1
|
Leighton RE, Frontiera RR. Quantifying Bacteriorhodopsin Activity as a Function of its Local Environment with a Raman-Based Assay. J Phys Chem B 2023; 127:8833-8841. [PMID: 37812499 DOI: 10.1021/acs.jpcb.3c04802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bacteriorhodopsin (bR) is a transmembrane protein that functions as a light-driven proton pump in halophilic archaea. The bR photocycle has been well-characterized; however, these measurements almost exclusively measured purified bR, outside of its native membrane. To investigate what effect the cellular environment has on the bR photocycle, we have developed a Raman-based assay that can monitor the activity of the bR in a variety of conditions, including in its native membrane. The assay uses two continuous-wave lasers, one to initiate photochemistry and one to monitor bR activity. The excitation leads to the steady-state depletion of ground-state bR, which directly relates to the population of photocycle intermediate states. We have used this assay to monitor bR activity both in vitro and in vivo. Our in vitro measurements confirm that our assay is sensitive to bulk environmental changes reported in the literature. Our in vivo measurements show a decrease in bR activity with increasing extracellular pH for bR in its native membrane. The difference in activity with increasing pH indicates that the native membrane environment affects the function of bR. This assay opens the door to future measurements into understanding how the local environment of this transmembrane protein affects function.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Mrđenović D, Cai ZF, Pandey Y, Bartolomeo GL, Zenobi R, Kumar N. Nanoscale chemical analysis of 2D molecular materials using tip-enhanced Raman spectroscopy. NANOSCALE 2023; 15:963-974. [PMID: 36541047 PMCID: PMC9851175 DOI: 10.1039/d2nr05127c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Mrđenović D, Ge W, Kumar N, Zenobi R. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202210288. [PMID: 36057139 PMCID: PMC9826433 DOI: 10.1002/anie.202210288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/11/2023]
Abstract
Lack of appropriate tools for visualizing cell membrane molecules at the nanoscale in a non-invasive and label-free fashion limits our understanding of many vital cellular processes. Here, we use tip-enhanced Raman spectroscopy (TERS) to visualize the molecular distribution in pancreatic cancer cell (BxPC-3) membranes in ambient conditions without labelling, with a spatial resolution down to ca. 2.5 nm. TERS imaging reveals segregation of phenylalanine-, histidine-, phosphatidylcholine-, protein-, and cholesterol-rich BxPC-3 cell membrane domains at the nm length-scale. TERS imaging also showed a cell membrane region where cholesterol is mixed with protein. Interestingly, the higher resolution TERS imaging revealed that the molecular domains observed on the BxPC-3 cell membrane are not chemically "pure" but also contain other biomolecules. These results demonstrate the potential of TERS for non-destructive and label-free imaging of cell membranes with nanoscale resolution.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Wenjie Ge
- Department of BiologyETH ZurichOtto-Stern-Weg 78093ZürichSwitzerland
| | - Naresh Kumar
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Renato Zenobi
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| |
Collapse
|
4
|
Nanoscale chemical imaging of human cell membrane using Tip‐enhanced Raman spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Bonhommeau S, Cooney GS, Huang Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chem Soc Rev 2022; 51:2416-2430. [PMID: 35275147 DOI: 10.1039/d1cs01039e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoscale chemical and structural characterization of single biomolecules and assemblies is of paramount importance for applications in biology and medicine. It aims to describe the molecular structure of biomolecules and their interaction with unprecedented spatial resolution to better comprehend underlying molecular mechanisms of biological processes involved in cell activity and diseases. Tip-enhanced Raman scattering (TERS) spectroscopy appears particularly appealing to reach these objectives. This state-of-the-art TERS technique is as versatile as it is ultrasensitive. To perform a successful TERS experiment, special care and a thorough methodology for the preparation of the TERS system, the TERS probe tip, and sample are needed. Intense efforts have been deployed to characterize nucleic acids, proteins and peptides, lipid membranes, and more complex systems such as cells and viruses using TERS. Although the vast majority of studies have first been performed in dry conditions, they have allowed for several scientific breakthroughs. These include DNA and RNA sequencing, and the determination of relationships between protein structure and biological function by the use of increasingly exploitative chemometric tools for spectral data analysis. The nanoscale determination of the secondary structure of amyloid fibrils, protofibrils and oligomers implicated in neurodegenerative diseases could, for instance, be connected with the toxicity of these species, amyloid formation pathways, and their interaction with phospholipids. Single particles of different viral strains could be distinguished from one another by comparison of their protein and lipid contents. In addition, TERS has allowed for the evermore accurate description of the molecular organization of lipid membranes. Very recent advances also demonstrated the possibility to carry out TERS in aqueous medium, which opens thrilling perspectives for the TERS technique in biological, biomedical, and potential clinical applications.
