. Finally, we retrieved putative target genes of identified miRNAs to gain an understanding of the molecular pathways concerning alcohol consumption. RESULTS Plasma concentrations of miR-193b-3p, miR-122-5p, miR-3937, and miR-4507 were significantly associated with alcohol consumption surpassing the Bonferroni-corrected P < 8.46 × 10-5. The top significant association was observed for miR-193b-3p (β = 0.087, P = 2.90 × 10-5). Furthermore, a potential mediatory role of miR-3937 and miR-122-5p was observed between alcohol consumption and liver traits. Pathway analysis of putative target genes revealed involvement in biological regulation and cellular processes. CONCLUSIONS This study indicates that alcohol consumption is associated with plasma concentrations of 4 miRNAs. We outline a potential mediatory role of 2 alcohol-associated miRNAs (miR-3937 and miR-122-5p), laying the groundwork for further exploration of miRNAs as potential mediators between lifestyle factors and disease development.
Collapse
Affiliation(s)
- Irma Karabegović
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yasir Abozaid
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jeremy Labrecque
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert J De Knegt
- Department of Gastroenterology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
7
|
Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1695. [PMID: 34825502 DOI: 10.1002/wrna.1695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Non-coding RNAs (ncRNAs) work as crucial posttranscriptional modulators of gene expression regulating a wide array of biological processes that impact normal physiology, including reproductive health. The health of women, especially reproductive health, is now a prime focus of society that ensures the females' overall physical, social, and mental well-being. Furthermore, there has been a growing cognizance of ncRNAs' possible applications in diagnostics and therapeutics of dreaded diseases. Hence, understanding the functions and mode of actions of ncRNAs in the context of women's health will allow us to develop effective prognostic and therapeutic strategies that will enhance the quality of life of women. Herein, we summarize recent progress on ncRNAs, such as microRNAs (miRNAs) and long ncRNAs (lncRNAs), and their implications in reproductive health by tying the knot with lifestyle factors that affect fertility complications, pregnancy outcomes, and so forth. We also discourse the interplay among the RNA species, especially miRNAs, lncRNAs, and protein-coding RNAs, through the competing endogenous RNA regulations in diseases of women associated with maternal and fetal health. This review provides new perspectives correlating ncRNAs, lifestyle, and reproductive health of women, which will attract future studies to improve women's lives. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pooja Gupta
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
8
|
Zhao X, Zhu S, Li J, Long D, Wan M, Tang W. Epigenetic changes in inflammatory genes and the protective effect of cooked rhubarb on pancreatic tissue of rats with chronic alcohol exposure. Biomed Pharmacother 2022; 146:112587. [PMID: 35062061 DOI: 10.1016/j.biopha.2021.112587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic alcohol consumption, which is observed worldwide, can damage pancreatic tissue and promote pancreatitis. Rhubarb is a widely used traditional Chinese herbal medicine for treating pancreatitis in China. However, few pharmacological studies have investigated its epigenetic regulation. In this study, we investigated whether chronic exposure to alcohol can alter inflammatory gene expression and the epigenetic regulation effect of cooked rhubarb in the pancreatic tissue of rats. First, changes in inflammatory cytokine DNA methylation (IL-10, IL-1α, TNF-α, NF-κB and TGF-β) were detected in pancreatic tissue of Sprague-Dawley rats with varying alcohol exposure times (4, 6, 8, or 12 weeks), and then with varying doses of cooked rhubarb treatment (3, 6, or 12 g/day). DNA methylation levels, related RNA concentrations and protein expression of specific inflammatory cytokines, and histopathological score were analysed in pancreatic tissue of Sprague-Dawley rats. The results showed that chronic alcohol exposure (8 weeks) reduced the level of IL-1α DNA methylation and increased its protein expression in acinar cells (P < 0.05). In the acinar cells, the level of IL-10 DNA methylation increased, resulting in a reduction of protein expression (P < 0.05). Simultaneously, chronic alcohol exposure increased the pathological damage to the pancreas (P < 0.05). Finally, cooked rhubarb treatment (3 g/kg/day) effectively alleviated these changes in pancreatic tissue from chronic alcohol exposure (P < 0.05). These results indicate that chronic exposure to alcohol leads to changes in DNA methylation and protein expression of inflammatory genes, and cooked rhubarb may have a protective effect on the pancreatic tissue of rats.
Collapse
Affiliation(s)
- Xianlin Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Shifeng Zhu
- Zhejiang Provincial Tongde Hospital, Hangzhou, Zhejiang, China.
| | - Juan Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology, Sichuan University, Chengdu, Sichuan, China.
