1
|
Średnicka P, Roszko M, Emanowicz P, Wójcicki M, Popowski D, Kanabus J, Juszczuk-Kubiak E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177323. [PMID: 39489444 DOI: 10.1016/j.scitotenv.2024.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Food contamination is a primary route of human exposure to bisphenols (BPs), which are known to affect gut microbiota (GM) and intestinal health. This study comprehensively assessed the impact of bisphenol A (BPA) and three of its substitutes-bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF, the monomer of valPure V70) - on the taxonomic and functional profile of human GM using an in vitro model. Human GM was acutely exposed to 1 mM concentrations of these BPs during a 48 h anaerobic cultivation. We first examined the effects of BPA, BPS, BPF, and TMBPF on GM taxonomic and metabolic profiles, mainly focusing on short-chain fatty acids (SCFAs) production. We then evaluated the degradation potential of these BPs by GM and its influence on their estrogenic activity. Finally, we assessed the impact of GM metabolites from BPs-exposed cultures on the viability of intestinal epithelial cells (Caco-2). BPA, BPS, and BPF severely disrupted GM taxonomic composition and metabolite profiles, significantly reducing SCFAs production. In contrast, TMBPF exhibited the least disruptive effects, suggesting it may be a safer alternative. Although the GM did not biotransform the BPs, bioadsorption occurred, with affinity correlating to hydrophobicity in the order of TMBPF > BPA > BPF > BPS. GM reduced the estrogenic activity of BPs primarily through bioadsorption. However, exposure of gut epithelial cells to Post-Culture Supernatants of BPA, BPF, and TMBPF significantly reduced Caco-2 cell viability, indicating the potential formation of harmful GM-derived metabolites and/or a depletion of beneficial GM metabolites.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland; Natural Products & Food Research and Analysis - Pharmaceutical Technology, Faculty of Pharmacy, University of Antwerp, Universiteitplein 1, Wilrijk, Belgium
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| |
Collapse
|
2
|
Bostancı M, Kaptaner B, Doğan A. Thyroid-disrupting effects of bisphenol S in male Wistar albino rats: Histopathological lesions, follicle cell proliferation and apoptosis, and biochemical changes. Toxicol Ind Health 2024; 40:559-580. [PMID: 39138139 DOI: 10.1177/07482337241267247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this presented study, the aim was to investigate the toxic effects of bisphenol S (BPS), one of the bisphenol A analogues, on the thyroid glands of male Wistar albino rats. Toward this aim, the rats (n = 28) were given a vehicle (control) or BPS at 3 different doses, comprising 20, 100, and 500 mg/kg of body weight (bw) via oral gavage for 28 days. According to the results, BPS led to numerous histopathological changes in the thyroid tissue. The average proliferation index values among the thyroid follicular cells (TFCs) displayed increases in all of the BPS groups, and significant differences were observed in the BPS-20 and BPS-100 groups. The average apoptotic index values in the TFCs were increased significantly in the BPS-500 group. The serum thyroid-stimulating hormone and serum free thyroxine levels did not show significant changes after exposure to BPS; however, the serum free triiodothyronine levels displayed significant decreases in all 3 of the BPS groups. BPS was determined to cause significant increases in the antioxidant enzyme activities of catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, as well as a significantly decreased content of reduced glutathione. The malondialdehyde level in the thyroid tissue was elevated significantly in the BPS-500 group. The data obtained herein revealed that BPS has thyroid-disrupting potential based on structural changes, follicle cell responses, and biochemical alterations including a decreased serum free triiodothyronine level and increased oxidative stress.
Collapse
Affiliation(s)
- Müşerref Bostancı
- Department of Biology, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Tuşba, Türkiye
| | - Burak Kaptaner
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, Tuşba, Türkiye
| | - Abdulahad Doğan
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Tuşba, Türkiye
| |
Collapse
|
3
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024:1-58. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Balci-Ozyurt A, Yirun A, Cakır DA, Ozcelik İ, Bacanli M, Ozkemahli G, Sabuncuoglu S, Basaran N, Erkekoglu P. Comparative in silico and in vitro evaluation of possible toxic effects of bisphenol derivatives in HepG2 cells. Toxicol Res (Camb) 2024; 13:tfae127. [PMID: 39132192 PMCID: PMC11316955 DOI: 10.1093/toxres/tfae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Bisphenols are widely used in the production of polycarbonate plastics and resin coatings. Bisphenol A (BPA) is suggested to cause a wide range of unwanted effects and "low dose toxicity". With the search for alternative substances to BPA, the use of other bisphenol derivatives namely bisphenol F (BPF) and bisphenol S (BPS) has increased. Methods In the current study, we aimed to evaluate the in silico predicted inhibitory concentration 50s (pIC50s) of bisphenol derivatives on immune and apoptotic markers and DNA damage on HepG2 cells. Moreover, apoptotic, genotoxic and immunotoxic effects of BPA, BPF and BPS were determined comparatively. Effects of bisphenols on apoptosis were evaluated by detecting different caspase activities. The genotoxic effects of bisphenols were evaluated by measuring the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-oxoguanine glycosylase (OGG1). To determine the immunotoxic effect of bisphenol derivatives, the levels of interleukin 4 (IL-4) and interleukin 10 (IL-10), transforming growth factor beta (TGF-β) and tumor necrosis factor-alpha (TNF-α), which are known to be expressed by HepG2 cells, were measured. Results: In silico data indicate that all of the bisphenols may cause alterations in immune and apoptotic markers as well as DNA damage at low doses. İn vitro data revealed that all bisphenol derivatives could affect immune markers at inhibitory concentration 30s (IC30s). In addition, BPF and BPS may also have apoptotic immunotoxic effects. Conclusion Both in silico and in vivo research are needed further to examine the toxic effects of alternative bisphenol derivatives.
