1
|
Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three Dimensional Bioprinting for Hepatic Tissue Engineering: From In Vitro Models to Clinical Applications. Tissue Eng Regen Med 2024; 21:21-52. [PMID: 37882981 PMCID: PMC10764711 DOI: 10.1007/s13770-023-00576-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 10/27/2023] Open
Abstract
Fabrication of functional organs is the holy grail of tissue engineering and the possibilities of repairing a partial or complete liver to treat chronic liver disorders are discussed in this review. Liver is the largest gland in the human body and plays a responsible role in majority of metabolic function and processes. Chronic liver disease is one of the leading causes of death globally and the current treatment strategy of organ transplantation holds its own demerits. Hence there is a need to develop an in vitro liver model that mimics the native microenvironment. The developed model should be a reliable to understand the pathogenesis, screen drugs and assist to repair and replace the damaged liver. The three-dimensional bioprinting is a promising technology that recreates in vivo alike in vitro model for transplantation, which is the goal of tissue engineers. The technology has great potential due to its precise control and its ability to homogeneously distribute cells on all layers in a complex structure. This review gives an overview of liver tissue engineering with a special focus on 3D bioprinting and bioinks for liver disease modelling and drug screening.
Collapse
Affiliation(s)
- Meghana Kasturi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mrunmayi Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Varadharajan Srinivasan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Bhatt S S, Krishna Kumar J, Laya S, Thakur G, Nune M. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. J Tissue Eng 2024; 15:20417314241286092. [PMID: 39411269 PMCID: PMC11475092 DOI: 10.1177/20417314241286092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/08/2024] [Indexed: 10/19/2024] Open
Abstract
The liver coordinates over 500 biochemical processes crucial for maintaining homeostasis, detoxification, and metabolism. Its specialized cells, arranged in hexagonal lobules, enable it to function as a highly efficient metabolic engine. However, diseases such as cirrhosis, fatty liver disease, and hepatitis present significant global health challenges. Traditional drug development is expensive and often ineffective at predicting human responses, driving interest in advanced in vitro liver models utilizing 3D bioprinting and microfluidics. These models strive to mimic the liver's complex microenvironment, improving drug screening and disease research. Despite its resilience, the liver is vulnerable to chronic illnesses, injuries, and cancers, leading to millions of deaths annually. Organ shortages hinder liver transplantation, highlighting the need for alternative treatments. Tissue engineering, employing polymer-based scaffolds and 3D bioprinting, shows promise. This review examines these innovative strategies, including liver organoids and liver tissue-on-chip technologies, to address the challenges of liver diseases.
Collapse
Affiliation(s)
- Supriya Bhatt S
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayanthi Krishna Kumar
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shurthi Laya
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Yoon Y, Gong SC, Kim MY, Baik SK, Hong JE, Rhee KJ, Ryu H, Eom YW. Generation of Fibrotic Liver Organoids Using Hepatocytes, Primary Liver Sinusoidal Endothelial Cells, Hepatic Stellate Cells, and Macrophages. Cells 2023; 12:2514. [PMID: 37947592 PMCID: PMC10647544 DOI: 10.3390/cells12212514] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Liver organoids generated with single or multiple cell types have been used to investigate liver fibrosis development, toxicity, pathogenesis, and drug screening. However, organoid generation is limited by the availability of cells isolated from primary tissues or differentiated from various stem cells. To ensure cell availability for organoid formation, we investigated whether liver organoids could be generated with cell-line-based Huh-7 hepatocellular carcinoma cells, macrophages differentiated from THP-1 monocytes, and LX-2 hepatic stellate cells (HSCs) and primary liver sinusoidal endothelial cells (LSECs). In liver organoids, hepatocyte-, LSEC-, macrophage-, and HSC-related gene expression increased relative to that in two-dimensional (2D)-cultured Huh-7/LSEC/THP-1/LX-2 cells without Matrigel. Thioacetamide (TAA) increased α-smooth muscle actin expression in liver organoids but not in 2D-cultured cells, whereas in TAA-treated organoids, the expression of hepatic and LSEC markers decreased and that of macrophage and HSC markers increased. TAA-induced fibrosis was suppressed by treatment with N-acetyl-L-cysteine or tumor-necrosis-factor-stimulated gene 6 protein. The results showed that liver toxicants could induce fibrotic and inflammatory responses in liver organoids comprising Huh-7/LSEC/macrophages/LX-2 cells, resulting in fibrotic liver organoids. We propose that cell-line-based organoids can be used for disease modeling and drug screening to improve liver fibrosis treatment.
