1
|
Chen D, Li S, Yang Y, Liu D, Yang C, Guo H, Bai X, Zhang L, Zhang R, Tian W. Development of bioassay platforms for biopharmaceuticals using Jurkat-CAR cells by AICD. J Pharm Biomed Anal 2024; 251:116431. [PMID: 39197208 DOI: 10.1016/j.jpba.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
The assessment of bioactivity for therapeutic antibody release assay poses challenges, particularly when targeting immune checkpoints. An in vitro bioassay platform was developed using the chimeric antigen receptor on Jurkat cells (Jurkat-CAR) to analyze antibodies targeting immune checkpoints, such as CD47/SIRPα, VEGF/VEGFR1, PD-1/PD-L1, and CD70/CD27. For CD47/SIRPα, the platform involved a Jurkat-CAR cell line expressing the chimeric SIRPα receptor (CarSIRPα). CarSIRPα was created by sequentially fusing the SIRPα extracellular region with the CD8α hinge region, the transmembrane (TM) and intracellular (IC) domains of CD28, and the intracellular signaling domain of CD3ζ. The resulting Jurkat-CarSIRPα cells can undergo "activation-induced cell death (AICD)" upon incubation with purified or cellular CD47, as evidenced by the upregulation of CD69, IL-2, and IFN-γ. Similar results also appeared in Jurkat CarVEGFR1, Jurkat CarPD1 and Jurkat CARCD27 cells. These cells are perfectly utilized for the bioactivity analysis of therapeutic antibody. Our study indicates that the established in vitro assay platform based on Jurkat-CAR has been confirmed repeatedly and has shown robust reproducibility; thus, this platform can be used for screening or for release assays of given antibody drugs targeting immune checkpoints.
Collapse
Affiliation(s)
- Dianze Chen
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Song Li
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Yanan Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Dandan Liu
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Chunmei Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Huiqin Guo
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Xing Bai
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Li Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Ruliang Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China
| | - Wenzhi Tian
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China; Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai 201203, China.
| |
Collapse
|
2
|
Lakkakula J, Srilekha GKP, Kalra P, Varshini SA, Penna S. Exploring the promising role of chitosan delivery systems in breast cancer treatment: A comprehensive review. Carbohydr Res 2024; 545:109271. [PMID: 39270442 DOI: 10.1016/j.carres.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy. The review begins by emphasizing the prevalence and importance of breast cancer as a major health issue, underscoring the necessity for effective treatments. It then delves into the application of Chitosan nanoparticles in breast cancer therapy. One key aspect discussed is their role as carriers for anticancer drugs, enabling targeted delivery and improved cellular uptake. Furthermore, the review explores modified Chitosan nanoparticles and strategies for enhancing their efficacy and specificity in breast cancer treatment. It also examines Chitosan conjugates and hybrids, which offer innovative approaches for combination therapy. Additionally, metal and magnetic Chitosan nanoparticles are discussed spanning their capacity to assist in imaging, hyperthermia, as well as targeted drug delivery. In conclusion, the review summarizes the current research landscape regarding Chitosan nanoparticles for breast cancer therapy and offers insights into future directions. Overall, the review highlights the versatility, potential benefits, and future prospects of Chitosan nanoparticles in combating breast cancer.
Collapse
Affiliation(s)
- Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206; Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - G K P Srilekha
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - Palak Kalra
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - S A Varshini
- Ramaiah University of Applied Sciences, Bangalore, India
| | - Suprasanna Penna
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206.
| |
Collapse
|
3
|
Martin A, Zhang S, Williamson A, Tingley B, Pickus M, Zurakowski D, Nia HT, Shirihai O, Han X, Grinstaff MW. Universal high-throughput image quantification of subcellular structure dynamics and spatial distributions within cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608451. [PMID: 39229224 PMCID: PMC11370428 DOI: 10.1101/2024.08.18.608451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Image analysis of subcellular structures and biological processes relies on specific, context-dependent pipelines, which are labor-intensive, constrained by the intricacies of the specific biological system, and inaccessible to broader applications. Here we introduce the application of dispersion indices, a statistical tool traditionally employed by economists, to analyze the spatial distribution and heterogeneity of subcellular structures. This computationally efficient high-throughput approach, termed GRID (Generalized Readout of Image Dispersion), is highly generalizable, compatible with open-source image analysis software, and adaptable to diverse biological scenarios. GRID readily quantifies diverse structures and processes to include autophagic puncta, mitochondrial clustering, and microtubule dynamics. Further, GRID is versatile, applicable to both 2D cell cultures and 3D multicellular organoids, and suitable for high-throughput screening and performance metric measurements, such as half-maximal effective concentration (EC50) values. The approach enables mechanistic analysis of critical subcellular structure processes of relevance for diseases ranging from metabolic and neuronal diseases to cancer as well as a first-pass screening method for identifying biologically active agents for drug discovery.
Collapse
Affiliation(s)
- Andrew Martin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Amanda Williamson
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| | - Brett Tingley
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Mira Pickus
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | | | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Orian Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| |
Collapse
|
4
|
Nguyen-Vo TH, Do TTT, Nguyen BP. Multitask Learning on Graph Convolutional Residual Neural Networks for Screening of Multitarget Anticancer Compounds. J Chem Inf Model 2024. [PMID: 39197175 DOI: 10.1021/acs.jcim.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Recently, various modern experimental screening pipelines and assays have been developed to find promising anticancer drug candidates. However, it is time-consuming and almost infeasible to screen an immense number of compounds for anticancer activity via experimental approaches. To partially address this issue, several computational advances have been proposed. In this study, we present iACP-GCR, a model based on multitask learning on graph convolutional residual neural networks with two types of shortcut connections, to identify multitarget anticancer compounds. In our architecture, the graph convolutional residual neural networks are shared by all the prediction tasks before being separately customized. The NCI-60 data set, one of the most reliable and well-known sources of experimentally verified compounds, was used to develop our model. From that data set, we collected and refined data about compounds screened across nine cancer types (panels), including breast, central nervous system, colon, leukemia, nonsmall cell lung, melanoma, ovarian, prostate, and renal, for model training and evaluation. The model performance evaluated on an independent test set shows that iACP-GCR surpasses the three advanced computational methods for multitask learning. The integration of two shortcut connection types in the shared networks also improves the prediction efficiency. We also deployed the model as a public web server to assist the research community in screening potential anticancer compounds.
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam
| | - Trang T T Do
- Ho Chi Minh City Open University, 97 Vo Van Tan, District 3, Ho Chi Minh City 70000, Vietnam
| | - Binh P Nguyen
- Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Shukla R, Singh A, Singh KK. Vincristine-based nanoformulations: a preclinical and clinical studies overview. Drug Deliv Transl Res 2024; 14:1-16. [PMID: 37552393 PMCID: PMC10746576 DOI: 10.1007/s13346-023-01389-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Vincristine (VCR) is a chemotherapeutic agent obtained from natural alkaloid plant source Catharanthus roseus. VCR has been significantly useful in treatments of lung cancer, lymphocyte-based leukaemia, glioblastomas and acute myeloid leukaemia. VCR attaches to tubulin fibrils and prevents filament polymerization that permanently led to mitosis inhibition in cancer cells. Clinically, VCR is administered to patients in multidrug combination to reduce adverse drug effects and potential blockage of bone marrow inhibition due to prescribed monotherapy. However, VCR possesses low cancer tissue affinity and at higher dose often led to irreversible neurotoxicity. Conventional VCR injectables are successfully used in clinics, but lack of controlled release, non-specific biodistribution and consequent off-target side effects are still major challenges. Currently, nanotechnological drug delivery systems are being explored for improvement of VCR pharmacokinetic profile and tumour-specific targeting. Various nanomedicine formulations such as liposomes, lipid nanoparticles, and polymeric nanocarriers of VCR have been studied under various in vitro and in vivo models. In this review, we have summarised the chemotherapeutic role of VCR, evaluated the mechanism of action, pharmacokinetics and challenges associated with VCR delivery. Moreover, application of VCR in nanomedicine and effect on anticancer efficacy in preclinical and clinical setting are also being discussed.
Collapse
Affiliation(s)
- Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, U.P, 226002, Lucknow, India.
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, U.P, 226002, Lucknow, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
6
|
Albanna H, Gjoni A, Robinette D, Rodriguez G, Djambov L, Olson ME, Hart PC. Activation of Adrenoceptor Alpha-2 (ADRA2A) Promotes Chemosensitization to Carboplatin in Ovarian Cancer Cell Lines. Curr Issues Mol Biol 2023; 45:9566-9578. [PMID: 38132444 PMCID: PMC10741744 DOI: 10.3390/cimb45120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
Recurrence of ovarian cancer (OvCa) following surgery and standard carboplatin/paclitaxel first-line therapy signifies poor median progression-free survival (<24 months) in the majority of patients with OvCa. The current study utilized unbiased high-throughput screening (HTS) to evaluate an FDA-approved compound library for drugs that could be repurposed to improve OvCa sensitivity to carboplatin. The initial screen revealed six compounds with agonistic activity for the adrenoceptor alpha-2a (ADRA2A). These findings were validated in multiple OvCa cell lines (TYKnu, CAOV3, OVCAR8) using three ADRA2A agonists (xylazine, dexmedetomidine, and clonidine) and two independent viability assays. In all the experiments, these compounds enhanced the cytotoxicity of carboplatin treatment. Genetic overexpression of ADRA2A was also sufficient to reduce cell viability and increase carboplatin sensitivity. Taken together, these data indicate that ADRA2A activation may promote chemosensitivity in OvCa, which could be targeted by widely used medications currently indicated for other disease states.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret E. Olson
- College of Science, Health and Pharmacy, Roosevelt University, 1400 N Roosevelt Blvd, Schaumburg, IL 60173, USA; (H.A.); (A.G.); (D.R.); (G.R.); (L.D.)
