1
|
Wu T, Li W, Hu Y, Zhang D, Tian L, Xu H, Zhang F, Xiao B, Shi Y, Chen Y, Liao X, Ma K, Chen L. Hydroxyacyl-coenzyme A dehydrogenase: A biomarker for authentication of death from mechanical asphyxia. Forensic Sci Int 2025; 367:112371. [PMID: 39879859 DOI: 10.1016/j.forsciint.2025.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025]
Abstract
Death from mechanical asphyxia (DMA) refers to death from acute respiratory disorder caused by mechanical violence. Due to the absence of characteristic signs in corpses, it has been rather challenging to achieve the precise authentication of DMA. In this research, human pulmonary samples were collected and grouped according to different causes of death in search of potential biomarkers of DMA. Hydroxyacyl-CoA dehydrogenase (HADH) was identified significantly up-regulated in DMA group. Cell experiments were conducted to figure out the mechanism of the up-regulation of HADH. According to the results, we assumed acute and severe hypoxia caused by mechanical asphyxia contributed to the expression change of HADH, which could be a self-saving reaction of cells that are forced to adjust energy metabolism. Generally, HADH can be biomarker of DMA and help the precise authentication of DMA.
Collapse
Affiliation(s)
- Tianpu Wu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Wencan Li
- Institute of Criminal Scientific Technology, Pudong Branch, Shanghai Municipal Public Security Bureau, 1800 Kangqiao Road, Shanghai 200125, PR China
| | - Yikai Hu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Dongchuan Zhang
- Forensic Laboratory, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai 200083, PR China
| | - Lu Tian
- Institute of Criminal Scientific Technology, Pudong Branch, Shanghai Municipal Public Security Bureau, 1800 Kangqiao Road, Shanghai 200125, PR China
| | - Hongmei Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Guangdong Provincial Public Security Department, 97 Huanghua Road, Guangzhou 510050, PR China
| | - Bi Xiao
- Forensic Laboratory, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai 200083, PR China
| | - Yi Shi
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Yue Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China
| | - Xinbiao Liao
- Key Laboratory of Forensic Pathology, Guangdong Provincial Public Security Department, 97 Huanghua Road, Guangzhou 510050, PR China.
| | - Kaijun Ma
- Forensic Laboratory, Institute of Criminal Science and Technology, Shanghai Municipal Public Security Bureau, 803 Zhongshan North 1st Road, Shanghai 200083, PR China.
| | - Long Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, PR China.
| |
Collapse
|
2
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
3
|
Zhang X, Geng Q, Lin L, Zhang L, Shi C, Liu B, Yan L, Cao Z, Li L, Lu P, Tan Y, He X, Zhao N, Li L, Lu C. Insights gained into the injury mechanism of drug and herb induced liver injury in the hepatic microenvironment. Toxicology 2024; 507:153900. [PMID: 39079402 DOI: 10.1016/j.tox.2024.153900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Drug-Induced Liver Injury (DILI) and herb Induced Liver Injury (HILI) continues to pose a substantial challenge in both clinical practice and drug development, representing a grave threat to patient well-being. This comprehensive review introduces a novel perspective on DILI and HILI by thoroughly exploring the intricate microenvironment of the liver. The dynamic interplay among hepatocytes, sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, cholangiocytes, and the intricate vascular network assumes a central role in drug metabolism and detoxification. Significantly, this microenvironment is emerging as a critical determinant of susceptibility to DILI and HILI. The review delves into the multifaceted interactions within the liver microenvironment, providing valuable insights into the complex mechanisms that underlie DILI and HILI. Furthermore, we discuss potential strategies for mitigating drug-induced liver injury by targeting these influential factors, emphasizing their clinical relevance. By highlighting recent advances and future prospects, our aim is to shed light on the promising avenue of leveraging the liver microenvironment for the prevention and mitigation of DILI and HILI. This deeper understanding is crucial for advancing clinical practices and ensuring patient safety in the realm of DILI and HILI.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Liu J, Jiang Y, Zhang Q, Qin Y, Li K, Xie Y, Zhang T, Wang X, Yang X, Zhang L, Liu G. Linoleic Acid Promotes Mitochondrial Biogenesis and Alleviates Acute Lung Injury. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70004. [PMID: 39313818 PMCID: PMC11420096 DOI: 10.1111/crj.