Collapse
Affiliation(s)
- Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
| | - Seong Chan Gong
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (J.-E.H.); (K.-J.R.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (J.-E.H.); (K.-J.R.)
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
| |
Collapse
|
4
|
Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-Badenas E, Donato MT, Gomez-Ribelles JL, Salmeron-Sanchez M, Gallego-Ferrer G, Tolosa L. Primary human hepatocytes-laden scaffolds for the treatment of acute liver failure. BIOMATERIALS ADVANCES 2023; 153:213576. [PMID: 37566937 DOI: 10.1016/j.bioadv.2023.213576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cell-based liver therapies based on retrieving and steadying failed metabolic function(s) for acute and chronic diseases could be a valuable substitute for liver transplants, even though they are limited by the low engraftment capability and reduced functional quality of primary human hepatocytes (PHH). In this paper we propose the use of gelatin-hyaluronic acid (Gel-HA) scaffolds seeded with PHH for the treatment of liver failure. We first optimized the composition using Gel-HA hydrogels, looking for the mechanical properties closer to the human liver and determining HepG2 cells functionality. Gel-HA scaffolds with interconnected porosity (pore size 102 μm) were prepared and used for PHH culture and evaluation of key hepatic functions. PHH cultured in Gel-HA scaffolds exhibited increased albumin and urea secretion and metabolic capacity (CYP and UGT activity levels) compared to standard monolayer cultures. The transplant of the scaffold containing PHH led to an improvement in liver function (transaminase levels, necrosis) and ameliorated damage in a mouse model of acetaminophen (APAP)-induced liver failure. The study provided a mechanistic understanding of APAP-induced liver injury and the impact of transplantation by analyzing cytokine production and oxidative stress induction to find suitable biomarkers of cell therapy effectiveness.
Collapse
Affiliation(s)
- Julio Rodriguez-Fernandez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Emma Garcia-Legler
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
| | - Estela Villanueva-Badenas
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain
| | - M Teresa Donato
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia 46010, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Gomez-Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain; Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, G12 8LT Glasgow, United Kingdom
| | - Gloria Gallego-Ferrer
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - Laia Tolosa
- Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia 46026, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| |
Collapse
|
5
|
Ma Y, Hu L, Tang J, Guo W, Feng Y, Liu Y, Tang F. Three-Dimensional Cell Co-Culture Liver Models and Their Applications in Pharmaceutical Research. Int J Mol Sci 2023; 24:ijms24076248. [PMID: 37047220 PMCID: PMC10094553 DOI: 10.3390/ijms24076248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
As the primary site for the biotransformation of drugs, the liver is the most focused on organ type in pharmaceutical research. However, despite being widely used in pharmaceutical research, animal models have inherent species differences, while two-dimensional (2D) liver cell monocultures or co-cultures and three-dimensional (3D) liver cell monoculture in vitro liver models do not sufficiently represent the complexity of the human liver’s structure and function, making the evaluation results from these tools less reliable. Therefore, there is a pressing need to develop more representative in vitro liver models for pharmaceutical research. Fortunately, an exciting new development in recent years has been the emergence of 3D liver cell co-culture models. These models hold great promise as in vitro pharmaceutical research tools, because they can reproduce liver structure and function more practically. This review begins by explaining the structure and main cell composition of the liver, before introducing the potential advantages of 3D cell co-culture liver models for pharmaceutical research. We also discuss the main sources of hepatocytes and the 3D cell co-culture methods used in constructing these models. In addition, we explore the applications of 3D cell co-culture liver models with different functional states and suggest prospects for their further development.