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, 1400 N Roosevelt Blvd, Schaumburg, IL 60173, USA; (H.A.); (A.G.); (D.R.); (G.R.); (L.D.)
| |
Collapse
|
7
|
Biala G, Kedzierska E, Kruk-Slomka M, Orzelska-Gorka J, Hmaidan S, Skrok A, Kaminski J, Havrankova E, Nadaska D, Malik I. Research in the Field of Drug Design and Development. Pharmaceuticals (Basel) 2023; 16:1283. [PMID: 37765091 PMCID: PMC10536713 DOI: 10.3390/ph16091283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The processes used by academic and industrial scientists to discover new drugs have recently experienced a true renaissance, with many new and exciting techniques being developed over the past 5-10 years alone. Drug design and discovery, and the search for new safe and well-tolerated compounds, as well as the ineffectiveness of existing therapies, and society's insufficient knowledge concerning the prophylactics and pharmacotherapy of the most common diseases today, comprise a serious challenge. This can influence not only the quality of human life, but also the health of whole societies, which became evident during the COVID-19 pandemic. In general, the process of drug development consists of three main stages: drug discovery, preclinical development using cell-based and animal models/tests, clinical trials on humans and, finally, forward moving toward the step of obtaining regulatory approval, in order to market the potential drug. In this review, we will attempt to outline the first three most important consecutive phases in drug design and development, based on the experience of three cooperating and complementary academic centers of the Visegrád group; i.e., Medical University of Lublin, Poland, Masaryk University of Brno, Czech Republic, and Comenius University Bratislava, Slovak Republic.
Collapse
Affiliation(s)
- Grazyna Biala
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Ewa Kedzierska
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Marta Kruk-Slomka
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Jolanta Orzelska-Gorka
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Sara Hmaidan
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Aleksandra Skrok
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Jakub Kaminski
- Chair and Department of Pharmacology with Pharmacodynamics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; (E.K.); (M.K.-S.); (J.O.-G.)
| | - Eva Havrankova
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University of Brno, 601 77 Brno, Czech Republic;
| | - Dominika Nadaska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia (I.M.)
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia (I.M.)
| |
Collapse
|
8
|
Mullen S, Movia D. The role of extracellular vesicles in non-small-cell lung cancer, the unknowns, and how new approach methodologies can support new knowledge generation in the field. Eur J Pharm Sci 2023; 188:106516. [PMID: 37406971 DOI: 10.1016/j.ejps.2023.106516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) are nanosized particles released from most human cell types that contain a variety of cargos responsible for mediating cell-to-cell and organ-to-organ communications. Current knowledge demonstrates that EVs also play critical roles in many aspects of the progression of Non-Small-Cell Lung Cancer (NSCLC). Their roles range from increasing proliferative signalling to inhibiting apoptosis, promoting cancer metastasis, and modulating the tumour microenvironment to support cancer development. However, due to the limited availability of patient samples, intrinsic inter-species differences between human and animal EV biology, and the complex nature of EV interactions in vivo, where multiple cell types are present and several events occur simultaneously, the use of conventional preclinical and clinical models has significantly hindered reaching conclusive results. This review discusses the biological roles that EVs are currently known to play in NSCLC and identifies specific challenges in advancing today's knowledge. It also describes the NSCLC models that have been used to define currently-known EV functions, the limitations associated with their use in this field, and how New Approach Methodologies (NAMs), such as microfluidic platforms, organoids, and spheroids, can be used to overcome these limitations, effectively supporting future exciting discoveries in the NSCLC field and the potential clinical exploitation of EVs.
Collapse
Affiliation(s)
- Sive Mullen
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland
| | - Dania Movia
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Trinity St James's Cancer Institute, James's Street, Dublin, Ireland.
| |
Collapse
|
9
|
Jaiswal J, Srivastav AK, Rajput PK, Yadav UCS, Kumar U. Integrating Synthesis, Physicochemical Characterization, and In Silico Studies of Cordycepin-Loaded Bovine Serum Albumin Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12225-12236. [PMID: 37526599 DOI: 10.1021/acs.jafc.3c03608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cordycepin gets rapidly metabolized in the body into inactive form due to its structural similarity to adenosine, thus inhibiting its development as a medicinal agent. This study was aimed to improve the solubility and stability of cordycepin, a potential drug with known antiproliferative activity, by encapsulating it in bovine serum albumin: β-cyclodextrin nanoparticles. Cordycepin-loaded nanoparticles (CLNPs) were synthesized using the antisolvent method and characterized thoroughly using various techniques. Our dynamic light scattering measurement showed a particle size and zeta potential of 160 ± 2.75 nm and -20.21 ± 2.1 mV, respectively, for CLNPs. Transmission electron microscopy studies revealed that particles were spherical in morphology. These CLNPs showed sustained release of cordycepin with encapsulation and loading efficiency of 81.62 ± 1.5 and 27.02 ± 2.0%, respectively, based on high-performance liquid chromatography and UV-vis studies. Based on differential scanning calorimetry and zeta potential studies, CLNPs improve cordycepin stability and solubility. Our molecular simulations and binding energy calculation also showed favorable protein interaction between cordycepin, bovine serum albumin, and β-cyclodextrin, further supporting the notion of improved stability. In vitro cytotoxicity, apoptosis, and cellular uptake studies on breast cancer cells showed that the synthesized nanoparticles had greater cytotoxicity as compared to free cordycepin.
Collapse
Affiliation(s)
- Jyoti Jaiswal
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Amit Kumar Srivastav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Umesh C S Yadav
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
- Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India
| |
Collapse
|
10
|
Vellur S, Pavadai P, Babkiewicz E, Ram Kumar Pandian S, Maszczyk P, Kunjiappan S. An In Silico Molecular Modelling-Based Prediction of Potential Keap1 Inhibitors from Hemidesmus indicus (L.) R.Br. against Oxidative-Stress-Induced Diseases. Molecules 2023; 28:4541. [PMID: 37299017 PMCID: PMC10254626 DOI: 10.3390/molecules28114541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The present study investigated the antioxidant potential of aqueous methanolic extracts of Hemidesmus indicus (L.) R.Br., followed by a pharmacoinformatics-based screening of novel Keap1 protein inhibitors. Initially, the antioxidant potential of this plant extract was assessed via antioxidant assays (DPPH, ABTS radical scavenging, and FRAP). Furthermore, 69 phytocompounds in total were derived from this plant using the IMPPAT database, and their three-dimensional structures were obtained from the PubChem database. The chosen 69 phytocompounds were docked against the Kelch-Neh2 complex protein (PDB entry ID: 2flu, resolution 1.50 Å) along with the standard drug (CPUY192018). H. indicus (L.) R.Br. extract (100 µg × mL-1) showed 85 ± 2.917%, 78.783 ± 0.24% of DPPH, ABTS radicals scavenging activity, and 161 ± 4 μg × mol (Fe (II)) g-1 ferric ion reducing power. The three top-scored hits, namely Hemidescine (-11.30 Kcal × mol-1), Beta-Amyrin (-10.00 Kcal × mol-1), and Quercetin (-9.80 Kcal × mol-1), were selected based on their binding affinities. MD simulation studies showed that all the protein-ligand complexes (Keap1-HEM, Keap1-BET, and Keap1-QUE) were highly stable during the entire simulation period, compared with the standard CPUY192018-Keap1 complex. Based on these findings, the three top-scored phytocompounds may be used as significant and safe Keap1 inhibitors, and could potentially be used for the treatment of oxidative-stress-induced health complications.
Collapse
Affiliation(s)
- Senthilkumar Vellur
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (S.V.); (S.R.K.P.)
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, India;
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland;
- Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (S.V.); (S.R.K.P.)
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland;
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India; (S.V.); (S.R.K.P.)
| |
Collapse
|
11
|
Ali M, Benfante V, Stefano A, Yezzi A, Di Raimondo D, Tuttolomondo A, Comelli A. Anti-Arthritic and Anti-Cancer Activities of Polyphenols: A Review of the Most Recent In Vitro Assays. Life (Basel) 2023; 13:life13020361. [PMID: 36836717 PMCID: PMC9967894 DOI: 10.3390/life13020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols have gained widespread attention as they are effective in the prevention and management of various diseases, including cancer diseases (CD) and rheumatoid arthritis (RA). They are natural organic substances present in fruits, vegetables, and spices. Polyphenols interact with various kinds of receptors and membranes. They modulate different signal cascades and interact with the enzymes responsible for CD and RA. These interactions involve cellular machinery, from cell membranes to major nuclear components, and provide information on their beneficial effects on health. These actions provide evidence for their pharmaceutical exploitation in the treatment of CD and RA. In this review, we discuss different pathways, modulated by polyphenols, which are involved in CD and RA. A search of the most recent relevant publications was carried out with the following criteria: publication date, 2012-2022; language, English; study design, in vitro; and the investigation of polyphenols present in extra virgin olive, grapes, and spices in the context of RA and CD, including, when available, the underlying molecular mechanisms. This review is valuable for clarifying the mechanisms of polyphenols targeting the pathways of senescence and leading to the development of CD and RA treatments. Herein, we focus on research reports that emphasize antioxidant properties.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- Correspondence:
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
12
|
Diana EJ, Mathew TV. Synthesis and characterization of surface-modified ultrafine titanium dioxide nanoparticles with an antioxidant functionalized biopolymer as a therapeutic agent: Anticancer and antimicrobial evaluation. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Sadıkoğulları BC, Şenel P, Çini N, Faysal AA, Odabaşoğlu M, Özdemir AD, Gölcü A. An Overview of Natural and Synthetic Phthalides Involved in Cancer Studies: Past, Present, and Future. ChemistrySelect 2022. [DOI: 10.1002/slct.202202004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bleda Can Sadıkoğulları
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Pelin Şenel
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Nejla Çini
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Abdullah Al Faysal
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Mustafa Odabaşoğlu
- Karadeniz Technical University Faculty of Sciences and Letters Department of Chemistry Trabzon 61080 Turkey
| | - Ayşe Daut Özdemir
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| | - Ayşegül Gölcü
- Istanbul Technical University Faculty of Sciences and Letters Department of Chemistry Istanbul 34469 Turkey
| |
Collapse
|
14
|
Addressing artifacts of colorimetric anticancer assays for plant-based drug development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.