Collapse
Affiliation(s)
| | - Gary S Cooney
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Yuhan Huang
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
6
|
Bartolomeo GL, Zhang Y, Kumar N, Zenobi R. Molecular Perturbation Effects in AFM-Based Tip-Enhanced Raman Spectroscopy: Contact versus Tapping Mode. Anal Chem 2021; 93:15358-15364. [PMID: 34767337 PMCID: PMC8691690 DOI: 10.1021/acs.analchem.1c03004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Tip-enhanced
Raman spectroscopy (TERS) is a powerful tool for nondestructive
and label-free surface chemical characterization at nanometer length
scales. However, despite being considered nondestructive, the interaction
of the TERS probe used in the analysis can alter the molecular organization
of the sample. In this study, we investigate the role of the atomic
force microscopy (AFM) feedback (contact mode and tapping mode) on
molecular perturbation in TERS analysis of soft samples using a self-assembled
monolayer (SAM) of 2-chloro-4-nitrobenzene-1-thiol (Cl-NBT) as a test
sample. Surprisingly, the tapping mode shows a consistently higher
TERS signal resulting from a minimal perturbation of the Cl-NBT SAM
compared to the contact mode. This study provides novel insights into
the choice of the correct AFM-TERS operation mode for nanoscale chemical
analysis of soft and delicate samples and is expected to expedite
the growing application of TERS in this area.
Collapse
Affiliation(s)
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China.,State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Jayan H, Pu H, Sun DW. Recent developments in Raman spectral analysis of microbial single cells: Techniques and applications. Crit Rev Food Sci Nutr 2021; 62:4294-4308. [PMID: 34251940 DOI: 10.1080/10408398.2021.1945534] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The conventional microbial cell analyses are mostly population-averaged methods that conceal the characteristics of single-cell in the community. Single-cell analysis can provide information on the functional and structural variation of each cell, resulting in the elimination of long and tedious microbial cultivation techniques. Raman spectroscopy is a label-free, noninvasive, and in-vivo method ideal for single-cell measurement to obtain spatially resolved chemical information. In the current review, recent developments in Raman spectroscopic techniques for microbial characterization at the single-cell level are presented, focusing on Raman imaging of single cells to study the intracellular distribution of different components. The review also discusses the limitation and challenges of each technique and put forward some future outlook for improving Raman spectroscopy-based techniques for single-cell analysis. Raman spectroscopic methods at the single-cell level have potential in precision measurements, metabolic analysis, antibiotic susceptibility testing, resuscitation capability, and correlating phenotypic information to genomics for cells, the integration of Raman spectroscopy with other techniques such as microfluidics, stable isotope probing (SIP), and atomic force microscope can further improve the resolution and provide extensive information. Future focuses should be given to advance algorithms for data analysis, standardized reference libraries, and automated cell isolation techniques in future.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510641, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, and Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
8
|
Tabatabaei M, Caetano FA, Pashee F, Ferguson SSG, Lagugné-Labarthet F. Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines. Analyst 2018; 142:4415-4421. [PMID: 29090690 DOI: 10.1039/c7an00744b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The early stages of Alzheimer's disease pathogenesis are thought to occur at the synapse level, since synapse loss can be directly correlated with memory dysfunction. Considerable evidence has suggested that amyloid beta (Aβ), a secreted proteolytic derivative of amyloid precursor protein, appears to be a critical factor in the early 'synaptic failure' that is observed in Alzheimer's disease pathogenesis. The identification of Aβ at neuronal spines with high spatial resolution and high surface specificity would facilitate unraveling the intricate effect of Aβ on synapse loss and its effect on neighboring neuronal connections. Here, tip-enhanced Raman spectroscopy was used to map the presence of Aβ aggregations in the vicinity of the spines exposed to Aβ preformed in vitro. Exposure to Aβ was of 1 and 6 hours. The intensity variation of selected vibrational modes of Aβ was mapped by TERS for different exposure times to Aβ. Of interest, we discuss the distinct contributions of the amide modes from Aβ that are enhanced by the TERS process and in particular the suppression of the amide I mode in the context of recently reported observations in the literature.