Collapse
|
6
|
Mirdamadi ES, Khosrowpour Z, Jafari D, Gholipourmalekabadi M, Solati-Hashjin M. 3D-printed PLA/Gel hybrid in liver tissue engineering: Effects of architecture on biological functions. Biotechnol Bioeng 2023; 120:836-851. [PMID: 36479982 DOI: 10.1002/bit.28301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
The liver is one of the vital organs in the body, and the gold standard of treatment for liver function impairment is liver transplantation, which poses many challenges. The specific three-dimensional (3D) structure of liver, which significantly impacts the growth and function of its cells, has made biofabrication with the 3D printing of scaffolds suitable for this approach. In this study, to investigate the effect of scaffold geometry on the performance of HepG2 cells, poly-lactic acid (PLA) polymer was used as the input of the fused deposition modeling (FDM) 3D-printing machine. Samples with simple square and bioinspired hexagonal cross-sectional designs were printed. One percent and 2% of gelatin coating were applied to the 3D printed PLA to improve the wettability and surface properties of the scaffold. Scanning electron microscopy pictures were used to analyze the structural properties of PLA-Gel hybrid scaffolds, energy dispersive spectroscopy to investigate the presence of gelatin, water contact angle measurement for wettability, and weight loss for degradation. In vitro tests were performed by culturing HepG2 cells on the scaffold to evaluate the cell adhesion, viability, cytotoxicity, and specific liver functions. Then, high-precision scaffolds were printed and the presence of gelatin was detected. Also, the effect of geometry on cell function was confirmed in viability, adhesion, and functional tests. The albumin and urea production of the Hexagonal PLA scaffold was about 1.22 ± 0.02-fold higher than the square design in 3 days. This study will hopefully advance our understanding of liver tissue engineering toward a promising perspective for liver regeneration.
Collapse
Affiliation(s)
- Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Zahra Khosrowpour
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
7
|
Temple J, Velliou E, Shehata M, Lévy R, Gupta P. Current strategies with implementation of three-dimensional cell culture: the challenge of quantification. Interface Focus 2022; 12:20220019. [PMID: 35992772 PMCID: PMC9372643 DOI: 10.1098/rsfs.2022.0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
From growing cells in spheroids to arranging them on complex engineered scaffolds, three-dimensional cell culture protocols are rapidly expanding and diversifying. While these systems may often improve the physiological relevance of cell culture models, they come with technical challenges, as many of the analytical methods used to characterize traditional two-dimensional (2D) cells must be modified or replaced to be effective. Here we review the advantages and limitations of quantification methods based either on biochemical measurements or microscopy imaging. We focus on the most basic of parameters that one may want to measure, the number of cells. Precise determination of this number is essential for many analytical techniques where measured quantities are only meaningful when normalized to the number of cells (e.g. cytochrome p450 enzyme activity). Thus, accurate measurement of cell number is often a prerequisite to allowing comparisons across different conditions (culturing conditions or drug and treatment screening) or between cells in different spatial states. We note that this issue is often neglected in the literature with little or no information given regarding how normalization was performed, we highlight the pitfalls and complications of quantification and call for more accurate reporting to improve reproducibility.