Collapse
Affiliation(s)
- Aylin Balci-Ozyurt
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
- School of Pharmacy, Department of Toxicology, Bahçeşehir University, Istanbul, Turkey
| | - Anıl Yirun
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Çukurova University, Adana, Turkey
| | - Deniz Arca Cakır
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
- Hacettepe Vaccine Institute, Department of Vaccine Technology, Hacettepe University, Ankara, Turkey
| | - İbrahim Ozcelik
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Merve Bacanli
- Faculty of Pharmacy, Department of Toxicology, Health Sciences University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Suna Sabuncuoglu
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Nursen Basaran
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Pınar Erkekoglu
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|
5
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
6
|
He Q, Xu C, Guo J, Chen Y, Huang N, Chen J. Bisphenol A exposure stimulates prostatic fibrosis via exosome-triggered epithelium changes. Food Chem Toxicol 2024; 185:114450. [PMID: 38215961 DOI: 10.1016/j.fct.2024.114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Fibrosis is the pathological basis for the clinical progression of benign prostatic hyperplasia (BPH). Prostatic fibrosis is an important risk factor in patients with BPH who experience lower urinary tract symptoms. Bisphenol A (BPA) is an environmental endocrine disruptor (EED) that causes prostate defects. The effects of BPA on the prostate were investigated in this study using mouse and human prostate cell models. BPA-induced mouse prostatic fibrosis is characterized by collagen deposition and an increase in hydroxyproline concentration. Furthermore, BPA-exposed prostatic stromal fibroblasts exosomes promote the epithelial-mesenchymal transition of epithelial cells. High-throughput RNA sequencing and functional enrichment analyses show that substantially altered mRNAs, lncRNAs and circRNAs play roles in cellular interactions and the hypoxia-inducible factor-1 signaling pathway. The results showed that exosomes participated in the pro-fibrogenic effects of BPA on the prostate by mediating communication between stromal and epithelial cells and triggering epithelial changes.
Collapse
Affiliation(s)
- Qingqin He
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Congyue Xu
- Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Jing Guo
- Department of Basic Medicine, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Yao Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Nianfang Huang
- Experimental Center, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Jinglou Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei Province, China.
| |
Collapse
|
7
|
Mohan S, Jacob J, Malini NA, Prabhakar R, Kayalakkakathu RG. Biochemical responses and antioxidant defense mechanisms in Channa Striatus exposed to Bisphenol S. J Biochem Mol Toxicol 2024; 38:e23651. [PMID: 38348707 DOI: 10.1002/jbt.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol S (BPS), a BPA analog and a safer alternative, is utilized in a diverse range of industrial applications, such as making polycarbonate plastics, epoxy resins, thermal receipt papers, and currency bills. Recently, the increased use of BPS in containers and packages for daily life has been interrogated due to its identical chemical structure and probable endocrine-disrupting actions as BPA has. The present study aimed to evaluate the alterations in biochemical indices and antioxidant enzymes as certain indicators of the endocrine-disrupting effect of BPS in Channa striatus, a freshwater fish. BPS-exposed fish species were subjected to three sub-lethal concentrations of BPS (1, 4, and 12 ppm) and observed after an interval of 7 and 21 days. Exposure to BPS caused a reduction in the level of protein in muscle, gonads and the liver due to an impairment of protein synthesis. Levels of cholesterol in the muscle, gonads, and liver of BPS-exposed fish were found to be decreased after treatment, indicating either an inhibition of cholesterol biosynthesis in the liver or reduced absorption of dietary cholesterol. The levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase showed remarkable increases, while the activity of glutathione S-transferase decreased considerably, indicating the antioxidant defense mechanism to counteract the oxidative stress induced by BPS. Moreover, a significant increase was noted in the level of lipid peroxidation products, like malondialdehyde and conjugate diene, which represent biomarkers of oxidative stress. The histoarchitecture changes were also observed in the liver, muscle and gonads of BPS-treated fish species. The present study showed that sub-lethal exposure to BPS significantly influenced the activities of these enzymes and peroxidation byproducts. From this study, it is concluded that BPS-caused toxic effects in fish species lead to an imbalance in the antioxidant defense system. It is clearly indicated that BPS toxicity could lead to susceptible oxidative stress in various tissues and could damage vital organs.
