1
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Pascual L, El Sayed S, Marcos MD, Martínez-Máñez R, Sancenón F. Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors. Chem Asian J 2017; 12:775-784. [PMID: 28169488 DOI: 10.1002/asia.201700031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/06/2022]
Abstract
Two different acetylcholinesterase (AChE)-capped mesoporous silica nanoparticles (MSNs), S1-AChE and S2-AChE, were prepared and characterized. MSNs were loaded with rhodamine B and the external surface was functionalized with either pyridostigmine derivative P1 (to yield solid S1) or neostigmine derivative P2 (to obtain S2). The final capped materials were obtained by coordinating grafted P1 or P2 with AChE's active sites (to give S1-AChE and S2-AChE, respectively). Both materials were able to release rhodamine B in the presence of diisopropylfluorophosphate (DFP) or neostigmine in a concentration-dependent manner via the competitive displacement of AChE through DFP and neostigmine coordination with the AChE's active sites. The responses of S1-AChE and S2-AChE were also tested with other enzyme inhibitors and substrates. These studies suggest that S1-AChE nanoparticles can be used for the selective detection of nerve agent simulant DFP and paraoxon.
Collapse
Affiliation(s)
- Lluís Pascual
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN), Spain
| | - Sameh El Sayed
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN), Spain
| | - María D Marcos
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN), Spain
| | - Félix Sancenón
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain.,Instituto Interuniversitario de Investigación de Reconocimiento MolecularyDesarrollo Tecnológico (IDM), Universitat Politécnica de Valencia, Universitat de Valencia, Spain.,CIBER de Bioingeniería, BiomaterialesyNanomedicina (CIBER-BBN), Spain
| |
Collapse
|
3
|
Lorke DE, Hasan MY, Nurulain SM, Shafiullah M, Kuča K, Petroianu GA. Pretreatment for acute exposure to diisopropylfluorophosphate: in vivo efficacy of various acetylcholinesterase inhibitors. J Appl Toxicol 2010; 31:515-23. [PMID: 20981864 DOI: 10.1002/jat.1589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 11/06/2022]
Abstract
Prophylactic administration of reversible acetylcholinesterase (AChE) inhibitors before exposure to organophosphorus compounds (OPCs) can reduce OPC-induced mortality. Pyridostigmine is the only FDA-approved substance for such use. The AChE-inhibitory activity of known AChE inhibitors was quantified in vitro and their in vivo mortality-reducing efficacy was compared, when given prophylactically before the exposure to the OPC diisopropylfluorophosphate (DFP). The IC50 was measured in vitro for the known AChE inhibitors pyridostigmine, physostigmine, ranitidine, tiapride, tacrine, 7-methoxytacrine, amiloride, metoclopramide, methylene blue and the experimental oxime K-27. Their in vivo efficacy, when given as pretreatment, to protect rats from DFP-induced mortality was quantified by determining the relative risk of death (RR) by Cox analysis, with RR = 1 for animals given only DFP, but no pretreatment. Physostigmine was the strongest in vitro AChE-inhibitor (IC50 = 0.012 µ m), followed by 7-methoxytacrine, tacrine, pyridostigmine and methylene blue. Ranitidine (IC50 = 2.5 µ m), metoclopramide and amiloride were in the mid-range. Tiapride (IC50 = 256 µ m) and K-27 (IC50 = 414 µ m) only weakly inhibited RBC AChE activity. Best in vivo protection from DFP-induced mortality was achieved when physostigmine (RR = 0.02) or tacrine (RR = 0.05) was given before DFP exposure, which was significantly superior to the pretreatment with all other tested compounds, except K-27 (RR = 0.18). The mortality-reducing effect of pyridostigmine, ranitidine and 7-methoxytacrine was inferior, but still significant. Tiapride, methylene blue, metoclopramide and amiloride did not significantly improve DFP-induced mortality. K-27 may be a more efficacious alternative to pyridostigmine, when passage into the brain precludes administration of physostigmine or tacrine.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Anatomy, FMHS, UAE University, Al Ain, UAE; Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