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Acute lung injury (ALI) is a critical and lethal medical condition. This syndrome is characterized by an imbalance in the body's oxidation stress and inflammation. Linoleic acid (LA), a polyunsaturated fatty acid, has been extensively studied for its potential health benefits, including anti-inflammatory and antioxidant activities. However, the therapeutic effects of LA on ALI remain unexplored. METHODS Lipopolysaccharide (LPS), found in gram-negative bacteria's outer membrane, was intraperitoneally injected to induce ALI in mice. In vitro model was established by LPS stimulation of mouse lung epithelial 12 (MLE-12) cells. RESULTS LA treatment demonstrated a significant amelioration in LPS-induced hypothermia, poor state, and pulmonary injury in mice. LA treatment resulted in a reduction in the concentration of bronchoalveolar lavage fluid (BALF) protein and an increase in myeloperoxidase (MPO) activity in LPS-induced mice. LA treatment reduced the generation of white blood cells. LA treatment reduced cell-free (cfDNA) release and promote adenosine triphosphate (ATP) production. LA increased the levels of superoxide dismutase (SOD) and glutathione (GSH) but decreased the production of malondialdehyde (MDA). LA treatment enhanced mitochondrial membrane potential. LA attenuated LPS-induced elevations of inflammatory cytokines in both mice and cells. Additionally, LA exerted its protective effect against LPS-induced damage through activation of the peroxisome proliferator-activated receptor γ coactivator l alpha (PGC-1α)/nuclear respiratory factor 1 (NRF1)/transcription factor A of the mitochondrion (TFAM) pathway. CONCLUSION LA may reduce inflammation and stimulate mitochondrial biogenesis in ALI mice and MLE-12 cells.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- Department of Respiratory and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuhong Zhang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Qin
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Kexin Li
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xie
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Tingting Zhang
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoliang Wang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Yang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, Chongqing Emergency Medical Center, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhao P, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L, Zhou XQ. Dietary curcumin alleviates intestinal damage induced by ochratoxin A in juvenile grass carp ( Ctenopharyngodon idella): Necroptosis and inflammatory responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:119-132. [PMID: 39263441 PMCID: PMC11388201 DOI: 10.1016/j.aninu.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 04/11/2024] [Indexed: 09/13/2024]
Abstract
Ochratoxin A (OTA) is one of the most common pollutants in aquatic feed. As a first line of defense, intestinal barriers could be utilized against OTA in order to prevent disorders. Natural product supplementation is one of the most popular strategies to alleviate toxicity induced by mycotoxins, but there is a lack of knowledge about how it functions in the teleost intestine. In this study, 720 juvenile grass carp of about 11 g were selected and four treatment groups (control group, OTA group, curcumin [Cur] group, and OTA + Cur group) were set up to conduct a 60-day growth test. After the test, the growth performance and intestinal health related indexes of grass carp were investigated. The addition of dietary Cur could have the following main results: (1) inhibit absorption and promote efflux transporters mRNA expression, reducing the residuals of OTA, (2) decrease oxidative stress by reducing oxidative damage and enhancing the expression of antioxidant enzymes, (3) promote mitochondrial fusion proteins to inhibit the expression of mitotic proteins and mitochondrial autophagy proteins and enhance mitochondrial function, (4) reduce necroptosis-related gene expression through inhibiting the tumor necrotic factor receptor-interacting protein kinase/mixed lineage kinase domain-like pathway, (5) reduce the expression of pro-inflammatory factors by inhibiting the Toll-like receptor 4/nuclear factor-κB signaling pathway to alleviate the intestinal inflammatory response. In summary, the results suggested that Cur could alleviate OTA-induced intestinal damage by enhancing antioxidant capacity and mitochondrial function as well as reducing necroptosis and inflammation in the grass carp intestine. This study provided a theoretical basis and production implications for dietary Cur that could improve growth performance and alleviate the intestinal damage induced by OTA in fish.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
6
|
Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol 2024; 15:1380848. [PMID: 38966394 PMCID: PMC11222340 DOI: 10.3389/fmicb.2024.1380848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Tuberculosis (TB) is a chronic bacterial disease, as well as a complex immune disease. The occurrence, development, and prognosis of TB are not only related to the pathogenicity of Mycobacterium tuberculosis (Mtb), but also related to the patient's own immune state. The research and development of immunotherapy drugs can effectively regulate the body's anti-TB immune responses, inhibit or eliminate Mtb, alleviate pathological damage, and facilitate rehabilitation. This paper reviews the research progress of immunotherapeutic compounds for TB, including immunoregulatory compounds and repurposing drugs, and points out the existing problems and future research directions, which lays the foundation for studying new agents for host-directed therapies of TB.