Collapse
|
15
|
Rossato Viana A, Godoy Noro B, Lenz JC, Luiza Machado Teixeira M, Bolson Serafin M, Hörner R, Franco C, Maria Fontanari Krause L, Stefanello Vizzotto B, Jalfim Maraschin B. Cytotoxic screening and antibacterial activity of Withaferin A. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:685-698. [PMID: 35579288 DOI: 10.1080/15287394.2022.2071787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer and bacterial infections are among the leading causes of death worldwide. Plant-derived bioactive compounds constitute promising alternatives for development of new therapeutics. This study aimed at evaluating the biological activity of Withaferin A using 6 tumor cell lines: A549 (lung cancer), U87MG (glioblastoma), SH-SY5Y (neuroblastoma), B16-F10 (mouse melanoma), HeLa (uterine colon cancer) and K562 (chronic myeloid leukemia). In addition, 17 other standard bacterial strains and several multidrug resistant bacteria (MDR) clinical isolates were examined. Cell viability was assessed using the following assays: MTT, neutral red, and dsDNA PicoGreen®. Further, oxidative stress was measured by quantification of reactive oxygen species (ROS) production. The activity against bacteria was determined by the minimum inhibitory concentration (MIC), minimum bacterial concentration (CBM) and antibiofilm activity in the production of strains. Withaferin A was effective, as evidenced by its cytotoxic activity in tumor cell lines, enhanced ROS production in tumor cells and bactericidal and antibiofilm activity. Data demonstrated that Withaferin A may be therapeutically considered as an antitumor and antibacterial agent.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brasil
| | - B Godoy Noro
- Curso de Biomedicina, Universidade Franciscana, Santa Maria, Brasil
| | - J C Lenz
- Curso de Biomedicina, Universidade Franciscana, Santa Maria, Brasil
| | | | - M Bolson Serafin
- Programa de Pós-graduação em Ciências Farmacêutica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - R Hörner
- Programa de Pós-graduação em Ciências Farmacêutica, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - C Franco
- Mestrado em Ciências da Saúde e da Vida, Universidade Franciscana, Santa Maria, Brasil
| | | | - B Stefanello Vizzotto
- Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, Brasil
| | | |
Collapse
|
16
|
dos Santos AC, Nogueira ML, de Oliveira FP, Costa EV, Bezerra DP. Essential Oils of Duguetia Species A. St. Hill (Annonaceae): Chemical Diversity and Pharmacological Potential. Biomolecules 2022; 12:biom12050615. [PMID: 35625543 PMCID: PMC9138787 DOI: 10.3390/biom12050615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Duguetia A. St. Hill (Annonaceae) is recognized as one of the major genera with approximately 100 species, 67 of which are found in Brazil (29 of those are endemic). They are arboreal species with edible fruits known as “pindaíba”, “pindaíva” “pinha”, and “envira” in Brazil. Many Duguetia species, in particular, have been used in traditional medicine to treat renal colic, stomachache, rheumatism, cough, toothache, muscle pain, fever, gastrointestinal pain, and breathing difficulties. In this study, we reviewed the chemical constituents and pharmacological properties of essential oils (EOs) from Duguetia species. A total of 12 species were found, along with their EO chemical constituents and bioactivities. Bicyclogermacrene, humulene epoxide II, spathulenol, germacrene D, caryophyllene oxide, viridiflorene, α-pinene, β-caryophyllene, and β-pinene were the main chemical constituents reported. The pharmacological effects of Duguetia species EOs included anti-inflammatory, antinociceptive, antibacterial, antifungal, antioxidant, anti-trypanosoma, cytotoxic and antitumor properties. This information adds to our understanding of the potential of the EOs of Duguetia species.
Collapse
Affiliation(s)
- Albert C. dos Santos
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, AM, Brazil;
| | - Mateus L. Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (M.L.N.); (F.P.d.O.)
| | - Felipe P. de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (M.L.N.); (F.P.d.O.)
| | - Emmanoel V. Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus 69080-900, AM, Brazil;
- Correspondence: (E.V.C.); (D.P.B.); Tel./Fax: +55-92-3305-1181 (ext. 2870) (E.V.C.); +55-71-3176-2272 (D.P.B.)
| | - Daniel P. Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (M.L.N.); (F.P.d.O.)
- Correspondence: (E.V.C.); (D.P.B.); Tel./Fax: +55-92-3305-1181 (ext. 2870) (E.V.C.); +55-71-3176-2272 (D.P.B.)
| |
Collapse
|
17
|
Kim DK, Ediriweera MK, Davaatseren M, Hyun HB, Cho SK. Antioxidant activity of banana flesh and antiproliferative effect on breast and pancreatic cancer cells. Food Sci Nutr 2022; 10:740-750. [PMID: 35311172 PMCID: PMC8907754 DOI: 10.1002/fsn3.2702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Bananas, one of the most widely consumed fruits worldwide, are a rich source of valuable phytochemicals. In this study, the antioxidant and the anticancer potential of banana flesh was investigated. Of the four kinds of banana flesh extracts, the hexane extract (HE) had the highest total polyphenol content (2.54 ± 0.60 mg GAE/g) and total flavonoid content (1.69 ± 0.34 mg RE/g), followed by the chloroform fraction, total ethanol extract, and ethanol fraction. HE was found to exert a strong radical scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (ABTS•) free radicals. According to the IC50 values in various cancer cell lines, HE was found to possess the greatest cell growth inhibitory potential in human pancreatic cancer PANC-1 cells and human triple-negative breast cancer MDA-MB-231 cells. HE induced apoptosis in PANC-1 and MDA-MB-231 cells, as evidenced by the appearance of condensation of chromatin, proteolytic activation of caspase-3 and 7, and increase in the level of the cleaved form of poly (ADP-ribose) polymerase protein. Gas chromatography mass spectrometry (GC-MS) analysis of HE identified several anticancer compounds including palmitic acid, linoleic acid, oleic acid, campesterol, stigmasterol, and γ-sitosterol, supporting the anticancer potential of HE. Our investigation provides a rationale for the use of banana flesh to minimize the risk of cancer-like diseases.
Collapse
Affiliation(s)
- Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuSouth Korea
| | - Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuSouth Korea
- Present address:
Department of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of ColomboColomboSri Lanka
| | | | - Ho Bong Hyun
- Biodiversity Research InstituteJeju TechnoparkJejuSouth Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and ScienceJeju National UniversityJejuSouth Korea
- Subtropical/Tropical Organism Gene BankJeju National UniversityJejuSouth Korea
- Department of BiotechnologyCollege of Applied Life SciencesJeju National UniversityJejuSouth Korea
| |
Collapse
|
18
|
Shakil MS, Rana Z, Hanif M, Rosengren RJ. Key considerations when using the sulforhodamine B assay for screening novel anticancer agents. Anticancer Drugs 2022; 33:6-10. [PMID: 34261912 DOI: 10.1097/cad.0000000000001131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anticancer drug discovery programmes use a large number of in-vitro assays to screen the potency of compound libraries. The accuracy and reliability of these in-vitro assays are vital in selecting potent lead candidates for further (pre)clinical studies. Among the commonly used cell viability assays, the sulforhodamine B (SRB) assay has been a popular choice due to its simplicity, accuracy, reliability and reproducibility. SRB dye interacts with protein's basic amino acids and viable cell number is determined based on the cellular protein content. In this study, the cytotoxic potency of the novel hydroxythiopyridone derivatives towards A549 and H522 cells was determined using the SRB assay. The known drugs oxaliplatin and vorinostat were also examined. The resulting EC50 values were accurate, reliable and reproducible. However, all EC50 values calculated in 6-well plates were higher compared to those determined from 96-well plates. Furthermore, results from 6-well plates were also more variable compared to 96-well plates. Our results confirm that SRB assay is a reliable technique in screening the potency of anticancer drug candidates but plating conditions need to be carefully considered.
Collapse
Affiliation(s)
- Md Salman Shakil
- Department of Pharmacology and Toxicology, University of Otago, Dunedin
| | - Zohaib Rana
- Department of Pharmacology and Toxicology, University of Otago, Dunedin
| | - Muhammad Hanif
- Department of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
19
|
Li Y, Qin Z, Zhang F, Yang ST. Two-color fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnol Bioeng 2021; 119:1004-1017. [PMID: 34914099 DOI: 10.1002/bit.28006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Reporter gene assay is widely used for high throughput drug screening and drug action mechanism evaluation. In this study, we developed a robust dual-fluorescent reporter assay to detect drugs repressing the transcription of survivin, a cancer biomarker from the inhibitor of apoptosis family, in breast cancer cells cultured in three-dimensional (3D) microbioreactors. Survivin is overexpressed in numerous malignancies but almost silent in normal tissue cells and is considered a lead target for cancer therapy. Breast cancer MCF-7 cells were engineered to express enhanced green fluorescent protein driven by a survivin promoter and red fluorescent protein driven by a cytomegalovirus promoter as internal control to detect changes in survivin expression in cells as affected by drugs. This 3D dual-fluorescent reporter assay was validated with YM155 and doxorubicin, which were known to downregulate survivin in cancer cells, and further evaluated with two widely used anticancer compounds, cisplatin, and epigallocatechin gallate, to evaluate their effects on survivin expression. The results showed that the 3D dual-fluorescent reporter assay was robust for high throughput screening of drugs targeting survivin in breast cancer cells.