4
|
Petroianu GA, Hasan MY, Arafat K, Nurulain SM, Schmitt A. Weak inhibitors protect cholinesterases from strong inhibitors (paraoxon): in vitro effect of tiapride. J Appl Toxicol 2006; 25:562-7. [PMID: 16193528 DOI: 10.1002/jat.1097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Weak and reversible inhibitors of cholinesterases, when administered before potent organophosphorus inhibitors (pretreatment), have the ability, to a certain extent, to protect enzymes from inhibition. Such a protective effect was demonstrated in vitro for metoclopramide and ranitidine. The putative mode of protective action of these substances is, when administered in excess, competition for the active site of the enzyme with the more potent organophosphate. The present paper presents results using another benzamide with weak cholinesterase inhibitory properties: tiapride (TIA). The purpose of the study was to quantify in vitro the extent that TIA conferred protection, using paraoxon (POX) as an inhibitor, and to compare the results with existing data obtained using TIA as a protective agent against dichlorvos (DDVP). POX is a highly toxic non-neuropathic organophosphate. While the use of parathion (the inactive prodrug which is metabolically converted to POX) has been restricted in most countries, the organophosphate is still responsible for a large number of accidental or suicidal exposures. DDVP is a moderately toxic, non-neuropathic organophosphate. Red blood cell (RBC) acetylcholinesterase (AChE) activities in whole blood and butyrylcholinesterase (BChE) activities in human plasma were measured photometrically in the presence of different POX and TIA concentrations and the IC(50) was calculated. Determinations were repeated in the presence of increasing TIA concentrations. The IC(50) of POX increases with the TIA concentration in a linear manner. The protective effect of tiapride on cholinesterase could be of practical relevance in the pretreatment of organophosphate poisoning. It is concluded that in vivo testing of TIA as an organophosphate protective agent is warranted.
Collapse
|
5
|
Petroianu GA, Schmitt A, Arafat K, Hasan MY. Weak inhibitors protect cholinesterases from stronger inhibitors (dichlorvos): in vitro effect of tiapride. Int J Toxicol 2005; 24:79-86. [PMID: 16036766 DOI: 10.1080/10915810590921360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Metoclopramide is a benzamide dopamine receptor antagonist and serotonine receptor agonist widely used as an antiemetic and gastric prokinetic drug. In addition, metoclopramide is a weak and reversible inhibitor of cholinesterases. The authors have previously shown that metoclopramide has a cholinesterase protective effect against inhibition by organophosphates (OPs). The putative mode of protective action of metoclopramide is, when administered in excess, competion for the active site of the enzyme with the more potent OP. In the present paper the authors present their results using another benzamide with weak cholinesterase inhibitory properties, tiapride (TIA). The purpose of the study was to quantify in vitro the extent of TIA-conferred protection, using dichlorvos (dichlorovinyl dimethyl phosphate; DDVP) as an inhibitor. DDVP is a moderately toxic (LD50 in rats in the milligram range), non-neuropathic OP. The substance is responsible for a large number of accidental or suicidal exposures. Red blood cell (RBC) acetylcholinesterase (AChE) activities in whole blood and butyrylcholinesterase (BChE) activities in human plasma were measured photometrically in the presence of different DDVP and TIA concentrations and IC50 was calculated. Determinations were repeated in the presence of increasing TIA concentrations. The IC50 of DDVP increases with the TIA concentration in a linear manner. The protective effect of TIA on cholinesterase could be of practical relevance in the treatment of OP poisoning. The authors conclude that in vivo testing of TIA as an OP protective agent is warranted.