Collapse
Affiliation(s)
- Sini Mohan
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Jubi Jacob
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Nair Achuthan Malini
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | - Reshma Prabhakar
- Post-Graduate and Research Department of Zoology, St. Thomas College, Kozhencherry, Kerala, India
| | | |
Collapse
|
8
|
Soliz DL, Garcinuño RM, Paniagua González G, Bravo JC, Fernández Hernando P. Assessing Matrix Solid-Phase Dispersion Extraction Strategies for Determining Bisphenols and Phthalates in Gilthead Sea Bream Samples. Foods 2024; 13:413. [PMID: 38338548 PMCID: PMC10855760 DOI: 10.3390/foods13030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are widely spread in the environment, generating significant concern due to their potential impact on environmental health. Marine species usually ingest plastic fragments, mistaking them for food. Many toxic compounds, such as plastic additives that are not chemically bound to the plastic matrix, can be released from MPs and NPs and reach humans via the food chain. This paper highlights the development and validation of a straightforward solid-liquid extraction clean-up procedure in combination with a matrix solid-phase dispersion method using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) detection, enabling facile, precise, and reliable identification and quantitation of a total of six bisphenols and phthalates in gilthead sea breams. Under the optimized conditions, the developed method showed good linearity (R2 > 0.993) for all target compounds. The recoveries obtained were between 70 and 92%. The relative standard deviations (RSDs) for reproducibility (inter-day) and repeatability (intra-day) were less than 9% and 10%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the target compounds ranged from 0.11 to 0.68 µg/kg and from 0.37 to 2.28 µg/kg, respectively. A new, efficient extraction methodology for the determination of BPA, BPS, BPF, DBP, DEP, and DHEP in gilthead seabream has been optimized and validated.
Collapse
Affiliation(s)
| | - Rosa Ma Garcinuño
- Department of Analytical Science, Faculty of Science, National University of Distance Education, UNED, Las Rozas, 28232 Madrid, Spain; (D.L.S.); (G.P.G.); (J.C.B.); (P.F.H.)
| | | | | | | |
Collapse
|
9
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
10
|
Abouhamzeh B, Zare Z, Mohammadi M, Moosazadeh M, Nourian A. Bisphenol-S Influence on Oxidative Stress and Endocrine Biomarkers of Reproductive System: A Systematic Review and Meta-Analysis. Int J Prev Med 2023; 14:37. [PMID: 37351052 PMCID: PMC10284209 DOI: 10.4103/ijpvm.ijpvm_271_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/27/2022] [Indexed: 06/24/2023] Open
Abstract
Background Bisphenol-S (BPS), as a new human public health concern, was introduced to the plastic industry by BPA-free labeled products following the restrictions of Bisphenol-A (BPA) as a safe alternative. However, recent research has revealed a controversial issue. In this regard, the present study aimed to review the relationship between BPS exposure and reproductive system dis/malfunction. Methods PubMed and other databases were searched up to January 2021. The standard mean difference (SMD) with a 95% confidence interval (CI) was calculated for the main parameters using the random-effects model. Finally, 12 studies with 420 subjects were included in this research. Forest plot, meta-regression, and non-linear dose-response effect were calculated for each parameter by random-effects model. Results Based on the results of in vitro assessment, a significant increase was found in the oxidative stress parameters, including superoxide dismutase (SMD: 0.63, 95% CI: 0.321, 0.939), thiobarbituric acid reactive substances (SMD: 0.760, 95% CI: 0.423, 1.096), and reactive oxygen species (SMD: 0.484, 95% CI: 0.132, 0.835). In addition, the hormonal assessment revealed a significant decrease in male testosterone concertation (SMD: -0.476, 95% CI: -0.881, -0.071). Moreover, in vivo examination revealed a significant decrease in hormonal parameters, such as female testosterone (SMD: -0.808, 95% CI: -1.149, -0.467), female estrogen (SMD: -2.608, 95% CI: -4.588, -0.628), female luteinizing hormone (SMD: -0.386, 95% CI: -0.682, -0.089), and female follicle-stimulating hormone (FSH) (SMD: -0.418, 95% CI: -0.716, -0.119). Besides, linear and non-linear correlations were detected in the main parameters. Conclusion In conclusion, based on the current meta-analysis, BPS was suggested to be toxic for the reproductive system, similar to the other bisphenols. Moreover, a possible correlation was indicated between oxidative and hormonal status disruption induced by BPS in male and female reproductive systems dis/malfunction.