Collapse
Affiliation(s)
- You Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Zhen Qin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Kryshchyshyn-Dylevych A, Radko L, Finiuk N, Garazd M, Kashchak N, Posyniak A, Niemczuk K, Stoika R, Lesyk R. Synthesis of novel indole-thiazolidinone hybrid structures as promising scaffold with anticancer potential. Bioorg Med Chem 2021; 50:116453. [PMID: 34634616 DOI: 10.1016/j.bmc.2021.116453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
A series of novel indole-azolidinone hybrids has been synthesized via Knoevenagel reaction of 5-fluoro-3-formyl-1H-indole-2-carboxylic acid methyl ester and some azolidinones differing in heteroatoms in positions 1, 2 and 4. Their anticancer activity in vitro was screened towards MCF-7 (breast cancer), HCT116 (colon cancer), HepG2 (hepatoma), HeLa (cervical cancer), A549 (lung cancer), WM793 (melanoma) and THP-1 (leukemia) cell lines, and a highly active 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester (3a) was identified and subjected to in-depth investigation of cytotoxicity mechanisms. This compound was found to possess the highest cytotoxic action towards tumor cells comparing with the action of other derivatives (1, 3b, 3c, 3d, 3e). Compound 3a exhibited toxicity toward MCF-7, HCT116, and A549, HepG2 cancer cells, while the non-malignant cells (human keratinocytes of HaCaT line and murine embryonic fibroblasts of Balb/c 3T3 line) possessed moderate sensitivity to it. The compound 3a induced apoptosis in studied tumor cells via caspase 3-, PARP1-, and Bax-dependent mechanisms; however, it did not affect the G1/S transition in HepG2 cells. The compound 3a impaired nuclear DNA in HepG2, HCT116, and MCF-7 cells without intercalating this biomolecule, but much less DNA damage events were induced by 3a in normal Balb/c 3T3 fibroblasts compared with HepG2 carcinoma cells. Thus, 5-fluoro-3-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-1H-indole-2-carboxylic acid methyl ester 3a was shown to trigger DNA damage and induce apoptosis of human tumor cells and it might be considered as an anticancer agent perspective for in-depth studies.
Collapse
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | | | - Nataliya Kashchak
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Krzysztof Niemczuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov Str. 14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine; Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| |
Collapse
|
21
|
Matias M, Pinho JO, Penetra MJ, Campos G, Reis CP, Gaspar MM. The Challenging Melanoma Landscape: From Early Drug Discovery to Clinical Approval. Cells 2021; 10:3088. [PMID: 34831311 PMCID: PMC8621991 DOI: 10.3390/cells10113088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria João Penetra
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Gonçalo Campos
- CICS–UBI–Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.M.); (J.O.P.); (M.J.P.)
| |
Collapse
|
22
|
Skvortsov DA, Kalinina MA, Zhirkina IV, Vasilyeva LA, Ivanenkov YA, Sergiev PV, Dontsova OA. From Toxicity to Selectivity: Coculture of the Fluorescent Tumor and Non-Tumor Lung Cells and High-Throughput Screening of Anticancer Compounds. Front Pharmacol 2021; 12:713103. [PMID: 34707495 PMCID: PMC8542663 DOI: 10.3389/fphar.2021.713103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
For the search of anticancer compounds in modern large chemical libraries, new approaches are of great importance. Cocultivation of the cells of tumor and non-tumor etiology may reveal specific action of chemicals on cancer cells and also take into account some effects of the tumor cell's microenvironment. The fluorescent cell cocultivation test (FCCT) has been developed for screening of substances that are selectively cytotoxic on cancerous cells. It is based on the mixed culture of lung carcinoma cells A549'_EGFP and noncancerous fibroblasts of lung VA13_Kat, expressing different fluorescent proteins. Analysis of the cells was performed with the high-resolution scanner to increase the detection rate. The combination of cocultivation of cells with scanning of fluorescence reduces the experimental protocol to three steps: cells seeding, addition of the substance, and signal detection. The FCCT analysis does not disturb the cells and is compatible with other cell-targeted assays. The suggested method has been adapted for a high-throughput format and applied for screening of 2,491 compounds. Three compounds were revealed to be reproducibly selective in the FCCT although they were invisible in cytotoxicity tests in individual lines. Six structurally diverse indole, coumarin, sulfonylthiazol, and rifampicin derivatives were found and confirmed with an independent assay (MTT) to be selectively cytotoxic to cancer cells in the studied model.
Collapse
Affiliation(s)
- D A Skvortsov
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - M A Kalinina
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - I V Zhirkina
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - L A Vasilyeva
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Y A Ivanenkov
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa, Russia
| | - P V Sergiev
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - O A Dontsova
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Piyawajanusorn C, Nguyen LC, Ghislat G, Ballester PJ. A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling. Brief Bioinform 2021; 22:6343527. [PMID: 34368843 DOI: 10.1093/bib/bbab312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A central goal of precision oncology is to administer an optimal drug treatment to each cancer patient. A common preclinical approach to tackle this problem has been to characterize the tumors of patients at the molecular and drug response levels, and employ the resulting datasets for predictive in silico modeling (mostly using machine learning). Understanding how and why the different variants of these datasets are generated is an important component of this process. This review focuses on providing such introduction aimed at scientists with little previous exposure to this research area.
Collapse
Affiliation(s)
- Chayanit Piyawajanusorn
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Linh C Nguyen
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France.,Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ghita Ghislat
- U1104, CNRS UMR7280, Centre d'Immunologie de Marseille-Luminy, Inserm, Marseille, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13284 Marseille, France.,CNRS UMR7258, F-13009 Marseille, France
| |
Collapse
|
24
|
Abebe F, Hopkins MD, Vodnala SN, Sheaff RJ, Lamar AA. Development of a Rapid In Vitro Screening Assay Using Metabolic Inhibitors to Detect Highly Selective Anticancer Agents. ACS OMEGA 2021; 6:18333-18343. [PMID: 34308064 PMCID: PMC8296616 DOI: 10.1021/acsomega.1c02203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 05/06/2023]
Abstract
Traditional long exposure (24-72 h) cell viability assays for identification of potential drug compounds can fail to identify compounds that are: (a) biologically active but not toxic and (b) inactive without the addition of a synergistic additive. Herein, we report the development of a rapid (1-2 h) compound screening technique using a commercially available cell viability kit (CellTiter-Glo) that has led to the detection of compounds that were not identified as active agents using traditional cytotoxicity screening methods. These compounds, in combination with metabolic inhibitor 2-deoxyglucose, display selectivity toward a pancreatic cancer cell line. An evaluation of 11 mammalian cell lines against 30 novel compounds and two metabolic inhibitors is reported. The inclusion of metabolic inhibitors during an initial screening process, and not simply during mechanistic investigations of a previously identified hit compound, provides a rapid and sensitive tool for identifying drug candidates potentially overlooked by other methods.
Collapse
|
25
|
Organ-Specific, Fibroblast-Derived Matrix as a Tool for Studying Breast Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13133331. [PMID: 34283050 PMCID: PMC8269313 DOI: 10.3390/cancers13133331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer in the breast often spreads to other parts of the body, such as the lungs, which leads to poor outcomes for patients, as there are few effective treatments. Within organs such as the lungs, cancer cells are surrounded by a scaffold, made of proteins, which helps keeps the organs’ structure and maintains their function. This scaffold is produced by cells called fibroblasts, and we can reproduce this in the lab. We aim to investigate how cancer cells interact with the protein scaffold from different organs, where breast cancer cells spread to. This study hopes to reveal how breast cancer reacts to different organ environments and use this method to perform large-scale drug screening. Importantly, this study has shown that drug testing of breast cancer cells within a more physiological context, as opposed to testing on plastic, can lead to increased identification of targets to treat breast cancer. Abstract During the metastatic process, breast cancer cells must come into contact with the extra-cellular matrix (ECM) at every step. The ECM provides both structural support and biochemical cues, and cell–ECM interactions can lead to changes in drug response. Here, we used fibroblast-derived ECM (FDM) to perform high throughput drug screening of 4T1 breast cancer cells on metastatic organ ECM (lung), and we see that drug response differs from treatment on plastic. The FDMs that we can produce from different organs are abundant in and contains a complex mixture of ECM proteins. We also show differences in ECM composition between the primary site and secondary organ sites. Furthermore, we show that global kinase signalling of 4T1 cells on the ECM is relatively unchanged between organs, while changes in signalling compared to plastic are significant. Our study highlights the importance of context when testing drug response in vitro, showing that consideration of the ECM is critically important.
Collapse
|
26
|
Soltan MM, Abd-Alla HI, Hassan AZ, Hanna AG. In vitro chemotherapeutic and antiangiogenic properties of cardenolides from Acokanthera oblongifolia (Hochst.) Codd. ACTA ACUST UNITED AC 2021; 76:337-346. [PMID: 34058797 DOI: 10.1515/znc-2020-0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Acovenoside A (Acov-A) and acobioside A (Acob-A) were isolated from Acokanthera oblongifolia. Their anticancer properties were explored regarding, antiproliferative and antiangiogenic activities. The study included screening phase against six cancer cell lines followed by mechanistic investigation against HepG2 cancer cell line. The sulforhodamine-B (SRB) was used to determine their growth inhibitory power. In the other hand, flow cytometry techniques were recorded the cell death type and cell cycle analysis. The clonogenic (colony formation) and wound healing assays, enzyme-linked immunosorbent assay (ELISA) and molecular docking, were performed to evaluate the antiangiogenesis capability. Both compounds were strongly, inhibited four cancer cell lines at GI50 less than 100 nM. The in vitro mechanistic investigation against HepG2 resulted in cell accumulations at G2M phase and induction of apoptosis upon treating cells separately, with 400 nM Acov-A and 200 nM Acob-A. Interestingly, the same concentrations were able to activate caspase-3 by 7.2 and 4.8-fold, respectively. Suppressing the clonogenic capacity of HepG2 cells (20 and 40 nM) and inhibiting the migration of the colon Caco-2 cancer cells were provoke the results of vascular endothelial growth factor receptor2 (VEGFR2) kinase enzyme inactivation. The docked study was highly supportive, to the antiangiogenic approach of both cardenolides. The isolated cardenolides could orchestrate pivotal events in fighting cancer.