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Non-coding RNA in alcohol use disorder by affecting synaptic plasticity. Exp Brain Res 2022; 240:365-379. [PMID: 35028694 DOI: 10.1007/s00221-022-06305-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is one of the most serious public health problems worldwide. AUD is a complex disorder, and there is ample evidence that genetic predisposition is critical to its development. Recent studies have shown that genetic predisposition leads to the onset of AUD, and alcohol metabolism can affect epigenetic inheritance, which in turn affects synaptic plasticity, alters brain function, and leads to more severe addictive behaviors. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play an important role in alcohol addiction. This paper reviews the regulatory role of ncRNAs. ncRNAs are involved in enzyme and neurotransmitter reaction systems during alcohol use disorder. Alcohol consumption regulates the expression of ncRNAs that mediate epigenetic modification and synaptic plasticity, which play an important role in the development of chronic AUD. ncRNAs may be used not only as predictors of therapeutic responses but also as therapeutic targets of AUD. Chronic alcoholism is more likely to lead to neuroimmune disorders, including permanent brain dysfunction. AUD induced by long-term alcoholism greatly alters the expression of genes in the human genome, especially the expression of ncRNAs. Alcohol can cause a series of pathological changes by interfering with gene expression, such as through disordered miRNA-mRNA expression networks, epigenetic modifications, disordered metabolism, and even synaptic remodeling. ncRNAs are involved in the transition from moderate drinking to alcohol dependence.
Collapse
|
10
|
Tasin FR, Ahmed A, Halder D, Mandal C. On-going consequences of in utero exposure of Pb: An epigenetic perspective. J Appl Toxicol 2022; 42:1553-1569. [PMID: 35023172 DOI: 10.1002/jat.4287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 11/08/2022]
Abstract
Epigenetic modifications by toxic heavy metals are one of the intensively investigated fields of modern genomic research. Among a diverse group of heavy metals, lead (Pb) is an extensively distributed toxicant causing an immense number of abnormalities in the developing fetus via a wide variety of epigenetic changes. As a divalent cation, Pb can readily cross the placental membrane and the fetal blood brain barrier leading to far-reaching alterations in DNA methylation patterns, histone protein modifications and micro-RNA expression. Over recent years, several human cohorts and animal model studies have documented hyper- and hypo-methylation of developmental genes along with altered DNA methyl-transferase expression by in utero Pb exposure in a dose-, duration- and sex-dependent manner. Modifications in the expression of specific histone acetyltransferase enzymes along with histone acetylation and methylation levels have been reported in rodent and murine models. Apart from these, down-regulation and up-regulation of certain microRNAs crucial for fetal development have been shown to be associated with in utero Pb exposure in human placenta samples. All these modifications in the developing fetus during the prenatal and perinatal stages reportedly caused severe abnormalities in early or adult age, such as - impaired growth, obesity, autism, diabetes, cardiovascular diseases, risks of cancer development and Alzheimer's disease. In this review, currently available information on Pb-mediated alterations in the fetal epigenome is summarized. Further research on Pb-induced epigenome modification will help to understand the mechanisms in detail and will enable us to formulate safety guidelines for pregnant women and developing children.
Collapse
Affiliation(s)
- Fahim Rejanur Tasin
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Debasish Halder
- Rare Disease research center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
11
|
Alcohol induced impairment/abnormalities in brain: Role of MicroRNAs. Neurotoxicology 2021; 87:11-23. [PMID: 34478768 DOI: 10.1016/j.neuro.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Alcohol is a highly toxic substance and has teratogenic properties that can lead to a wide range of developmental disorders. Excessive use of alcohol can change the structural and functional aspects of developed brain and other organs. Which can further lead to significant health, social and economic implications in many countries of the world. Convincing evidence support the involvement of microRNAs (miRNAs) as important post-transcriptional regulators of gene expression in neurodevelopment and maintenance. They also show differential expression following an injury. MiRNAs are the special class of small non coding RNAs that can modify the gene by targeting the mRNA and fine tune the development of cells to organs. Numerous pieces of evidences have shown the relationship between miRNA, alcohol and brain damage. These studies also show how miRNA controls different cellular mechanisms involved in the development of alcohol use disorder. With the increasing number of research studies, the roles of miRNAs following alcohol-induced injury could help researchers to recognize alternative therapeutic methods to treat/cure alcohol-induced brain damage. The present review summarizes the available data and brings together the important miRNAs, that play a crucial role in alcohol-induced brain damage, which will help in better understanding complex mechanisms. Identifying these miRNAs will not only expand the current knowledge but can lead to the identification of better targets for the development of novel therapeutic interventions.