Collapse
Affiliation(s)
- Beheshteh Abouhamzeh
- Alireza Nourian Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, School of Medicine, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Moosazadeh
- Department of Epidemiology, Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Nourian
- Alireza Nourian Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
12
|
Ozyurt B, Ozkemahli G, Yirun A, Ozyurt AB, Bacanli M, Basaran N, Kocer-Gumusel B, Erkekoglu P. Comparative evaluation of the effects of bisphenol derivatives on oxidative stress parameters in HepG2 cells. Drug Chem Toxicol 2023; 46:314-322. [PMID: 35045766 DOI: 10.1080/01480545.2022.2028823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BPA) BPA is an endocrine-disrupting chemical that has a wide range of uses. Exposure to BPA can be by oral, inhalation, and parenteral routes. Although its use in several products is limited, there is still concern on its adverse health effects, particularly for susceptible populations like children. Alternative bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are now being used instead of BPA, although there is little information on the toxicity of these bisphenols. BPF is used as a plasticizer in the production of several industrial materials as well as in the coating of drinks and food cans. BPS is used in curing fast-drying epoxy glues, as a corrosion inhibitor and as a reactant in polymer reactions. In this study, the possible toxic effects of BPA, BPS, and BPF in HepG2 cells were evaluated comparatively. For this purpose, their effects on cytotoxicity, production of intracellular reactive oxygen species (ROS), oxidant/antioxidant parameters, and DNA damage have been examined. The cytotoxicity potentials of different bisphenols were found to be as BPS > BPF > BPA. All bisphenol derivatives caused increases in intracellular ROS production. We observed that all bisphenol derivatives cause an imbalance in some oxidant/antioxidant parameters. Bisphenols also caused significant DNA damage in order of BPF > BPA > BPS. We can suggest that both of the bisphenol derivatives used as alternatives to BPA also showed similar toxicities and may not be considered as safe alternatives. Mechanistic studies are needed to elucidate this issue.
Collapse
Affiliation(s)
- Busra Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Anil Yirun
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Çukurova University, Adana, Turkey
| | - Aylin Balci Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Merve Bacanli
- Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Health Sciences University, Ankara, Turkey
| | - Nursen Basaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Rangsrikitphoti P, Marquez-Garban DC, Pietras RJ, McGowan E, Boonyaratanakornkit V. Sex steroid hormones and DNA repair regulation: Implications on cancer treatment responses. J Steroid Biochem Mol Biol 2023; 227:106230. [PMID: 36450315 DOI: 10.1016/j.jsbmb.2022.106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.
Collapse
Affiliation(s)
- Pattarasiri Rangsrikitphoti
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Diana C Marquez-Garban
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Song JH, Hwang B, Kim SB, Choi YH, Kim WJ, Moon SK. Bisphenol A modulates proliferation, apoptosis, and wound healing process of normal prostate cells: Involvement of G2/M-phase cell cycle arrest, MAPK signaling, and transcription factor-mediated MMP regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114358. [PMID: 36508820 DOI: 10.1016/j.ecoenv.2022.114358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is commonly used to produce epoxy resins and polycarbonate plastics. BPA is an endocrine-disrupting chemical that is leaked from the polymer and absorbed into the body to disrupt the endocrine system. Although BPA may cause cytotoxicity in the prostate, a hormone-dependent reproductive organ, its underlying mechanism has not yet been elucidated. Here, we investigated the effects of BPA on cell proliferation, apoptosis, and the wound healing process using prostate epithelial cells (RWPE-1) and stromal cells (WPMY-1). Observations revealed that BPA induced G2/M cell cycle arrest in both cell types through the ATM-CHK1/CHK2-CDC25c-CDC2 signaling pathway, and the IC50 values were estimated to be 150 μM. Furthermore, BPA was found to induce caspase-dependent apoptosis through initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspase cascades. In addition, BPA interfered with the wound healing process through inhibition of MMP-2 and - 9 expression, accompanied by reductions in the binding activities of AP-1 as well as NF-κB motifs. Phosphorylation of MAPKs was associated with the BPA-mediated toxicity of prostate cells. These results suggest that BPA exhibits prostate toxicity by inhibiting cell proliferation, inducing apoptosis, and interfering with the wound healing process. Our study provided new insights into the precise molecular mechanisms of BPA-induced toxicity in human prostate cells.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su-Bin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
15
|
Sharma P, Sharma K, Chadha P. DNA Damage and Repair in different Tissues of Fresh Water Fish, <i>Channa punctata</i> after Acute and Subchronic Exposure to bisphenol A. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/28352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study was conducted to investigate the genotoxic effect of Bis-Phenol A (BPA) after acute and subchronic exposure in different tissues of Channa punctata. The recovery in DNA damage was also ascertained after 30 days of cessation of exposure. Fish were exposed to different sublethal concentrations of BPA along with two controls i.e., with positive (acetone) and negative (water) controls for 96h (acute exposure) and 60 days (subchronic exposure) and after that fish were allowed to recover for 30 days in freshwater. The blood, liver, and gill tissue samples were collected at 24, 48, 72 and 96h for acute exposure and after 20, 40, and 60 days post-exposure for subchronic exposure. Exposed groups showed significantly higher DNA damage in both acute and subchronic exposure as compared to control groups. In the case of acute exposure, the highest damage was observed at 24 h of exposure followed by a decline in the value of all the parameters, while in the later hours of exposure these values further increased. On the other hand, in the case of sub-chronic exposure, the highest damage was observed after 60 days of exposure. Recovery experiment showed a decrease in the values of all the parameters studied. The result of the study clearly showed that BPA caused DNA damage in Channa punctata after acute as well as subchronic exposure.