Collapse
Affiliation(s)
- Jonathan Temple
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, University College London, London, UK
| | - Mona Shehata
- Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Raphaël Lévy
- Bioscience building, University of Liverpool, Liverpool L69 3BX, UK
- Laboratoire for Vascular Translational Science, Université Sorbonne Paris Nord, Bobigny, France
| | - Priyanka Gupta
- Centre for 3D Models of Health and Disease, University College London, London, UK
| |
Collapse
|
8
|
Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022; 25:103549. [PMID: 34977507 PMCID: PMC8689151 DOI: 10.1016/j.isci.2021.103549] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global healthcare challenge, affecting 1 in 4 adults, and death rates are predicted to rise inexorably. The progressive form of NAFLD, non-alcoholic steatohepatitis (NASH), can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. However, no medical treatments are licensed for NAFLD-NASH. Identifying efficacious therapies has been hindered by the complexity of disease pathogenesis, a paucity of predictive preclinical models and inadequate validation of pharmacological targets in humans. The development of clinically relevant in vitro models of the disease will pave the way to overcome these challenges. Currently, the combined application of emerging technologies (e.g., organ-on-a-chip/microphysiological systems) and control engineering approaches promises to unravel NAFLD biology and deliver tractable treatment candidates. In this review, we will describe advances in preclinical models for NAFLD-NASH, the recent introduction of novel technologies in this space, and their importance for drug discovery endeavors in the future.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lucia Bandiera
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK.,Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK.,Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jonathan Andrew Fallowfield
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
9
|
Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022; 25:103549. [PMID: 34977507 DOI: 10.1016/j.isci] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global healthcare challenge, affecting 1 in 4 adults, and death rates are predicted to rise inexorably. The progressive form of NAFLD, non-alcoholic steatohepatitis (NASH), can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. However, no medical treatments are licensed for NAFLD-NASH. Identifying efficacious therapies has been hindered by the complexity of disease pathogenesis, a paucity of predictive preclinical models and inadequate validation of pharmacological targets in humans. The development of clinically relevant in vitro models of the disease will pave the way to overcome these challenges. Currently, the combined application of emerging technologies (e.g., organ-on-a-chip/microphysiological systems) and control engineering approaches promises to unravel NAFLD biology and deliver tractable treatment candidates. In this review, we will describe advances in preclinical models for NAFLD-NASH, the recent introduction of novel technologies in this space, and their importance for drug discovery endeavors in the future.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lucia Bandiera
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK
- Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK
- Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jonathan Andrew Fallowfield
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
10
|
Wang X, Guo C, Guo L, Wang M, Liu M, Song Y, Jiao H, Wei X, Zhao Z, Kaplan DL. Radially Aligned Porous Silk Fibroin Scaffolds as Functional Templates for Engineering Human Biomimetic Hepatic Lobules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:201-213. [PMID: 34929079 DOI: 10.1021/acsami.1c18215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioengineering functional hepatic tissue constructs that physiologically replicate the human native liver tissue in vitro is sought for clinical research and drug discovery. However, the intricate architecture and specific biofunctionality possessed by the native liver tissue remain challenging to mimic in vitro. In the present study, a versatile strategy to fabricate lobular-like silk protein scaffolds with radially aligned lamellar sheets, interconnected channels, and a converging central cavity was designed and implemented. A proof-of-concept study to bioengineer biomimetic hepatic lobules was conducted through coculturing human hepatocytes and primary endothelial cells on these lobular-like scaffolds. Relatively long-term viability of hepatocyte/endothelial cells was found along with cell alignment and organization in vitro. The hepatocytes showed special epithelial polarity and bile duct formation, similar to the liver plate, while the aligned endothelial cells generated endothelial networks, similar to natural hepatic sinuses. This endowed the three-dimensional (3D) tissue constructs with the capability to recapitulate hepatic-like parenchymal-mesenchymal growth patterns in vitro. More importantly, the cocultured hepatocytes outperformed monocultures or monolayer cultures, displaying significantly enhanced hepatocyte functions, including functional gene expression, albumin (ALB) secretion, urea synthesis, and metabolic activity. Thus, this functional unit with a biomimetic phenotype provides a novel technology for bioengineering biomimetic hepatic lobules in vitro, with potential utility as a building block for bioartificial liver (BAL) engineering or as a robust tool for drug metabolism investigation.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Lina Guo