Collapse
Affiliation(s)
- Maha M Soltan
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, Chemistry of Medicinal Plants Department, National Research Centre, El Buhouth St. 33Dokki-Giza12622, Egypt
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33, Dokki-Giza12622, Egypt
| | - Amal Z Hassan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33, Dokki-Giza12622, Egypt
| | - Atef G Hanna
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33, Dokki-Giza12622, Egypt
| |
Collapse
|
27
|
Ediriweera MK, To NB, Lim Y, Cho SK. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie 2021; 186:147-156. [PMID: 33965456 DOI: 10.1016/j.biochi.2021.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 01/26/2023]
Abstract
The dysregulation of histone deacetylases (HDACs) is closely associated with tumorigenesis and has emerged as a promising target for anti-cancer drugs. Some odd-chain fatty acids are present in trace levels in human tissue. Despite limited health benefits, there is increasing experimental evidence of nutritional benefits of odd-chain fatty acids. This study examines the effects of five odd-chain fatty acids (valeric, heptanoic, nonanoic, undecanoic, and pentadecanoic acid) as novel HDAC6 inhibitors. Examination of these fatty acids on the proliferation and clonogenic ability in various cancer cell lines revealed that pentadecanoic and undecanoic acid can strongly inhibit cancer cell proliferation. Heptanoic and nonanoic acid showed moderate anti-proliferative effects, while valeric acid demonstrated weak anti-proliferative effects. HDAC6 inhibitory activities were in the order of pentadecanoic acid (C15:0) > undecanoic acid (C11:0) > nonanoic acid (C9:0) > heptanoic acid (C7:0) > valeric acid (C5:0), consistent with the anti-proliferative assay results. All of these fatty acids promoted the acetylation of α-tubulin in MCF-7 breast and A549 lung cancer cells dose-dependently. In-silico molecular docking analysis showed that increasing the aliphatic carbon chain length facilitates binding to HDAC6 residues, which might be important for the inhibitory potential of HDAC6. This study shows the potential utility of odd-chain fatty acids for epigenetic-based cancer therapy.
Collapse
Affiliation(s)
| | - Ngoc Bao To
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, South Korea.
| | - Yoongho Lim
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, South Korea; Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
28
|
The Marine Natural Product Furospinulosin 1 Induces Apoptosis in MDA-MB-231 Triple Negative Breast Cancer Cell Spheroids, But Not in Cells Grown Traditionally with Longer Treatment. Mar Drugs 2021; 19:md19050249. [PMID: 33924764 PMCID: PMC8145321 DOI: 10.3390/md19050249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells grown in spheroid conditions interact with each other and the extracellular matrix, providing a better representation of the in vivo environment than two-dimensional cultures and are a more clinically relevant model. A discrete screening of genetically diverse marine samples in the spheroid assay led to the identification of a novel activity for the known compound furospinulosin 1. This compound shows activity against MDA-MB-231 triple negative breast cancer cells grown as spheroids and treated for 24 or 48 h. No cytotoxicity was seen in traditional two-dimensional adherent cultures treated for a longer time (72 h). A reverse phase protein array (RPPA) confirmed the limited activity of the compound in cells grown traditionally and revealed changes in protein expression when cells are grown as spheroids that are associated with better clinical prognosis. Analysis of the RPPA data through the Broad institute’s connectivity map suggested the hypothesis that furospinulosin 1 functions as an MEK inhibitor. Analysis of the RPPA data through STRING supports the apoptosis observed. The selectivity exhibited by furospinulosin 1 for triple negative breast cancer cells only when grown as spheroids makes it an interesting compound with strong therapeutic potential that merits further study.
Collapse
|
29
|
Kim HY, Ediriweera MK, Boo KH, Kim CS, Cho SK. Effects of Cooking and Processing Methods on Phenolic Contents and Antioxidant and Anti-Proliferative Activities of Broccoli Florets. Antioxidants (Basel) 2021; 10:antiox10050641. [PMID: 33922092 PMCID: PMC8143502 DOI: 10.3390/antiox10050641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of cooking (steaming and microwaving) and processing (freeze-drying and hot-air-drying) methods on the antioxidant activity of broccoli florets. 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•), and alkyl• free radical scavenging assays were employed to assess anti-oxidant potentials. The cytoprotective effect against oxidative damage induced by H2O2 was studied using hepatocellular carcinoma (HepG2) cells. Anti-proliferative effects were assessed in MCF-7 and MDA-MB-231 breast cancer cells. L-sulforaphane in broccoli extracts was quantified using high-performance liquid chromatography (HPLC). Steam and microwave treatments caused increases in total polyphenol content (TPC), whereas the total flavonoid content (TFC) decreased following steam treatment. A slight increase in TFC was observed in the microwaved samples. Extracts of all broccoli samples showed almost identical radical scavenging and cytoprotective effects. HPLC demonstrated that steamed (3 min)-freeze-dried (F-S3) and microwaved (2 min)-freeze-dried (F-M2) samples exhibited elevated levels of L-sulforaphane. In addition, the F-S3 and F-M2 extracts displayed strong anti-proliferative effects in MCF-7 cells, which correlated with L-sulforaphane content. As we observed no significant decrease in the antioxidant activity of broccoli florets, the cooking and processing methods and conditions studied here are recommended for broccoli.
Collapse
Affiliation(s)
- Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea;
| | - Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea; (M.K.E.); (K.-H.B.)
| | - Kyung-Hwan Boo
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea; (M.K.E.); (K.-H.B.)
| | - Chang Sook Kim
- Department of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea;
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea;
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea; (M.K.E.); (K.-H.B.)
- Department of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-010-8660-1842
| |
Collapse
|
30
|
do Carmo MAV, Granato D, Azevedo L. Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: A cell-based point of view. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:253-280. [PMID: 34507644 DOI: 10.1016/bs.afnr.2021.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phenolic compounds have demonstrated several in vitro beneficial properties by acting as antioxidant and pro-oxidant agents. This chapter approaches the relationship among oxidative stress, cancer, phenolic compounds and antiproliferative activity. Moreover, it discusses in vitro techniques and their biological applications, regarding cell viability and intracellular measure of reactive oxygen assays. The in vitro methods are important tools for screening and understanding the pathways involved on antiproliferative and antioxidant/pro-oxidant effects of phenolic compounds. These findings open avenues for the development of innovative food, chemical structures, technological applications and future perspectives in this research field.
Collapse
Affiliation(s)
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Luciana Azevedo
- Federal University of Alfenas, Nutrition Faculty, Alfenas, MG, Brazil.
| |
Collapse
|
31
|
Alami Merrouni I, Elachouri M. Anticancer medicinal plants used by Moroccan people: Ethnobotanical, preclinical, phytochemical and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113435. [PMID: 33022340 DOI: 10.1016/j.jep.2020.113435] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cancer is a major health problem worldwide. Drugs' side effects and high cost of treatment remain the main limitations of conventional therapy. Nowadays, developing new therapeutic strategies is necessary. Therefore, medicinal plants can be used to promote novel, safe, and potent anticancer drugs through their natural compounds. AIM OF THE STUDY This review aims to provide scientific evidence related to the anticancer activities of medicinal plants used by Moroccan people as well as approving their efficiency as an alternative cancer therapy. METHODS An ethnopharmacological review approach was conducted by analyzing Moroccan published ethnobotanical surveys from 1991 to 2019 and consulting peer-reviewed articles worldwide to investigate the pharmacological, phytochemical, and clinical effects related to the anticancer activities. Plants with anticancer proprieties were classified into four groups: (a) plants only cited as anticancer, (b) plants pharmacologically investigated, (c) plants with bioactive compounds tested as anticancer, and (d) plants clinically investigated. RESULTS A total of 103 plant species belonging to 47 botanical families used by Moroccans to treat cancer have been recorded. Aristolochia fontanesii Boiss. & Reut, Marrubium vulgare L., and Allium sativum L. are the most referred species in Morocco. Medicinal plants used for cancer treatment were classified into four groups: 48 species were used traditionally as anticancer (group a), 41 species pharmacologically investigated for their anticancer activities (group b), 32 plants with bioactive compounds tested against cancer (group c), and eight plants were clinically investigated for their anticancer effects (group d). Out of 82 plants' extracts pharmacologically tested (from plants of group b), only 24 ones show a significant cytotoxic effect. A total of seventy-seven compounds are isolated from plants of group (c). However, only six ones were clinically evaluated, and most of them exhibit a beneficial effect on cancerous patients with few side effects. CONCLUSION Medicinal plants can be a promising candidate for alternative cancer therapy. Nevertheless, it is critical to increasing the clinical trials to confirm their beneficial effect on patients with cancer. Overall, this review can serve as a database for further studies.
Collapse
Affiliation(s)
- Ilyass Alami Merrouni
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
32
|
Hur S, Jang E, Lee JH. Beneficial Actions of Orostachys japonica and Its Compounds against Tumors via MAPK Signaling Pathways. Nutrients 2021; 13:nu13020555. [PMID: 33567572 PMCID: PMC7915109 DOI: 10.3390/nu13020555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds-kaempferol and quercetin-against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.