Collapse
Affiliation(s)
- Mohammadali Tabatabaei
- Department of Chemistry and Centre for Advanced Materials and Biomaterials, University of Western Ontario, London, ON, Canada N6A 5B7.
| | | | | | | | | |
Collapse
|
9
|
Bonhommeau S, Lecomte S. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules. Chemphyschem 2017; 19:8-18. [DOI: 10.1002/cphc.201701067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sébastien Bonhommeau
- University of Bordeaux; Institut des Sciences Moléculaires; CNRS UMR 5255; 351 cours de la Libération 33405 Talence cedex France
| | - Sophie Lecomte
- University of Bordeaux; Institut de Chimie et Biologie des Membranes et des Nano-objets; CNRS UMR 5248; Allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
10
|
Langelüddecke L, Singh P, Deckert V. Exploring the Nanoscale: Fifteen Years of Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2015; 69:1357-71. [PMID: 26554759 DOI: 10.1366/15-08014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Spectroscopic methods with high spatial resolution are essential to understand the physical and chemical properties of nanoscale materials including biological and chemical materials. Tip-enhanced Raman spectroscopy (TERS) is a combination of surface-enhanced Raman spectroscopy (SERS) and scanning probe microscopy (SPM), which can provide high-resolution topographic and spectral information simultaneously below the diffraction limit of light. Even examples of sub-nanometer resolution have been demonstrated. This review intends to give an introduction to TERS, focusing on its basic principle and the experimental setup, the strengths followed by recent applications, developments, and perspectives in this field.
Collapse
Affiliation(s)
- Lucas Langelüddecke
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | |
Collapse
|
11
|
Sharma G, Deckert-Gaudig T, Deckert V. Tip-enhanced Raman scattering--Targeting structure-specific surface characterization for biomedical samples. Adv Drug Deliv Rev 2015; 89:42-56. [PMID: 26130490 DOI: 10.1016/j.addr.2015.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 11/16/2022]
Abstract
Tip-enhanced Raman scattering (TERS) has become a powerful tool for nanoscale structural analysis for several branches of organic, inorganic, and biological chemistry. This highly sensitive technique enables molecular characterization with a lateral resolution far beyond Abbe's diffraction limit and correlates structural and topographic information on a nanometer scale. In this review, the current experimental concepts with respect to their strengths and obstacles are introduced and discussed. A further focus was set to biochemistry comprising applications like nucleic acids, proteins, and microorganisms, thus demonstrating the potential use towards the pharmaceutically relevant challenges where nanometer resolution is required.