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Mingqi Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Ming Liu
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yizhe Song
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Hui Jiao
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Xiaoqing Wei
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Zinan Zhao
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - David L Kaplan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
12
|
Ali M, Payne SL. Biomaterial-based cell delivery strategies to promote liver regeneration. Biomater Res 2021; 25:5. [PMID: 33632335 PMCID: PMC7905561 DOI: 10.1186/s40824-021-00206-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic liver disease and cirrhosis is a widespread and untreatable condition that leads to lifelong impairment and eventual death. The scarcity of liver transplantation options requires the development of new strategies to attenuate disease progression and reestablish liver function by promoting regeneration. Biomaterials are becoming an increasingly promising option to both culture and deliver cells to support in vivo viability and long-term function. There is a wide variety of both natural and synthetic biomaterials that are becoming established as delivery vehicles with their own unique advantages and disadvantages for liver regeneration. We review the latest developments in cell transplantation strategies to promote liver regeneration, with a focus on the use of both natural and synthetic biomaterials for cell culture and delivery. We conclude that future work will need to refine the use of these biomaterials and combine them with novel strategies that recapitulate liver organization and function in order to translate this strategy to clinical use.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Samantha L Payne
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
13
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
Chen F, Wang H, Xiao J. Regulated differentiation of stem cells into an artificial 3D liver as a transplantable source. Clin Mol Hepatol 2020; 26:163-179. [PMID: 32098013 PMCID: PMC7160355 DOI: 10.3350/cmh.2019.0022n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
End-stage liver disease is one of the leading causes of death around the world. Since insufficient sources of transplantable liver and possible immune rejection severely hinder the wide application of conventional liver transplantation therapy, artificial three-dimensional (3D) liver culture and assembly from stem cells have become a new hope for patients with end-stage liver diseases, such as cirrhosis and liver cancer. However, the induced differentiation of single-layer or 3D-structured hepatocytes from stem cells cannot physiologically support essential liver functions due to the lack of formation of blood vessels, immune regulation, storage of vitamins, and other vital hepatic activities. Thus, there is emerging evidence showing that 3D organogenesis of artificial vascularized liver tissue from combined hepatic cell types derived from differentiated stem cells is practical for the treatment of end-stage liver diseases. The optimization of novel biomaterials, such as decellularized matrices and natural macromolecules, also strongly supports the organogenesis of 3D tissue with the desired complex structure. This review summarizes new research updates on novel differentiation protocols of stem cell-derived major hepatic cell types and the application of new supportive biomaterials. Future biological and clinical challenges of this concept are also discussed.
Collapse
Affiliation(s)
- Feng Chen
- National Key Disciplines for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jia Xiao
- Clinical Medicine Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Mirdamadi ES, Kalhori D, Zakeri N, Azarpira N, Solati-Hashjin M. Liver Tissue Engineering as an Emerging Alternative for Liver Disease Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:145-163. [PMID: 31797731 DOI: 10.1089/ten.teb.2019.0233] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic liver diseases affect thousands of lives throughout the world every year. The shortage of liver donors for transplantation has been the main driving force to employ alternative methods such as liver tissue engineering (LTE) in fabricating a three-dimensional transplantable liver tissue or enhancing cell delivery techniques alleviating the need for liver donors. LTE consists of three components, cells, ECM (extracellular matrix), and signaling molecules, which we discuss the first and second. The three most common cell sources used in LTE are human and animal primary hepatocytes, and stem cells for different applications. Two major categories of ECM are used to mimic the microenvironment of these cells, named scaffolds and microbeads. Scaffolds have been made by numerous methods with a wide range of synthetic and natural biomaterials. Cell encapsulation has also been utilized by many polymeric biomaterials. To investigate their functions, many properties have been discussed in the literature, such as biochemical, geometrical, and mechanical properties, in both of these categories. Overall, LTE shows excellent potential in assisting hepatic disorders. However, some challenges exist that prevent the practical use of it clinically, making LTE an ongoing research subject in the scientific society.
Collapse
Affiliation(s)
- Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|