Collapse
Affiliation(s)
- Soyoung Hur
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea
| | - Jang-Hoon Lee
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-958-9118; Fax: +82-2-958-9258
| |
Collapse
|
33
|
Rashid F, Uddin N, Ali S, Haider A, Tirmizi SA, Diaconescu PL, Iqbal J. New triorganotin(iv) compounds with aromatic carboxylate ligands: synthesis and evaluation of the pro-apoptotic mechanism. RSC Adv 2021; 11:4499-4514. [PMID: 35424423 PMCID: PMC8694426 DOI: 10.1039/d0ra06695h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
Three new organotin(iv) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P21/c having distorted bipyramidal geometry defined by C3SnO2. The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Noor Uddin
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Syed Ahmad Tirmizi
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California Los Angeles607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| |
Collapse
|
34
|
Amirghasemi F, Adjei-Sowah E, Pockaj BA, Nikkhah M. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Ann Biomed Eng 2021; 49:1943-1972. [PMID: 33403451 DOI: 10.1007/s10439-020-02704-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
The burden of cancer continues to increase in society and negatively impacts the lives of numerous patients. Due to the high cost of current treatment strategies, there is a crucial unmet need to develop inexpensive preclinical platforms to accelerate the process of anti-cancer drug discovery to improve outcomes in cancer patients, most especially in female patients. Many current methods employ expensive animal models which not only present ethical concerns but also do not often accurately predict human physiology and the outcomes of anti-cancer drug responsiveness. Conventional treatment approaches for cancer generally include systemic therapy after a surgical procedure. Although this treatment technique is effective, the outcome is not always positive due to various complex factors such as intratumor heterogeneity and confounding factors within the tumor microenvironment (TME). Patients who develop metastatic disease still have poor prognosis. To that end, recent efforts have attempted to use 3D microengineered platforms to enhance the predictive power and efficacy of anti-cancer drug screening, ultimately to develop personalized therapies. Fascinating features of microengineered assays, such as microfluidics, have led to the advancement in the development of the tumor-on-chip technology platforms, which have shown tremendous potential for meaningful and physiologically relevant anti-cancer drug discovery and screening. Three dimensional microscale models provide unprecedented ability to unveil the biological complexities of cancer and shed light into the mechanism of anti-cancer drug resistance in a timely and resource efficient manner. In this review, we discuss recent advances in the development of microengineered tumor models for anti-cancer drug discovery and screening in female-related cancers. We specifically focus on female-related cancers to draw attention to the various approaches being taken to improve the survival rate of women diagnosed with cancers caused by sex disparities. We also briefly discuss other cancer types like colon adenocarcinomas and glioblastoma due to their high rate of occurrence in females, as well as the high likelihood of sex-biased mutations which complicate current treatment strategies for women. We highlight recent advances in the development of 3D microscale platforms including 3D tumor spheroids, microfluidic platforms as well as bioprinted models, and discuss how they have been utilized to address major challenges in the process of drug discovery, such as chemoresistance, intratumor heterogeneity, drug toxicity, etc. We also present the potential of these platform technologies for use in high-throughput drug screening approaches as a replacements of conventional assays. Within each section, we will provide our perspectives on advantages of the discussed platform technologies.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Emmanuela Adjei-Sowah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Barbara A Pockaj
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA. .,Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
35
|
Moon JY, Ediriweera MK, Ryu JY, Kim HY, Cho SK. Catechol enhances chemo‑ and radio‑sensitivity by targeting AMPK/Hippo signaling in pancreatic cancer cells. Oncol Rep 2021; 45:1133-1141. [PMID: 33650657 PMCID: PMC7860010 DOI: 10.3892/or.2021.7924] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Overcoming chemo‑ and radio‑resistance is a major challenge in pancreatic cancer treatment. Therefore, there is an urgent need to discover novel therapeutic approaches to avoid chemo‑ and radio‑resistance in pancreatic cancer. Catechol is a phytochemical found in some fruits and vegetables. A few studies have reported on the potential anticancer effects of pure catechol. The present study aimed to explore the chemo‑ and radio‑sensitizing effects of catechol in Panc‑1 human pancreatic cancer cells. The effects of catechol on Panc‑1 cell proliferation, clonogenic survival, invasion, and migration were assessed using MTT, cell migration, and Transwell invasion assays. The chemo‑ and radio‑sensitizing effects of catechol on Panc‑1 cells were evaluated via MTT assay and flow cytometry. Western blotting was conducted to analyze the expression of proteins involved in several mechanisms induced by catechol in Panc‑1 cells, including growth inhibition, apoptosis, suppression of epithelial‑mesenchymal transition (EMT), and chemo‑ and radio‑sensitizing activities. The results indicated that catechol inhibited proliferation, promoted apoptosis, and suppressed cell migration, invasion, and EMT in Panc‑1 cells in a dose‑dependent manner. Catechol treatment also induced the phosphorylation of AMP‑activated protein kinase (AMPK) with a concomitant reduction in the expression of Hippo signaling pathway components, including Yes‑associated protein, cysteine‑rich angiogenic inducer 61, and connective tissue growth factor. In addition, catechol enhanced the chemosensitivity of Panc‑1 cells to gemcitabine, a commonly used chemotherapy in pancreatic cancer treatment. A combination of catechol and radiation enhanced apoptosis and increased the expression of two radiation‑induced DNA damage markers, p‑ATM and p‑Chk2. Collectively, the present results demonstrated that catechol, a naturally occurring compound, could suppress the proliferation of pancreatic cancer cells, reduce the expression of EMT‑related proteins, and enhance the chemo‑ and radio‑sensitivity of Panc‑1 cells by targeting AMPK/Hippo signaling.
Collapse
Affiliation(s)
- Jeong Yong Moon
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Ji Yeon Ryu
- School of Biomaterials Science and Technology, College of Applied Life Sciences, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Hee Young Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju Special Self‑Governing Province 63243, Republic of Korea
| |
Collapse
|
36
|
Tracking of Glycans Structure and Metallomics Profiles in BRAF Mutated Melanoma Cells Treated with Vemurafenib. Int J Mol Sci 2021; 22:ijms22010439. [PMID: 33406789 PMCID: PMC7794875 DOI: 10.3390/ijms22010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Nearly half of patients with advanced and metastatic melanomas harbor a BRAF mutation. Vemurafenib (VEM), a BRAF inhibitor, is used to treat such patients, however, responses to VEM are very short-lived due to intrinsic, adaptive and/or acquired resistance. In this context, we present the action of the B-Raf serine-threonine protein kinase inhibitor (vemurafenib) on the glycans structure and metallomics profiles in melanoma cells without (MeWo) and with (G-361) BRAF mutations. The studies were performed using α1-acid glycoprotein (AGP), a well-known acute-phase protein, and concanavalin A (Con A), which served as the model receptor. The detection of changes in the structure of glycans can be successfully carried out based on the frequency shifts and the charge transfer resistance after interaction of AGP with Con A in different VEM treatments using QCM-D and EIS measurements. These changes were also proved based on the cell ultrastructure examined by TEM and SEM. The LA-ICP-MS studies provided details on the metallomics profile in melanoma cells treated with and without VEM. The studies evidence that vemurafenib modifies the glycans structures and metallomics profile in melanoma cells harboring BRAF mutation that can be further implied in the resistance phenomenon. Therefore, our data opens a new avenue for further studies in the short-term addressing novel targets that hopefully can be used to improve the therapeutic regiment in advanced melanoma patients. The innovating potential of this study is fully credible and has a real impact on the global patient society suffering from advanced and metastatic melanomas.
Collapse
|
37
|
Abstract
Defined by its potential for self-renewal, differentiation and tumorigenicity, cancer stem cells (CSCs) are considered responsible for drug resistance and relapse. To understand the behavior of CSC, the effects of the microenvironment in each tissue are a matter of great concerns for scientists in cancer biology. However, there are many complicated obstacles in the mimicking the microenvironment of CSCs even with current advanced technology. In this context, novel biomaterials have widely been assessed as in vitro platforms for their ability to mimic cancer microenvironment. These efforts should be successful to identify and characterize various CSCs specific in each type of cancer. Therefore, extracellular matrix scaffolds made of biomaterial will modulate the interactions and facilitate the investigation of CSC associated with biological phenomena simplifying the complexity of the microenvironment. In this review, we summarize latest advances in biomaterial scaffolds, which are exploited to mimic CSC microenvironment, and their chemical and biological requirements with discussion. The discussion includes the possible effects on both cells in tumors and microenvironment to propose what the critical factors are in controlling the CSC microenvironment focusing the future investigation. Our insights on their availability in drug screening will also follow the discussion.
Collapse
|
38
|
Trusler O, Goodwin J, Laslett AL. BRCA1 and BRCA2 associated breast cancer and the roles of current modelling systems in drug discovery. Biochim Biophys Acta Rev Cancer 2020; 1875:188459. [PMID: 33129865 DOI: 10.1016/j.bbcan.2020.188459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
For a drug candidate to be fully developed takes years and investment of hundreds of millions of dollars. There is no doubt that drug development is difficult and risky, but vital to protecting against devastating disease. This difficulty is clearly evident in BRCA1 and BRCA2 related breast cancer, with current treatment options largely confined to invasive surgical procedures, as well as chemotherapy and radiotherapy regimes which damage healthy tissue and can leave remnant disease. Consequently, patient survival and relapse rates are far from ideal, and new candidate treatments are needed. The preclinical stages of drug discovery are crucial to get right for translation to hospital beds. Disease models must take advantage of current technologies and be accurate for rapid and translatable treatments. Careful selection of cell lines must be coupled with high throughput techniques, with promising results trialled further in highly accurate humanised patient derived xenograft models. Traditional adherent drug screening should transition to 3D culture systems amenable to high throughput techniques if the gap between in vitro and in vivo studies is to be partially bridged. The possibility of organoid, induced pluripotent stem cell, and conditionally reprogrammed in vitro models is tantalising, however protocols are yet to be fully established. This review of BRCA1 and BRCA2 cancer biology and current modelling systems will hopefully guide the design of future drug discovery endeavours and highlight areas requiring improvement.