Collapse
|
12
|
Arzua T, Jiang C, Yan Y, Bai X. The importance of non-coding RNAs in environmental stress-related developmental brain disorders: A systematic review of evidence associated with exposure to alcohol, anesthetic drugs, nicotine, and viral infections. Neurosci Biobehav Rev 2021; 128:633-647. [PMID: 34186153 PMCID: PMC8357057 DOI: 10.1016/j.neubiorev.2021.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/23/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a dynamic and lengthy process that includes cell proliferation, migration, neurogenesis, gliogenesis, synaptogenesis, and pruning. Disruption of any of these developmental events can result in long-term outcomes ranging from brain structural changes, to cognitive and behavioral abnormality, with the mechanisms largely unknown. Emerging evidence suggests non-coding RNAs (ncRNAs) as pivotal molecules that participate in normal brain development and neurodevelopmental disorders. NcRNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are transcribed from the genome but not translated into proteins. Many ncRNAs have been implicated as tuners of cell fate. In this review, we started with an introduction of the current knowledge of lncRNAs and miRNAs, and their potential roles in brain development in health and disorders. We then reviewed and discussed the evidence of ncRNA involvement in abnormal brain development resulted from alcohol, anesthetic drugs, nicotine, and viral infections. The complex connections among these ncRNAs were also discussed, along with potential overlapping ncRNA mechanisms, possible pharmacological targets for therapeutic/neuroprotective interventions, and potential biomarkers for brain developmental disorders.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Congshan Jiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
13
|
Wallén E, Auvinen P, Kaminen-Ahola N. The Effects of Early Prenatal Alcohol Exposure on Epigenome and Embryonic Development. Genes (Basel) 2021; 12:genes12071095. [PMID: 34356111 PMCID: PMC8303887 DOI: 10.3390/genes12071095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is one of the most significant causes of developmental disability in the Western world. Maternal alcohol consumption during pregnancy leads to an increased risk of neurological deficits and developmental abnormalities in the fetus. Over the past decade, several human and animal studies have demonstrated that alcohol causes alterations in epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. There is an increasing amount of evidence that early pregnancy is a sensitive period for environmental-induced epigenetic changes. It is a dynamic period of epigenetic reprogramming, cell divisions, and DNA replication and, therefore, a particularly interesting period to study the molecular changes caused by alcohol exposure as well as the etiology of alcohol-induced developmental disorders. This article will review the current knowledge about the in vivo and in vitro effects of alcohol exposure on the epigenome, gene regulation, and the phenotype during the first weeks of pregnancy.
Collapse
|
14
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
15
|
Panico A, Tumolo MR, Leo CG, Donno AD, Grassi T, Bagordo F, Serio F, Idolo A, Masi RD, Mincarone P, Sabina S. The influence of lifestyle factors on miRNA expression and signal pathways: a review. Epigenomics 2020; 13:145-164. [PMID: 33355508 DOI: 10.2217/epi-2020-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The term 'lifestyle' includes different factors that contribute to the maintenance of a good health status. Increasing evidences suggest that lifestyle factors may influence epigenetic mechanisms, such as miRNAs expression. The dysregulation of miRNAs can modify the expression of genes and molecular pathways that may lead to functional alterations. This review summarizes human studies highlighting that diet, physical activity, smoking and alcohol consumption may affect the miRNA machinery and several biological functions. Most miRNAs are involved in molecular pathways that influence inflammation, cell cycle regulation and carcinogenesis resulting in the onset or progression of pathological conditions. Investigating these interactions will be pivotal for understanding the etiology of pathologic processes, the potential new treatment strategies and for preventing diseases.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Maria R Tumolo
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Carlo G Leo
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Antonella De Donno
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Tiziana Grassi
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesco Bagordo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesca Serio
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Adele Idolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, 'F. Ferrari' Hospital, Casarano, Lecce, 73042, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
16
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
17
|
Fainsod A, Bendelac-Kapon L, Shabtai Y. Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. Subcell Biochem 2020; 95:197-225. [PMID: 32297301 DOI: 10.1007/978-3-030-42282-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a complex set of developmental malformations, neurobehavioral anomalies and mental disabilities induced by exposing human embryos to alcohol during fetal development. Several experimental models and a series of developmental and biochemical approaches have established a strong link between FASD and reduced retinoic acid (RA) signaling. RA signaling is involved in the regulation of numerous developmental decisions from patterning of the anterior-posterior axis, starting at gastrulation, to the differentiation of specific cell types within developing organs, to adult tissue homeostasis. Being such an important regulatory signal during embryonic development, mutations or environmental perturbations that affect the level, timing or location of the RA signal can induce multiple and severe developmental malformations. The evidence connecting human syndromes to reduced RA signaling is presented here and the resulting phenotypes are compared to FASD. Available data suggest that competition between ethanol clearance and RA biosynthesis is a major etiological component in FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel.