Collapse
|
16
|
Sharma A, Chauhan P, Sharma K, Kalotra V, Kaur A, Chadha P, Kaur S, Kaur A. An endophytic Schizophyllum commune possessing antioxidant activity exhibits genoprotective and organprotective effects in fresh water fish Channa punctatus exposed to bisphenol A. BMC Microbiol 2022; 22:291. [PMID: 36474157 PMCID: PMC9724346 DOI: 10.1186/s12866-022-02713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress is responsible for the onset of several chronic and degenerative diseases. Exogenous supply of antioxidants is reported to neutralize the effects of oxidative stress. Several synthetic antioxidants suffer from various side effects which necessitates the exploration of antioxidant compounds from natural sources. Endophytic fungi residing in the plants are gaining the attention of researchers as a source of novel antioxidants. Majority of the research conducted so far on endophytic fungi has been restricted to the members of phylum ascomycota. Basidiomycota, inspite of their immense bioactive potential remain relatively unexploited. This study aimed to assess the ameliorative effects of an endophytic Schizophyllum commune (basidiomycetous fungus) against oxidative stress associated altered antioxidant levels, genotoxicity and cellular damage to different organs in bisphenol A exposed fresh water fish Channa punctatus. RESULTS Good antioxidant and genoprotective potential was exhibited by S. commune extract in in vitro studies conducted using different antioxidant, DNA damage protection, and cytokinesis blocked micronuclei assays. In vivo studies were performed in fresh water fish Channa punctatus exposed to bisphenol A. A significant decrease in the considered parameters for DNA damage (% micronuclei and comet assay) were recorded in fish treated with S. commune extract on comparison with untreated bisphenol A exposed group. The S. commune extract treated fish also exhibited an increase in the level of antioxidant enzymes viz. catalase, superoxide dismutase and glutathione reductase as well as histoprotective effect on various organs. GC-MS analysis revealed the presence of 3-n-propyl-2,4-pentanedione, n-heptadecanol-1, trans-geranylgeraniol, 3-ethyl-2-pentadecanone, 1-heneicosanol and squalene as some of the compounds in S. commune extract. CONCLUSION The study highlights the significance of an endophytic basidiomycetous fungus S. commune as a source of antioxidant compounds with possible therapeutic potential.
Collapse
Affiliation(s)
- Avinash Sharma
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Pooja Chauhan
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Khushboo Sharma
- grid.411894.10000 0001 0726 8286Department of Zoology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Vishali Kalotra
- grid.411894.10000 0001 0726 8286Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab India
| | - Anupam Kaur
- grid.411894.10000 0001 0726 8286Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab India
| | - Pooja Chadha
- grid.411894.10000 0001 0726 8286Department of Zoology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Sukhraj Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| | - Amarjeet Kaur
- grid.411894.10000 0001 0726 8286Department of Microbiology, Guru Nanak Dev University, 143005 Amritsar, Punjab India
| |
Collapse
|
17
|
Alharbi HF, Algonaiman R, Alduwayghiri R, Aljutaily T, Algheshairy RM, Almutairi AS, Alharbi RM, Alfurayh LA, Alshahwan AA, Alsadun AF, Barakat H. Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, and Its Association with Developing Obesity and Diabetes Mellitus: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15918. [PMID: 36497992 PMCID: PMC9736995 DOI: 10.3390/ijerph192315918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
Bisphenol A, a well-known endocrine-disrupting chemical, has been replaced with its analogs bisphenol S (BPS) and bisphenol F (BPF) over the last decade due to health concerns. BPS and BPF are present in relatively high concentrations in different products, such as food products, personal care products, and sales receipts. Both BPS and BPF have similar structural and chemical properties to BPA; therefore, considerable scientific efforts have investigated the safety of their exposure. In this review, we summarize the findings of relevant epidemiological studies investigating the association between urinary concentrations of BPS and/or BPF with the incidence of obesity or diabetes. The results showed that BPS and BPF were detected in many urinary samples at median concentrations ranging from 0.03 to 0.4 µg·L-1. At this exposure level, BPS median urinary concentrations (0.4 µg·L-1) were associated with the development of obesity. At a lower exposure level (0.1-0.03 µg·L-1), two studies showed an association with developing diabetes. For BPF exposure, only one study showed an association with obesity. However, most of the reported studies only assessed BPS exposure levels. Furthermore, we also summarize the findings of experimental studies in vivo and in vitro regarding our aim; results support the possible obesogenic effects/metabolic disorders mediated by BPS and/or BPF exposure. Unexpectedly, BPS may promote worse obesogenic effects than BPA. In addition, the possible mode of action underlying the obesogenic effects of BPS might be attributed to various pathophysiological mechanisms, including estrogenic or androgenic activities, alterations in the gene expression of critical adipogenesis-related markers, and induction of oxidative stress and an inflammatory state. Furthermore, susceptibility to the adverse effects of BPS may be altered by sex differences according to the results of both epidemiological and experimental studies. However, the possible mode of action underlying these sex differences is still unclear. In conclusion, exposure to BPS or BPF may promote the development of obesity and diabetes. Future approaches are highly needed to assess the safety of BPS and BPF regarding their potential effects in promoting metabolic disturbances. Other studies in different populations and settings are highly suggested.