Collapse
Affiliation(s)
- Oliver Trusler
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Jacob Goodwin
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Andrew L Laslett
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
39
|
Twilley D, Rademan S, Lall N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113101. [PMID: 32562876 DOI: 10.1016/j.jep.2020.113101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 70% of anticancer drugs were developed or derived from natural products or plants. Southern Africa boasts an enormous floral diversity with approximately 22,755 plant species with an estimated 3000 used as traditional medicines. In South Africa more than 27 million individuals rely on traditional medicine for healthcare. The use of South African plants for the treatment of cancer is poorly documented, however there is potential to develop anticancer agents from these plants. Limited ethnobotanical studies report the use of plants for cancer treatment in traditional medicine. Plants growing in tropical or subtropical regions, such as in South Africa, produce important secondary metabolites as a protective mechanism, which could be used to target various factors that play a key role in carcinogenesis. AIMS The aim was to collate information from primary ethnobotanical studies on South African plants traditionally used for the treatment of cancer. Evaluation of literature focused on traditionally used plants that have been tested for their in vitro activity against cancer cells. Secondary metabolites, previously identified within these plant species, were also included for discussion regarding their activity against cancer. The toxicity was evaluated to ascertain the therapeutic potential in further studies. Additionally, the aim was to highlight where a lack of reports were found regarding plant species with potential activity and to substantiate the need for further testing. MATERIALS AND METHODS A review of ethnobotanical surveys conducted in South Africa for plants used in the treatment of cancer was performed. Databases such as Science Direct, PubMed and Google Scholar, university repositories of master's dissertations and PhD theses, patents and books were used. Plant species showing significant to moderate activity were discussed regarding their toxicity. Compounds identified within these species were discussed for their activity against cancer cells and toxicity. Traditionally used plants which have not been scientifically validated for their activity against cancer were excluded. RESULTS Twenty plants were documented in ethnobotanical surveys as cancer treatments. Numerous scientific reports on the potential in vitro activity against cancer of these plants and the identification of secondary metabolites were found. Many of the secondary metabolites have not been tested for their activity against cancer cells or mode of action and should be considered for future studies. Lead candidates, such as the sutherlandiosides, sutherlandins, hypoxoside and pittoviridoside, were identified and should be further assessed. Toxicity studies should be included when testing plant extracts and/or secondary metabolites for their potential against cancer cells to give an indication of whether further analysis should be conducted. CONCLUSION There is a need to document plants used traditionally in South Africa for the treatment of cancer and to assess their safety and efficacy. Traditionally used plants have shown promising activity highlighting the importance of ethnobotanical studies and traditional knowledge. There are many opportunities to further assess these plants and secondary metabolites for their activity against cancer and their toxic effects. Pharmacokinetic studies are also not well documented within these plant extracts and should be included in studies when a lead candidate is identified.
Collapse
Affiliation(s)
- Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa.
| | - Sunelle Rademan
- Department of Pharmacology, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa; School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States; College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
40
|
Childers WE, Elokely KM, Abou-Gharbia M. The Resurrection of Phenotypic Drug Discovery. ACS Med Chem Lett 2020; 11:1820-1828. [PMID: 33062159 DOI: 10.1021/acsmedchemlett.0c00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Prior to genetic mapping, the majority of drug discovery efforts involved phenotypic screening, wherein compounds were screened in either in vitro or in vivo models thought to mimic the disease state of interest. While never completely abandoning phenotypic approaches, the labor intensive nature of such tests encouraged the pharmaceutical industry to move away from them in favor of target-based drug discovery, which facilitated throughput and allowed for the efficient screening of large numbers of compounds. However, a consequence of reliance on target-based screening was an increased number of failures in clinical trials due to poor correlation between novel mechanistic targets and the actual disease state. As a result, the field has seen a recent resurrection in phenotypic drug discovery approaches. In this work, we highlight some recent phenotypic projects from our industrial past and in our current academic drug discovery environment that have provided encouraging results.
Collapse
Affiliation(s)
- Wayne E. Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Khaled M. Elokely
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
- Department of Chemistry, College of Science and Technology, Temple University, 1925 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
- Department of Pharmaceutical Chemistry, Tanta University, Tanta 31527, Egypt
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
41
|
González-Fernández MJ, Ortea I, Guil-Guerrero JL. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol Res (Camb) 2020; 9:474-483. [PMID: 32905142 DOI: 10.1093/toxres/tfaa046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
α-Linolenic acid (ALA, 18:3n-3) and γ-gamma linolenic acid (GLA, 18:3n-6) are polyunsaturated fatty acids (PUFA) that improve the human health. The present study focused on testing the in vitro antitumor actions of pure ALA and GLA on the HT-29 human colorectal cancer cell line. Cell viability was checked by MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, cell membrane damage by the lactate dehydrogenase assay, apoptosis was tested by both caspase-3 activity trial and transmission electron microscopy images, and protein composition was analyzed by quantitative proteomics analysis. MTT test revealed IC50 values of 230 and 255 μM for ALA and GLA, respectively, at 72 h. After 24 h of incubation, both ALA and GLA induced apoptosis on HT-29 colorectal cancer cells according to the caspase-3 assay and microscopy images. SWATH/MS analysis evidenced that ALA significantly affected the mitochondrial protein import pathway and the citric acid cycle pathway, while GLA did not significantly affect any particular pathway. In summary, both ALA and GLA showed concentration-dependent inhibitory effects on HT-29 cells viability and induced cell death by apoptosis. ALA significantly affected cellular pathways, while GLA does not have specific actions on either pathway. Both n-3 and n-6 C18 PUFA are bioactive food components useful in the colorectal cancer prevention.
Collapse
Affiliation(s)
- María José González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120 Almería, Spain
| | - Ignacio Ortea
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz 11009, Spain
| | - José Luis Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120 Almería, Spain
| |
Collapse
|
42
|
Javed Z, Khan K, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int 2020; 20:326. [PMID: 32699525 PMCID: PMC7372757 DOI: 10.1186/s12935-020-01412-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
The outlook for new therapeutic approaches is pivotal to ameliorate the deterioration caused by the abrogated Wnt signaling. Long non-coding RNAs (lncRNAs) are tiny molecules that have begun emerging as vital molecular manager for the regulation of various cellular processes at transcription and translation levels in the colorectal cancer (CRC). Targeting Wnt pathway with lncRNA seems a promising approach to eradicate CRC. However, little is known of their active role in commencing both apoptosis and proliferation in CRC. This article reviews the importance of these molecules in the pathogenesis of CRC and also emphasizes on the development of new therapeutic strategies to cope with the Wnt mediated CRC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Sector-C, Phase VI, DHA, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000 Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Shahid Raza
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| |
Collapse
|
43
|
Pham PV, Nguyen ST, Phan NLC, Do NM, Vo PH. Adipose-Derived Stem Cells Can Replace Fibroblasts as Cell Control for Anti-Tumor Screening Assay. Onco Targets Ther 2020; 13:6417-6423. [PMID: 32753883 PMCID: PMC7342328 DOI: 10.2147/ott.s259114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Anti-tumor activity screening is a typical process used in anti-tumor drug discovery. The ideal anti-tumor drug candidates are extracts or compounds that can inhibit the proliferation of cancer cells via apoptosis, while exerting minimal effects on normal somatic cells. For a long time, fibroblasts were used as normal cells for all anti-tumor screening assays. However, the fibroblasts exhibited several limitations as cell controls for anti-tumor screening. This study aimed to compare the usage of dermal fibroblasts (DFs) and adipose-derived stem cells (ADSCs) as normal cell controls in anti-tumor screening protocols. The DFs and ADSCs were prepared per the published protocols. The IC50 values of doxorubicin on hepatocellular carcinoma cells HepG2, breast cancer cells MCF-7, DFs and ADSCs were determined via the Alamar blue assay. The side effect indexes (SEIs) were calculated as the ratio of IC50 values of drugs on cancer cells and IC50 values of drugs on DFs, and on ADSCs. The stability of the anti-tumor assay was investigated when carried out on DFs and ADSCs from different passages. The results showed that the IC50 values, as well as SEI values, were not significantly different between using DFs or ADSCs as normal cell controls when DFs and ADSCs were at passage 3. However, for DFs at passage 6 to 12, the IC50 values of doxorubicin were significantly different between DFs and ADSCs. The IC50 values of doxorubicin on DFs were strongly reduced due to the senescence of DFs, while the values were more constant in ADSCs. The SEI values of doxorubicin on DFs, compared to HepG2 and MCF-7 cells, were also changed during passage 3 to 12 of the DFs. However, these values were only slightly changed for ADSCs from the 3rd to 12th passages. ADSCs can replace DFs as a normal cell control for anti-tumor activity screening.