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| |
Collapse
|
18
|
Suzuki A, Li A, Gajera M, Abdallah N, Zhang M, Zhao Z, Iwata J. MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells. BMC Med Genomics 2019; 12:93. [PMID: 31262291 PMCID: PMC6604454 DOI: 10.1186/s12920-019-0546-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cleft palate (CP) is the second most common congenital birth defect; however, the relationship between CP-associated genes and epigenetic regulation remains largely unknown. In this study, we investigated the contribution of microRNAs (miRNAs) to cell proliferation and regulation of genes involved in CP development. Methods In order to identify all genes for which mutations or association/linkage have been found in individuals with CP, we conducted a systematic literature search, followed by bioinformatics analyses for these genes. We validated the bioinformatics results experimentally by conducting cell proliferation assays and miRNA-gene regulatory analyses in cultured human palatal mesenchymal cells treated with each miRNA mimic. Results We identified 131 CP-associated genes in the systematic review. The bioinformatics analysis indicated that the CP genes were associated with signaling pathways, microRNAs (miRNAs), metabolic pathways, and cell proliferation. A total 17 miRNAs were recognized as potential modifiers of human CP genes. To validate miRNA function in cell proliferation, a main cause of CP, we conducted cell proliferation/viability assays for the top 11 candidate miRNAs from our bioinformatics analysis. Overexpression of miR-133b, miR-374a-5p, and miR-4680-3p resulted in a more than 30% reduction in cell proliferation activity in human palatal mesenchymal cell cultures. We found that several downstream target CP genes predicted by the bioinformatics analyses were significantly downregulated through induction of these miRNAs (FGFR1, GCH1, PAX7, SMC2, and SUMO1 by miR-133b; ARNT, BMP2, CRISPLD1, FGFR2, JARID2, MSX1, NOG, RHPN2, RUNX2, WNT5A and ZNF236 by miR-374a-5p; and ERBB2, JADE1, MTHFD1 and WNT5A by miR-4680-3p) in cultured cells. Conclusions Our results indicate that miR-374a-5p, miR-4680-3p, and miR-133b regulate expression of genes that are involved in the etiology of human CP, providing insight into the association between CP-associated genes and potential targets of miRNAs in palate development. Electronic supplementary material The online version of this article (10.1186/s12920-019-0546-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Musi Zhang
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.
| |
Collapse
|
19
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
20
|
Di Rocco G, Baldari S, Pani G, Toietta G. Stem cells under the influence of alcohol: effects of ethanol consumption on stem/progenitor cells. Cell Mol Life Sci 2019; 76:231-244. [PMID: 30306211 PMCID: PMC6339663 DOI: 10.1007/s00018-018-2931-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Stem cells drive embryonic and fetal development. In several adult tissues, they retain the ability to self-renew and differentiate into a variety of specialized cells, thus contributing to tissue homeostasis and repair throughout life span. Alcohol consumption is associated with an increased risk for several diseases and conditions. Growing and developing tissues are particularly vulnerable to alcohol's influence, suggesting that stem- and progenitor-cell function could be affected. Accordingly, recent studies have revealed the possible relevance of alcohol exposure in impairing stem-cell properties, consequently affecting organ development and injury response in different tissues. Here, we review the main studies describing the effects of alcohol on different types of progenitor/stem cells including neuronal, hepatic, intestinal and adventitial progenitor cells, bone-marrow-derived stromal cell, dental pulp, embryonic and hematopoietic stem cells, and tumor-initiating cells. A better understanding of the nature of the cellular damage induced by chronic and episodic heavy (binge) drinking is critical for the improvement of current therapeutic strategies designed to treat patients suffering from alcohol-related disorders.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, 00168, Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
21
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
22
|
Rao PSS, O'Connell K, Finnerty TK. Potential Role of Extracellular Vesicles in the Pathophysiology of Drug Addiction. Mol Neurobiol 2018; 55:6906-6913. [PMID: 29363042 DOI: 10.1007/s12035-018-0912-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are small vesicles secreted by cells and are known to carry sub-cellular components including microRNA, proteins, and lipids. Due to their ability to transport cargo between cells, EVs have been identified as important regulators of various pathophysiological conditions and can therefore influence treatment outcomes. In particular, the significance of microRNAs in EV-mediated cell-cell communication is well-documented. While the influence of EVs and the cargo delivered by EVs has been extensively reviewed in other neurological disorders, the available literature on the potential role of EVs in the pathophysiology of drug addiction has not been reviewed. Hence, in this article, the known effects of commonly abused drugs (ethanol, nicotine, opiates, cocaine, and cannabinoids) on EV secretion have been reviewed. In addition, the potential role of drugs of abuse in affecting the delivery of EV-packaged microRNAs, and the subsequent impact on neuronal health and continued drug dependence, has been discussed.
Collapse
Affiliation(s)
- P S S Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, 1000 N. Main Street, Findlay, OH, 45840, USA.
| | - Kelly O'Connell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, 1000 N. Main Street, Findlay, OH, 45840, USA
| | - Thomas Kyle Finnerty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Findlay, 1000 N. Main Street, Findlay, OH, 45840, USA
| |
Collapse
|