Collapse
Affiliation(s)
- Jie Mi
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Wang J, Zhou Y, Zhao C, Xiong K, Liu Y, Zhao S, Ma A. Dietary patterns and the risk of tuberculosis-drug-induced liver injury: a cohort study. Front Nutr 2024; 11:1393523. [PMID: 38966415 PMCID: PMC11223592 DOI: 10.3389/fnut.2024.1393523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Background and purpose Nutrition is associated with tuberculosis drug-induced liver injury (TBLI). How dietary patterns relate to tuberculosis drug-induced liver injury is still unknown. The objective of this study is to explore the relation between dietary patterns and the risk of tuberculosis drug-induced liver injury. Methods This cohort study was conducted at two hospitals in Shandong Province, China, between 2011 and 2013. A total of 605 tuberculosis patients were included in the final analysis. The blood aspartate aminotransferase or alanine aminotransferase level was monitored through the 6-month tuberculosis treatment. The semi-quantitative food frequency questionnaires were used to survey dietary intake in the second month of the tuberculosis treatment. The China Healthy Diet Index (CHDI), which was previously validated in the Chinese population, was used as an a priori dietary pattern. A posteriori dietary patterns were extracted by principal component analysis (PCA). Results The CHDI was negatively associated with the risk of liver injury [adjusted odds ratio (aOR) per standard deviation (SD) (95% CI): 0.61 (0.40-0.94)] and liver dysfunction [aOR per SD (95% CI): 0.47 (0.35-0.64)] in the multivariate logistic model. A positive association between "Organ meat, poultry, and vegetable oil" dietary pattern scores (extracted by PCA) and the risk of liver injury [aOR (95% CI): 3.02 (1.42-6.41)] and liver dysfunction [aOR (95% CI): 1.83 (1.09-3.05)] was observed. Conclusion In conclusion, a high CHDI score was a protective factor for tuberculosis drug-induced liver injury, while the "Organ meat, poultry, and vegetable oil" dietary pattern, which was rich in organ meat, poultry, and vegetable oil and low in vegetables, was an independent risk factor for tuberculosis drug-induced liver injury.
Collapse
Affiliation(s)
- Jinyu Wang
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Yarui Zhou
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Cong Zhao
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Ke Xiong
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | | | | | - Aiguo Ma
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
9
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
10
|
Rani J, Dhull SB, Rose PK, Kidwai MK. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: a metabolic mechanism perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155142. [PMID: 37913641 DOI: 10.1016/j.phymed.2023.155142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the most challenging and thought-provoking liver problem for hepatologists owing to unregulated medication usage in medical practices, nutritional supplements, and botanicals. Due to underreporting, analysis, and identification issues, clinically evaluated medication hepatotoxicity is prevalent yet hard to quantify. PURPOSE This review's primary objective is to thoroughly compare pharmaceutical drugs and herbal compounds that have undergone clinical trials, focusing on their metabolic mechanisms contributing to the onset of liver illnesses and their hepatoprotective effects. METHODS The data was gathered from several online sources, such as PubMed, Scopus, Google Scholar, and Web of Science, using appropriate keywords. RESULTS The prevalence of conventional and herbal medicine is rising. A comprehensive understanding of the metabolic mechanism is necessary to mitigate the hepatotoxicity induced by drugs and facilitate the incorporation or substitution of herbal medicine instead of pharmaceuticals. Moreover, pre-clinical pharmacological research has the potential to facilitate the development of natural products as therapeutic agents, displaying promising possibilities for their eventual clinical implementation. CONCLUSIONS Acetaminophen, isoniazid, rifampicin, diclofenac, and pyrogallol have been identified as the most often reported synthetic drugs that produce hepatotoxicity by oxidative stress, inflammation, apoptosis, and fibrosis during the last several decades. Due to their ability to downregulate many factors (such as cytokines) and activate several enzyme/enzyme systems, herbal substances (such as Gingko biloba extract, curcumin, resveratrol, and silymarin) provide superior protection against harmful mechanisms which induce hepatotoxicity with fewer adverse effects than their synthetic counterparts.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Mohd Kashif Kidwai
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| |
Collapse
|
11