Collapse
Affiliation(s)
- Phuc Van Pham
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
- Cancer Research Laboratory, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Sinh Truong Nguyen
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Nhan Lu-Chinh Phan
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Nghia Minh Do
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| | - Phuc Hong Vo
- Stem Cell Institute, University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
| |
Collapse
|
44
|
Wilson BAP, Thornburg CC, Henrich CJ, Grkovic T, O'Keefe BR. Creating and screening natural product libraries. Nat Prod Rep 2020; 37:893-918. [PMID: 32186299 PMCID: PMC8494140 DOI: 10.1039/c9np00068b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020The National Cancer Institute of the United States (NCI) has initiated a Cancer Moonshot program entitled the NCI Program for Natural Product Discovery. As part of this effort, the NCI is producing a library of 1 000 000 partially purified natural product fractions which are being plated into 384-well plates and provided to the research community free of charge. As the first 326 000 of these fractions have now been made available, this review seeks to describe the general methods used to collect organisms, extract those organisms, and create a prefractionated library. Importantly, this review also details both cell-based and cell-free bioassay methods and the adaptations necessary to those methods to productively screen natural product libraries. Finally, this review briefly describes post-screen dereplication and compound purification and scale up procedures which can efficiently identify active compounds and produce sufficient quantities of natural products for further pre-clinical development.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, USA.
| | | | | | | | | |
Collapse
|
45
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|
46
|
John GSM, Vuttaradhi VK, Takeuchi S, Pitani RS, Venkatraman G, Rayala SK. Facile synthesis and nanoscale features of a nanostructured nordihydroguaiaretic acid analog for therapeutic applications. J Nanobiotechnology 2020; 18:74. [PMID: 32410712 PMCID: PMC7227240 DOI: 10.1186/s12951-020-00628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nordihydroguaiaretic acid (NDGA) is a plant lignan obtained from creosote bush, known to possess anti-oxidant, anti-cancer and anti-viral activities and is being used in traditional medicine. However, toxicity studies indicated liver and kidney damage despite its immense medicinal properties. There has been a recent increase of curiosity in the chemical synthesis of NDGA derivatives for therapeutic applications. NDGA derivatives have been developed as better alternatives to NDGA and for targeted delivery to the site of tissue by chemical derivatives. In this regard, an analog of NDGA, Acetyl NDGA (Ac-NDGA), has been synthesized based on a previous procedure and formulated as a nanostructured complex with Polycaprolactone/Polyethylene glycol polymer matrices, by o/w solvent evaporation method. RESULTS The drug-incorporated polymeric nanospheres exhibited a drug load of 10.0 ± 0.5 µg drug per mg of nanospheres in acetonitrile solvent with 49.95 ± 10% encapsulation efficiency and 33-41% drug loading capacity with different batches of nanospheres preparation. The in vitro drug release characteristics indicated 82 ± 0.25% drug release at 6 h in methanol. Further, the nanospheres have been characterized extensively to evaluate their suitability for therapeutic delivery. CONCLUSIONS The present studies indicate a new and efficient formulation of the nanostructured AcNDGA with good therapeutic potential.
Collapse
Affiliation(s)
| | - Veena Kumari Vuttaradhi
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, Tamilanadu, 600036, India
| | - Satoru Takeuchi
- Factory of Takeuchi Nenshi, TAKENEN, 85NE Takamatsu, Kahoku, Ishikawa, 929-1215, Japan
| | - Ravi Shankar Pitani
- Department of Community Medicine, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, Tamilnadu, 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research, & Sri Ramachandra Center for Biomedical Nanotechnology, Porur, Chennai, Tamilnadu, 600116, India.
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, Tamilanadu, 600036, India.
| |
Collapse
|
47
|
Tantawy MA, Sroor FM, Mohamed MF, El-Naggar ME, Saleh FM, Hassaneen HM, Abdelhamid IA. Molecular Docking Study, Cytotoxicity, Cell Cycle Arrest and Apoptotic Induction of Novel Chalcones Incorporating Thiadiazolyl Isoquinoline in Cervical Cancer. Anticancer Agents Med Chem 2020; 20:70-83. [DOI: 10.2174/1871520619666191024121116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022]
Abstract
Background:
Chalcones are naturally occurring compounds found in various plant species which are
widely used for the traditional popular treatments. Chalcones are distinguished secondary metabolites that are
reported to display diverse biological activities such as antiviral, antiplatelet, anti-inflammatory, anticancer,
antibacterial and antioxidant agents. The presence of a,ß-unsaturated carbonyl group in chalcones is assumed to
be responsible for their bioactivity. In addition, heterocyclic compounds having nitrogen such as isoquinolines
are of considerable interest as they constitute the core structural element of many alkaloids that have enormous
pharmacological activities.
Objective:
The objective of this study is the synthesis and biological activity of novel chalcones incorporating
thiadiazolyl isoquinoline as potential anticancer candidates. Different genetic tools were used in an attempt to
know the mechanism of action of this compound against breast cancer.
Methods:
An efficient one pot synthesis of novel chalcones incorporating thiadiazolyl isoquinoline has been
developed. The cytotoxic activity of the novel synthesized compounds was performed against four different
kinds of cancer cell lines.
Results:
Among all the tested derivatives, chalcone 3 has the best cytotoxic profile against A549, MCF7, and
HeLa cell lines, with IC50s (66.1, 51.3, and 85.1μM, respectively). Molecular docking studies for chalcone 3
revealed that CDK2, and EGFRTK domains have strong binding affinities toward the novel chalcone 3, while
tubulin-colchicine-ustiloxin, and VEGFRTK domains illustrated moderate mode of binding.
Conclusion:
We have developed an efficient method for the synthesis of novel chalcones incorporating thiadiazolyl
isoquinoline. All compounds showed better cytotoxicity results against four kinds of cancer cell lines
(A549, MCF7, HCT116, and HELA cells). The results depicted that chalcone 3 has a high and promising cytotoxic
effect against HELA cell line and the mechanism of cytotoxicity was widely studied through different
theoretical and experimental tools. Thus, the newly synthesized derivative 3 can be utilized as a novel chemotherapeutic
compound for cervical carcinoma.
Collapse
Affiliation(s)
- Mohamed A. Tantawy
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Farid M. Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622 Cairo, Egypt
| | - Magda F. Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mostafa E. El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Fatma M. Saleh
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hamdi M. Hassaneen
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
48
|
Tadini-Buoninsegni F, Palchetti I. Label-Free Bioelectrochemical Methods for Evaluation of Anticancer Drug Effects at a Molecular Level. SENSORS 2020; 20:s20071812. [PMID: 32218227 PMCID: PMC7181070 DOI: 10.3390/s20071812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
Cancer is a multifactorial family of diseases that is still a leading cause of death worldwide. More than 100 different types of cancer affecting over 60 human organs are known. Chemotherapy plays a central role for treating cancer. The development of new anticancer drugs or new uses for existing drugs is an exciting and increasing research area. This is particularly important since drug resistance and side effects can limit the efficacy of the chemotherapy. Thus, there is a need for multiplexed, cost-effective, rapid, and novel screening methods that can help to elucidate the mechanism of the action of anticancer drugs and the identification of novel drug candidates. This review focuses on different label-free bioelectrochemical approaches, in particular, impedance-based methods, the solid supported membranes technique, and the DNA-based electrochemical sensor, that can be used to evaluate the effects of anticancer drugs on nucleic acids, membrane transporters, and living cells. Some relevant examples of anticancer drug interactions are presented which demonstrate the usefulness of such methods for the characterization of the mechanism of action of anticancer drugs that are targeted against various biomolecules.
Collapse
Affiliation(s)
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
49
|
Vernolactone Promotes Apoptosis and Autophagy in Human Teratocarcinomal (NTERA-2) Cancer Stem-Like Cells. Stem Cells Int 2020; 2019:6907893. [PMID: 31949439 PMCID: PMC6942914 DOI: 10.1155/2019/6907893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Vernonia zeylanica, is a shrub endemic to Sri Lanka. V. zeylanica has been used in Sri Lankan traditional medicine for the treatment of various diseases and conditions. The present study was designed to determine antiproliferative, apoptotic, autophagic, and antioxidant effects of vernolactone, isolated from V. zeylanica, in human embryonal carcinoma cells (NTERA-2, a cancer stem cell model). Antiproliferative effects of vernolactone in NTERA-2 cells and human peripheral blood mononuclear cells (control cells) were evaluated using the Sulforhodamine B (SRB) assay and WST-1 antiproliferative assays, respectively. The antiproliferative effect of vernolactone was further investigated using the colony formation assay. Effects of vernolactone on apoptosis were investigated by phase contrast light microscopic and fluorescence microscopic analysis, caspase 3/7 expression, and real-time PCR of apoptosis-associated genes p53 and Survivin. The effect of vernolactone on NTERA-2 cell migration was monitored using the wound healing assay. Effects of vernolactone on the expression of autophagy-related genes (LC3, Beclin 1, PI3K, Akt, and mTOR) were evaluated using real-time PCR. 2,2-Diphenyl-1-2,2-diphenyl-picrylhydrazyl (DPPH) radical scavenging assay, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays were also carried out to evaluate the antioxidant activity of vernolactone. Overall results confirm that vernolactone can exert antiproliferative effects, induce apoptosis and autophagy, and decrease NTERA-2 cell migration in a dose- and time-dependent manner with a very small antioxidant property.
Collapse
|
50
|
Examining multiple cellular pathways at once using multiplex hextuple luciferase assaying. Nat Commun 2019; 10:5710. [PMID: 31836712 PMCID: PMC6911020 DOI: 10.1038/s41467-019-13651-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023] Open
Abstract
Sensitive simultaneous assessment of multiple signaling pathways within the same cells requires orthogonal reporters that can assay over large dynamic ranges. Luciferases are such genetically encoded candidates due to their sensitivity, versatility, and cost-effectiveness. We expand luciferase multiplexing in post-lysis endpoint luciferase assays from two to six. Light emissions are distinguished by a combination of distinct substrates and emission spectra deconvolution. All six luciferase reporter units are stitched together into one plasmid facilitating delivery of all reporter units through a process we termed solotransfection, minimizing experimental errors. We engineer a multiplex hextuple luciferase assay to probe pathway fluxes through five transcriptional response elements against a control constitutive promoter. We can monitor effects of siRNA, ligand, and chemical compound treatments on their target pathways along with the four other probed cellular pathways. We demonstrate the effectiveness and adaptiveness of multiplex luciferase assaying, and its broad application across different research fields. Multiplexed detection of luciferase-based sensors in the same sample is challenging and limited by the substrates’ emission spectra. Here the authors establish a system based on three different luciferases and sequential detection to achieve measurements of up to six parameters within the same experiment.
Collapse
|