Collapse
Affiliation(s)
- Hend F. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Rana Alduwayghiri
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reham M. Algheshairy
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulkarim S. Almutairi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Razan M. Alharbi
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Leena A. Alfurayh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad A. Alshahwan
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad F. Alsadun
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
18
|
Musachio EAS, Poetini MR, Janner DE, Meichtry LB, Poleto KH, Fernandes EJ, Guerra GP, Prigol M. Sex-specific changes in oxidative stress parameters and longevity produced by Bisphenol F and S compared to Bisphenol A in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109329. [PMID: 35318128 DOI: 10.1016/j.cbpc.2022.109329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 01/24/2023]
Abstract
Female and male Drosophila melanogaster were exposed separately for seven days to Bisphenol A (BPA), Bisphenol F (BPF), and Bisphenol S (BPS) at concentrations of 0.25, 0.5, and 1 mM. We observed that males exposed to 0.5 and 1 mM BPS showed lower catalase (CAT) activity and higher superoxide dismutase (SOD) and reactive species (RS); CAT activity decreased for BPF 0.5 and 1 mM. Nevertheless, BPA 0.5 and 1 mM decreased CAT activity, increased RS and lipid peroxidation (LPO), and reduced mitochondrial viability. None of the bisphenols altered the cell viability of male flies, although BPA 0.5 and 1 mM reduced longevity. In female flies, BPA and BPS 0.5 and 1 mM increased RS and LPO levels and decreased CAT activity and glutathione-S-transferase (GST), which may have contributed to lower mitochondrial and cell viability. Furthermore, BPS decreased SOD activity at the 1 mM concentration, and BPA reduced the SOD activity at concentrations of 0.5 and 1 mM. In the BPF 1 mM group, there was a reduction in GST activity and an increase in RS and LPO levels. The toxicological effects were different between sexes, and BPA was more harmful than BPF and BPS in male flies. Thus, our findings showed that females were more susceptible to oxidative cell damage when exposed to BPA and BPS than to BPF, and daily exposure to BPA and BPS at all concentrations reduced female longevity, as well as in BPF 1 mM.
Collapse
Affiliation(s)
- Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Ketnne Hanna Poleto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules, Federal University of Pampa, Itaqui Campus, RS, Brazil; Department of Nutrition, Federal University of Pampa, Itaqui Campus, RS, Brazil.
| |
Collapse
|
19
|
Kaptaner B, Yılmaz C, Aykut H, Doğan E, Fidan C, Bostancı M, Yıldız F. Bisphenol S leads to cytotoxicity-induced antioxidant responses and oxidative stress in isolated rainbow trout (Oncorhyncus mykiss) hepatocytes. Mol Biol Rep 2021; 48:7657-7666. [PMID: 34643919 DOI: 10.1007/s11033-021-06771-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bisphenol S (BPS) is a chemical compound that is utilized in the plastic industry as an alternative to bisphenol A (BPA). The toxic effects of BPS in fish is less known and limited. Therefore, in the present study, the influence of BPS on rainbow trout (Oncorhyncus mykiss) hepatocytes in vitro was investigated. METHODS AND RESULTS For this purpose the fish hepatocytes were isolated, and then the cultured cells were treated with increasing concentrations of BPS (0, 15.63, 31.25, 62.50, 125, 250, and 500 µM) for 24 h. The cytotoxic impact of BPS was determined in the culture media using lactate dehydrogenase assay and then, the antioxidant defence indicators were assayed. The results showed that concentration-dependent increases were observed in the percentage of cytotoxicity. The superoxide dismutase activity was reduced, while the catalase and glutathione peroxidase activity increased with all of the BPS concentrations. The glutathione S-transferase (GST) activity significantly increased after a BPS concentration of 31.25 µM or higher, while GST Theta 1-1 activity was decreased by the same concentrations of BPS. The reduced glutathione content significantly decreased with a BPS concentration of 31.25 µM or higher, and the malondialdehyde content increased after BPS concentrations of 125, 250, and 500 µM. CONCLUSIONS The findings determined herein suggested that BPS causes cytotoxicity in fish hepatocytes and can lead to oxidative stress, resulting hepatotoxic in fish. Thus, the utilization of BPS instead of BPA as safe alternative in industry should be re-evaluated in the future for environmental health.