Collapse
Affiliation(s)
- Gaurav Sharma
- Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Friedrich Schiller-University Jena, D-07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena, Germany
| | - Volker Deckert
- Institute for Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, Friedrich Schiller-University Jena, D-07743 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena, Germany.
| |
Collapse
|
12
|
Rusciano G, Zito G, Isticato R, Sirec T, Ricca E, Bailo E, Sasso A. Nanoscale chemical imaging of Bacillus subtilis spores by combining tip-enhanced Raman scattering and advanced statistical tools. ACS NANO 2014; 8:12300-12309. [PMID: 25415422 DOI: 10.1021/nn504595k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tip-enhanced Raman Scattering (TERS) has recently emerged as a powerful spectroscopic technique capable of providing subdiffraction morphological and chemical information on samples. In this work, we apply TERS spectroscopy for surface analysis of the Bacillus subtilis spore, a very attractive biosystem for a wide range of applications regulated by the spore surface properties. The observed spectra reflect the complex and heterogeneous environment explored by the plasmonic tip, therefore exhibiting significant point-to-point variations at the nanoscale. Herein, we demonstrate that TERS data processing via principal component analysis allows handling such spectral changes, thus enabling an unbiased correlative imaging based on TERS. Our experimental outcomes suggest a denser arrangement of both proteins and carbohydrates on specific spore surface regions simultaneously revealed by AFM phase imaging. Successful TERS analysis of spores' surface is useful for bacterial surface-display systems and drug delivery applications.
Collapse
Affiliation(s)
- Giulia Rusciano
- Department of Physics and ‡Department of Biology, University of Naples Federico II , via Cintia, 80126-I Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan G, Chupin V, Popot JL, Gordeliy V. Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35. J Membr Biol 2014; 247:971-80. [DOI: 10.1007/s00232-014-9701-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
|
14
|
Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization. Anal Bioanal Chem 2014; 406:6993-7002. [DOI: 10.1007/s00216-014-7998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/26/2022]
|
15
|
Ultrastable atomic force microscopy: improved force and positional stability. FEBS Lett 2014; 588:3621-30. [PMID: 24801176 DOI: 10.1016/j.febslet.2014.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/18/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
Abstract
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience.
Collapse
|
16
|
Singh P, Deckert V. Local protonation control using plasmonic activation. Chem Commun (Camb) 2014; 50:11204-7. [DOI: 10.1039/c4cc04642k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Spatial control of a protonation reaction under ambient conditions is demonstrated utilizing localized surface plasmons.
Collapse
Affiliation(s)
- Pushkar Singh
- Leibniz Institute of Photonic Technology
- 07745 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology
- 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich-Schiller University Jena
- 07743 Jena, Germany
| |
Collapse
|
17
|
Berweger S, Nguyen DM, Muller EA, Bechtel HA, Perkins TT, Raschke MB. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J Am Chem Soc 2013; 135:18292-5. [PMID: 24251914 DOI: 10.1021/ja409815g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spectroscopic characterization of biomolecular structures requires nanometer spatial resolution and chemical specificity. We perform full spatio-spectral imaging of dried purple membrane patches purified from Halobacterium salinarum with infrared vibrational scattering-type scanning near-field optical microscopy (s-SNOM). Using near-field spectral phase contrast based on the Amide I resonance of the protein backbone, we identify the protein distribution with 20 nm spatial resolution and few-protein sensitivity. This demonstrates the general applicability of s-SNOM vibrational nanospectroscopy, with potential extension to a wide range of biomolecular systems.
Collapse
Affiliation(s)
- Samuel Berweger
- Department of Physics and Department of Chemistry, ‡Department of Chemical and Biological Engineering, and §Department of Molecular, Cellular, and Developmental Biology, University of Colorado , Boulder, Colorado, 80309, United States
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Karen A. Antonio
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| | - Zachary D. Schultz
- University of Notre Dame, Department of
Chemistry and Biochemistry, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
19
|
Ataka K, Stripp ST, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2283-93. [PMID: 23816441 DOI: 10.1016/j.bbamem.2013.04.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/05/2013] [Accepted: 04/28/2013] [Indexed: 12/15/2022]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Kenichi Ataka
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | | | | |
Collapse
|