Collapse
Affiliation(s)
- G A Petroianu
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | |
Collapse
|
6
|
Petroianu GA, Arafat K, Schmitt A, Hasan MY. Weak inhibitors protect cholinesterases from strong inhibitors (paraoxon): in vitro effect of ranitidine. J Appl Toxicol 2005; 25:60-7. [PMID: 15669026 DOI: 10.1002/jat.1036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metoclopramide (MCP) is a dopamine receptor antagonist and serotonin receptor agonist widely used as an antiemetic and gastric prokinetic drug. In addition MCP is a weak and reversible inhibitor of cholinesterases. We have shown that MCP has a cholinesterase protective effect against inhibition by organophosphates. The putative mode of protective action of MCP is competition for the active site of the enzyme with the more potent organophosphate. In the present paper we present our results using another weak inhibitor of cholinesterases: ranitidine (RAN). The purpose of the study was to quantify in vitro the extent of RAN-conferred protection, using paraoxon (POX) as an inhibitor. Paraoxon is a non-neuropathic organophosphate responsible for a large number of accidental or suicidal exposures. Red blood cell (RBC) acetylcholinesterase (AChE) activities in whole blood and butyrylcholinesterase (BChE) activities in human plasma were measured photometrically in the presence of different POX and RAN concentrations and the IC50 was calculated. Determinations were repeated in the presence of increasing RAN concentrations. The IC50 shift induced by the presence of RAN increases with the RAN concentration in a linear manner. The shift was more pronounced with RBC-AChE. The protective effect of RAN on cholinesterase could be of practical relevance in the treatment of POX poisoning. We conclude that in vivo testing of RAN as an organophosphate protective agent is warranted.
Collapse
Affiliation(s)
- G A Petroianu
- Faculty of Medicine and Health Sciences, Department of Pharmacology and Therapeutics, UAE University, Al Ain, United Arab Emirates.
| | | | | | | |
Collapse
|
7
|
Petroianu GA, Hasan MY, Nurulain SM, Arafat K, Sheen R, Saleh A, Schmitt A. Protective Drugs in Acute Large-Dose Exposure to Organophosphates: A Comparison of Metoclopramide and Tiapride with Pralidoxime in Rats. Anesth Analg 2005; 100:382-386. [PMID: 15673862 DOI: 10.1213/01.ane.0000143349.17443.91] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Weak and reversible inhibitors of cholinesterase(s), when coadministered in excess with a more potent inhibitor such as organophosphates, can act in a protective manner. The benzamide compound, metoclopramide, confers some protection (putatively via this mechanism) for cholinesterases against inhibition by paraoxon both in vitro and in vivo, after chronic small-dose exposure. Tiapride is a related benzamide. In this study, we compared the protection by metoclopramide and tiapride in rats acutely exposed to large doses of paraoxon with the therapeutic "gold standard," pralidoxime. Group 1 received 1 micromol paraoxon (approximately 75% lethal dose), Group 2 received 50 micromol metoclopramide, Group 3 received 50 micromol tiapride, Group 4 received 50 micromol pralidoxime, Group 5 received 1 micromol paraoxon + 50 micromol metoclopramide, Group 6 1 micromol paraoxon + 50 micromol tiapride, and Group 7 1 micromol paraoxon + 50 micromol pralidoxime. All substances were administered intraperitoneally. The animals were monitored for 48 h and mortality was recorded at 30 min, 1, 2, 3, 4, 24, and 48 h. Blood was taken for red blood cell acetylcholinesterase measurements at baseline, 30 min, 24, and 48 h. With the exception of Group 7, in which some late mortality was observed, mortality occurred mainly in the first 30 min after paraoxon administration with minimal changes occurring thereafter. Mortality at 30 min was 0% in the metoclopramide, tiapride, and pralidoxime groups and 73 +/- 20 (paraoxon), 65 +/- 15 (paraoxon + metoclopramide), 38 +/- 14 (paraoxon + tiapride), and 13 +/- 19 (paraoxon + pralidoxime). Mortality at 48 h was 75 +/- 18 (paraoxon), 67 +/- 17 (paraoxon + metoclopramide), 42 +/- 16 (paraoxon + tiapride), and 27 +/- 24 (paraoxon + pralidoxime). Metoclopramide does not significantly influence mortality after acute large-dose paraoxon exposure. Both tiapride and pralidoxime significantly decreased mortality in our model. The protection conferred by tiapride was significantly less than that conferred by pralidoxime at 30 min, but was not significantly different at 24 and 48 h.