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
12
|
Fu Y, Du X, Cui Y, Xiong K, Wang J. Nutritional intervention is promising in alleviating liver injury during tuberculosis treatment: a review. Front Nutr 2023; 10:1261148. [PMID: 37810929 PMCID: PMC10552157 DOI: 10.3389/fnut.2023.1261148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Liver injury is a main adverse effect of first-line tuberculosis drugs. Current management of tuberculosis-drug-induced liver injury (TBLI) mainly relies on withdrawing tuberculosis drugs when necessary. No effective treatment exists. Various nutrients and functional food ingredients may play a protective role in TBLI. However, a comprehensive review has not been conducted to compare the effects of these nutrients and functional food ingredients. We searched Pubmed and Web of Science databases from the earliest date of the database to March 2023. All available in-vitro, animal and clinical studies that examined the effects of nutritional intervention on TBLI were included. The underlying mechanism was briefly reviewed. Folic acid, quercetin, curcumin, Lactobacillus casei, spirulina and Moringa oleifera possessed moderate evidence to have a beneficial effect on alleviating TBLI mostly based on animal studies. The evidence of other nutritional interventions on TBLI was weak. Alleviating oxidative stress and apoptosis were the leading mechanisms for the beneficial effects of nutritional intervention on TBLI. In conclusion, a few nutritional interventions are promising for alleviating TBLI including folic acid, quercetin, curcumin, L. casei, spirulina and M. oleifera, the effectiveness and safety of which need further confirmation by well-designed randomized controlled trials. The mechanisms for the protective role of these nutritional interventions on TBLI warrant further study, particularly by establishing the animal model of TBLI using the tuberculosis drugs separately.
Collapse
Affiliation(s)
- Yujin Fu
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Xianfa Du
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingchun Cui
- Department of Infectious Diseases, The 971 Naval Hospital, Qingdao, China
| | - Ke Xiong
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jinyu Wang
- School of Public Health, Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Li X, Li C, Li C, Wu C, Bai Y, Zhao X, Bai Z, Zhang X, Xiao X, Niu M. A novel perspective on the preventive treatment of hydrazine compound-induced liver injury: Isoniazid liver injury as an example. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116616. [PMID: 37182677 DOI: 10.1016/j.jep.2023.116616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum graveolens L. (dill), which has been used as a medicine, spice and aromatic plant since ancient times, is not only a traditional Chinese medicines but also an important medicinal and functional food in Europe and Central and South Asia. In ethnomedicine, dill reportedly exerts a protective effect on the liver and has been widely used as a traditional medicine for the treatment of jaundice in the liver and spleen and inflammatory gout diseases in Saudi Arabia. Furthermore, studies have found that dill can regulate the NAT2 enzyme, and this plant was thus selected to study its alleviating effect on isoniazid liver injury. AIM OF THE STUDY The purpose of this study was to explore the effect of dill on alleviating liver injury induced by hydrazine compounds represented by isoniazid through the use of network pharmacology combined with in vivo and in vitro experimental verifications. MATERIALS AND METHODS First, we screened the key targets of dill in the treatment of liver injury through the use of network pharmacology; we then performed GO and KEGG pathway enrichment analyses using the DAVID database. We also verified the alleviative and anti-inflammatory effects of dill on isoniazid liver injury in rats by animal experiments. We further investigated the modulating effect of dill on the enzymatic activity of NAT2, a common metabolizing enzyme of hydrazine compounds. RESULTS A total of 111 key targets were screened through network pharmacology. In vivo experiments showed that dill reduced the amount of inflammatory factors produced by isoniazid, such as IL-10, IL-1β, TNF-α and IL-6, restored the levels of ALT, AST, r-GT, AKP and TBA in vivo, and attenuated isoniazid liver injury. Both in vivo and vitro results indicated that dill could regulate the expression of NAT2 enzymes. CONCLUSIONS The results tentatively demonstrate that dill can alleviate isoniazid liver injury through multiple components, targets and pathways and exerts a regulatory effect on the NAT2 enzyme, and these findings thus provide new ideas for subsequent studies on hydrazide liver injury--reducing the risk of hydrazide-induced liver injury through anti-inflammation and regulation of NAT2 enzymes.