Collapse
Affiliation(s)
- Burak Kaptaner
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey.
| | - Can Yılmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Handan Aykut
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Emine Doğan
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Ceylan Fidan
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Müşerref Bostancı
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| | - Fatoş Yıldız
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, 65080, Tuşba, Van, Turkey
| |
Collapse
|
20
|
Liu J, Martin LJ, Dinu I, Field CJ, Dewey D, Martin JW. Interaction of prenatal bisphenols, maternal nutrients, and toxic metal exposures on neurodevelopment of 2-year-olds in the APrON cohort. ENVIRONMENT INTERNATIONAL 2021; 155:106601. [PMID: 33962233 DOI: 10.1016/j.envint.2021.106601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epidemiological studies suggest that Bisphenol-A (BPA) is a developmental neurotoxicant, but the modifying effects of maternal nutrient status or neurotoxicant metal co-exposures have not been reported. Bisphenol-S (BPS) is being used as a BPA-alternative, but few epidemiological studies have evaluated its effects. OBJECTIVES To examine if prenatal maternal BPA or BPS exposure are associated with children's neurodevelopment at two years of age while adjusting for effect-measure modification by sex, maternal nutrients, and co-exposure to neurotoxic metals. METHODS Total BPA and BPS concentrations were analyzed in spot maternal urine from the second trimester; metals and maternal nutrient status were analyzed in blood. Child neurodevelopment was evaluated with the Bayley Scales of Infant Development-III (Bayley-III) at age 2 (394 maternal-child pairs) and linear regression was used to investigate associations. RESULTS Among nutrients and neurotoxic metals, selenium (Se) and cadmium (Cd) were the most significant predictors of Bayley-III scale scores. Higher maternal Cd was significantly correlated with poorer motor performance (p < 0.01), and higher levels of maternal Se were significantly associated with poorer performance on the cognitive, motor, and adaptive behavior scales (p < 0.05). While maternal Cd did not modify relationships between bisphenol exposures and Bayley-III scores, both maternal Se and child sex were significant effect-measure modifiers. Associations between BPA exposure and social emotional scores were negative for boys (p = 0.056) but positive for girls (p = 0.046). Higher exposure to bisphenols was associated with lower motor scores among children with lower levels of maternal Se. CONCLUSION Higher maternal Cd was associated with poorer motor development, but it was not an effect-measure modifier of bisphenols' effects on motor development. Maternal Se may be protective against adverse effects of bisphenols, and additional nutrient-bisphenol interaction studies examining sex-specific effects of BPA and BPS on child development are warranted.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Nutrition and Health, China Agricultural University, Beijing, China
| | | | - Irina Dinu
- School of Public Health, University of Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Canada
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences and the Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
21
|
Afzal G, Ahmad HI, Jamal A, Mustafa G, Kiran S, Hussain R, Anjum S, Rafay M, Ghaffar A, Saeed S. Bisphenol A mediated histopathological, hemato-biochemical and oxidative stress in rabbits (Oryctolagus cuniculus). TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1972318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adil Jamal
- Sciences and Research College of Nursing, Umm al Qura University, Makkah-715, Kingdom of Saudi Arabia
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rafay
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur
| |
Collapse
|
22
|
Sharma P, Chadha P. Bisphenol A induced toxicity in blood cells of freshwater fish Channa punctatus after acute exposure. Saudi J Biol Sci 2021; 28:4738-4750. [PMID: 34354462 PMCID: PMC8324972 DOI: 10.1016/j.sjbs.2021.04.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/24/2023] Open
Abstract
The widespread use of bisphenol A (BPA) has led to its ubiquity in the natural environment. It is extensively incorporated into different industrial products and is associated with deleterious health effects on both public and wildlife. The current trial was conducted to determine the toxic potential of bisphenol A using various parameters viz haematological, biochemical, and cytological in freshwater fish Channa punctatus. For this purpose, fish were exposed to 1.81 mg/l (1/4 of LC50) and 3.81 mg/l (1/2 of LC50) of BPA along with positive (acetone) and negative controls (water) for 96 h. The blood samples were collected at 24, 48, 72, and 96 h post-exposure. Compared to the control group, fish after acute exposure to BPA showed a significant decrease in HB content, number of red blood cells, PCV values whereas a significant increase in WBCs count was recorded with an increase in the exposure period. Besides, oxidative stress (determined as malondialdehyde content) increased as BPA concentration increased. Further, the activity of different antioxidant enzymes like catalase, and superoxide dismutase decreased significantly after treatment. Results also showed significantly increased frequency of morphological alterations, nuclear changes, and increased DNA damage potential of BPA in red blood cells. Further structural analysis of erythrocytes in maximally damaged group using Scanning Electron Microscopy was performed. The study concludes that BPA exhibits genotoxic activity and oxidative stress could be one of the mechanisms leading to genetic toxicity.