Collapse
Affiliation(s)
- Georg A Petroianu
- Departments of *Pharmacology and †Biochemistry, Faculty of Medicine & Health Sciences, UAE University, Al-Ain, United Arab Emirates; and ‡Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Bartling A, Thiermann H, Szinicz L, Worek F. Effect of metoclopramide and ranitidine on the inhibition of human AChE by VXin vitro. J Appl Toxicol 2005; 25:568-71. [PMID: 16167316 DOI: 10.1002/jat.1107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The repeated misuse of highly toxic organophosphorus-type (OP) chemical warfare agents ('nerve agents') emphasizes the necessity for the development of effective medical countermeasures. The standard treatment with atropine and acetylcholinesterase (AChE) reactivators ('oximes') is considered to be ineffective with certain nerve agents due to low oxime efficacy. Therefore, pretreatment with carbamate-type compounds, e.g. pyridostigmine, was recommended to improve antidotal efficacy. Recently, the clinically used reversible AChE inhibitors metoclopramide (MCP) and ranitidine (RAN) were shown to exhibit some protective effect against the OP pesticide paraoxon in vitro and in vivo. The present study was undertaken to investigate a potential protective effect of MCP and RAN against inhibition of human AChE by the nerve agent VX (O-ethyl S-[2-(diisopropylamino)ethyl)methylphosphonothioate). Hemoglobin-free human erythrocyte membranes were incubated with various, human relevant MCP (0.5-2 microm) and RAN (0.5-5 microm) concentrations starting 1 min before addition of VX (1-40 nm). Both compounds failed to increase VX IC(50) values. In addition, human AChE was incubated with higher than human relevant therapeutic concentrations of MCP (1 microm-1 mm) and RAN (1 microm-2.0 mm) and inhibited by 40 nm VX. At concentrations higher than 100 microm MCP and RAN caused a concentration dependent increase of residual AChE activity 15 min after addition of VX. These data indicate that MCP and RAN may be ineffective in protecting human AChE against inhibition by the nerve agent VX at human relevant doses.
Collapse
Affiliation(s)
- A Bartling
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | | | | | | |
Collapse
|
9
|
Petroianu G, Arafat K, Kosanovic M, Saleh A, Camasamudram V, Hasan MY. In vitro protection of red blood cell acetylcholinesterase by metoclopramide from inhibition by organophosphates (paraoxon and mipafox). J Appl Toxicol 2003; 23:447-51. [PMID: 14635269 DOI: 10.1002/jat.936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metoclopramide (MCP) is a dopamine receptor antagonist and serotonin receptor agonist widely used as an antiemetic and gastric prokinetic drug. In addition, MCP is a reversible inhibitor of cholinesterases from the human central nervous system and blood, and may have a red blood cell (RBC) acetylcholinesterase (AChE) protective effect against inhibition by organophosphates. The purpose of the study was to quantify 'in vitro', by means of the IC50 shift, the extent of MCP conferred protection, by using paraoxon (POX) and mipafox (MPFX) as inhibitors. Paraoxon is a widely used non-neuropathic organophospate responsible for a large number of accidental or suicidal exposures. Mipafox is a neuropathic organophospate. Red blood cell AChE activities in human plasma were measured photometrically in the presence of different POX, MPFX and MCP concentrations and the IC50 was calculated. Determinations were repeated in the presence of increasing MCP concentrations. It appears that the IC50 shift induced by the presence of MCP increases with the MCP concentration in a linear manner. The protective effect of MCP on cholinesterases could be of practical relevance in the treatment of POX and MPFX poisoning. We conclude that in vivo testing of MCP as an organophosphate protective agent is warranted.
Collapse
Affiliation(s)
- Georg Petroianu
- Department of Pharmacology & Therapeutics, United Arab Emirates University, United Arab Emirates.
| | | | | | | | | | | |
Collapse
|