Collapse
Affiliation(s)
- Xinyu Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Chengxian Li
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Chenyi Li
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China; College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Chengzhao Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yuxuan Bai
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xu Zhao
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Zhaofang Bai
- Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xigang Zhang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| | - Xiaohe Xiao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Liver Disease, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Ming Niu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, No. 8 Dongda Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
14
|
Qin T, Chen X, Meng J, Guo Q, Xu S, Hou S, Yuan Z, Zhang W. The role of curcumin in the liver-gut system diseases: from mechanisms to clinical therapeutic perspective. Crit Rev Food Sci Nutr 2023; 64:8822-8851. [PMID: 37096460 DOI: 10.1080/10408398.2023.2204349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Natural products have provided abundant sources of lead compounds for new drug discovery and development over the past centuries. Curcumin is a lipophilic polyphenol isolated from turmeric, a plant used in traditional Asian medicine for centuries. Despite the low oral bioavailability, curcumin exhibits profound medicinal value in various diseases, especially liver and gut diseases, bringing an interest in the paradox of its low bioavailability but high bioactivity. Several latest studies suggest that curcumin's health benefits may rely on its positive gastrointestinal effects rather than its poor bioavailability solely. Microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the intestine and liver, suggesting the possibility that the liver-gut axis bidirectional crosstalk controls gastrointestinal health and diseases. Accordingly, these pieces of evidence have evoked great interest in the curcumin-mediated crosstalk among liver-gut system diseases. The present study discussed the beneficial effects of curcumin against common liver and gut diseases and explored the underlying molecular targets, as well as collected evidence from human clinical studies. Moreover, this study summarized the roles of curcumin in complex metabolic interactions in liver and intestine diseases supporting the application of curcumin in the liver-gut system as a potential therapeutic option, which opens an avenue for clinical use in the future.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiuying Chen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiahui Meng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shan Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
15
|
Quercetin Reprograms Immunometabolism of Macrophages via the SIRT1/PGC-1α Signaling Pathway to Ameliorate Lipopolysaccharide-Induced Oxidative Damage. Int J Mol Sci 2023; 24:ijms24065542. [PMID: 36982615 PMCID: PMC10059595 DOI: 10.3390/ijms24065542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The redox system is closely related to changes in cellular metabolism. Regulating immune cell metabolism and preventing abnormal activation by adding antioxidants may become an effective treatment for oxidative stress and inflammation-related diseases. Quercetin is a naturally sourced flavonoid with anti-inflammatory and antioxidant activities. However, whether quercetin can inhibit LPS-induced oxidative stress in inflammatory macrophages by affecting immunometabolism has been rarely reported. Therefore, the present study combined cell biology and molecular biology methods to investigate the antioxidant effect and mechanism of quercetin in LPS-induced inflammatory macrophages at the RNA and protein levels. Firstly, quercetin was found to attenuate the effect of LPS on macrophage proliferation and reduce LPS-induced cell proliferation and pseudopodia formation by inhibiting cell differentiation, as measured by cell activity and proliferation. Subsequently, through the detection of intracellular reactive oxygen species (ROS) levels, mRNA expression of pro-inflammatory factors and antioxidant enzyme activity, it was found that quercetin can improve the antioxidant enzyme activity of inflammatory macrophages and inhibit their ROS production and overexpression of inflammatory factors. In addition, the results of mitochondrial morphology and mitochondrial function assays showed that quercetin could upregulate the mitochondrial membrane potential, ATP production and ATP synthase content decrease induced by LPS, and reverse the mitochondrial morphology damage to a certain extent. Finally, Western blotting analysis demonstrated that quercetin significantly upregulated the protein expressions of SIRT1 and PGC-1α, that were inhibited by LPS. And the inhibitory effects of quercetin on LPS-induced ROS production in macrophages and the protective effects on mitochondrial morphology and membrane potential were significantly decreased by the addition of SIRT1 inhibitors. These results suggested that quercetin reprograms the mitochondria metabolism of macrophages through the SIRT1/PGC-1α signaling pathway, thereby exerting its effect of alleviating LPS-induced oxidative stress damage.
Collapse
|