Collapse
Affiliation(s)
- Prince Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
23
|
Aykut H, Kaptaner B. In vitro effects of bisphenol F on antioxidant system indicators in the isolated hepatocytes of rainbow trout (Oncorhyncus mykiss). Mol Biol Rep 2021; 48:2591-2599. [PMID: 33791906 DOI: 10.1007/s11033-021-06310-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022]
Abstract
Bisphenol F (BPF) has been used frequently in the plastics industry and the production of daily consumer products as an alternative to bisphenol A (BPA). It was aimed herein to determine the cytotoxic effects of BPF on hepatocytes isolated from the liver of rainbow trout (Oncorhyncus mykiss) using lactate dehydrogenase (LDH) assay and antioxidant defence system indicators. The cultured hepatocytes were exposed to seven concentrations (0, 15.63, 31.25, 62.50, 125, 250, and 500 µM) of BPF for 24 h. According to the LDH assay, the percentage of cytotoxicity was increased dose dependently in the cells. The malondialdehyde content, which is indicative of lipid peroxidation, was increased significantly at BPF concentrations between 15.63 and 250 µM, whereas it remained unchanged with a concentration of 500 µM. The activities of superoxide dismutase were increased, while those of catalase were decreased with all of the BPF concentrations. Elevated levels of reduced glutathione content were determined with BPF concentrations between 15.63 and 250 µM, but decreased significantly with a concentration of 500 µM. Significant increases in the activities of the glutathione peroxidase were found in hepatocytes treated with BPF at concentrations of 31.25 to 500 µM. GST activity was only significantly increased with a BPF concentration of 250 µM. The results showed that the toxic mechanism of BPF was mainly based on cell membrane damage and oxidative stress, which have an influence on antioxidant defences. Therefore, BPF should be reconsidered as a safe alternative instead of BPA in the manufacturing of industrial or daily products.
Collapse
Affiliation(s)
- Handan Aykut
- Department of Biology, Institute of Natural and Applied Sciences, University of Van Yuzuncu Yil, Tuşba, Van, Turkey
| | - Burak Kaptaner
- Department of Biology, Faculty of Science, University of Van Yuzuncu Yil, Tuşba, 65080, Van, Turkey.
| |
Collapse
|
24
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
25
|
Frenzilli G, Martorell-Ribera J, Bernardeschi M, Scarcelli V, Jönsson E, Diano N, Moggio M, Guidi P, Sturve J, Asker N. Bisphenol A and Bisphenol S Induce Endocrine and Chromosomal Alterations in Brown Trout. Front Endocrinol (Lausanne) 2021; 12:645519. [PMID: 33776939 PMCID: PMC7992001 DOI: 10.3389/fendo.2021.645519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A is a widely used compound found in large amount of consumer products. As concerns have been raised about its toxicological and public health effect, the use of alternatives to bisphenol A are now increasing. Bisphenol S is one of the analogues being used as a replacement for bisphenol A despite the fact that little is known about the effects of bisphenol S on living organisms. In this study, we investigated the potential endocrine and genotoxic effects of bisphenol A and bisphenol S in juvenile brown trout (Salmo trutta). The fish were exposed to the compounds for either 2 weeks or 8 weeks via sustained-release cholesterol implants containing doses of 2 mg/kg fish or 20 mg/kg fish of the substances. The effects on the thyroid hormone levels and the estrogenic disrupting marker vitellogenin were evaluated, along with the genotoxic markers micronucleated cells and erythrocyte nuclear abnormalities. An increase in plasma vitellogenin was observed in fish exposed to the high dose of bisphenol A for 2 weeks. At this experimental time the level of the thyroid hormone triiodothyronine (T3) in plasma was elevated after bisphenol S exposure at the high concentration, and paralleled by an increase of micronucleated cells. Moreover, bisphenol A induced an increase of micronuclei frequency in fish erythrocytes after the exposure at the lowest dose tested. Taken together the results indicate that both bisphenol A and its alternative bisphenol S cause endocrine disrupting and genotoxic effects in brown trout, although suggesting two different mechanisms of damage underlying bisphenol A and bisphenol S activity.
Collapse
Affiliation(s)
- Giada Frenzilli
- Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, University of Pisa, Pisa, Italy
- *Correspondence: Giada Frenzilli,
| | - Joan Martorell-Ribera
- Institute for Genome Biology, Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margherita Bernardeschi
- Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Martina Moggio
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, University of Pisa, Pisa, Italy
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Noomi Asker
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Meli R, Monnolo A, Annunziata C, Pirozzi C, Ferrante MC. Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction. Antioxidants (Basel) 2020; 9:E405. [PMID: 32397641 PMCID: PMC7278868 DOI: 10.3390/antiox9050405] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a non-persistent anthropic and environmentally ubiquitous compound widely employed and detected in many consumer products and food items; thus, human exposure is prolonged. Over the last ten years, many studies have examined the underlying molecular mechanisms of BPA toxicity and revealed links among BPA-induced oxidative stress, male and female reproductive defects, and human disease. Because of its hormone-like feature, BPA shows tissue effects on specific hormone receptors in target cells, triggering noxious cellular responses associated with oxidative stress and inflammation. As a metabolic and endocrine disruptor, BPA impairs redox homeostasis via the increase of oxidative mediators and the reduction of antioxidant enzymes, causing mitochondrial dysfunction, alteration in cell signaling pathways, and induction of apoptosis. This review aims to examine the scenery of the current BPA literature on understanding how the induction of oxidative stress can be considered the "fil rouge" of BPA's toxic mechanisms of action with pleiotropic outcomes on reproduction. Here, we focus on the protective effects of five classes of antioxidants-vitamins and co-factors, natural products (herbals and phytochemicals), melatonin, selenium, and methyl donors (used alone or in combination)-that have been found useful to counteract BPA toxicity in male and female reproductive functions.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| |
Collapse
|