1
|
Unal S, Musicki B, Burnett AL. Cavernous nerve mapping methods for radical prostatectomy. Sex Med Rev 2023; 11:421-430. [PMID: 37500541 DOI: 10.1093/sxmrev/qead030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Preserving the cavernous nerves, the main autonomic nerve supply of the penis, is a major challenge of radical prostatectomy. Cavernous nerve injury during radical prostatectomy predominantly accounts for post-radical prostatectomy erectile dysfunction. The cavernous nerve is a bilateral structure that branches in a weblike distribution over the prostate surface and varies anatomically in individuals, such that standard nerve-sparing methods do not sufficiently sustain penile erection ability. As a consequence, researchers have focused on developing personalized cavernous nerve mapping methods applied to the surgical procedure aiming to improve postoperative sexual function outcomes. OBJECTIVES We provide an updated overview of preclinical and clinical data of cavernous nerve mapping methods, emphasizing their strengths, limitations, and future directions. METHODS A literature review was performed via Scopus, PubMed, and Google Scholar for studies that describe cavernous nerve mapping/localization. RESULTS Several cavernous nerve mapping methods have been investigated based on various properties of the nerve structures including stimulation techniques, spectroscopy/imaging techniques, and assorted combinations of these methods. More recent methods have portrayed the course of the main cavernous nerve as well as its branches based on real-time mapping, high-resolution imaging, and functional imaging. However, each of these methods has distinctive limitations, including low spatial accuracy, lack of standardization for stimulation and response measurement, superficial imaging depth, toxicity risk, and lack of suitability for intraoperative use. CONCLUSION While various cavernous nerve mapping methods have provided improvements in identification and preservation of the cavernous nerve during radical prostatectomy, no method has been implemented in clinical practice due to their distinctive limitations. To overcome the limitations of existing cavernous nerve mapping methods, the development of new imaging techniques and mapping methods is in progress. There is a need for further research in this area to improve sexual function outcomes and quality of life after radical prostatectomy.
Collapse
Affiliation(s)
- Selman Unal
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- Department of Urology, Ankara Yildirim Beyazit University School of Medicine, Ankara 06800, Turkey
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Ping A, Pan L, Zhang J, Xu K, Schriver KE, Zhu J, Roe AW. Targeted Optical Neural Stimulation: A New Era for Personalized Medicine. Neuroscientist 2023; 29:202-220. [PMID: 34865559 DOI: 10.1177/10738584211057047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Targeted optical neural stimulation comprises infrared neural stimulation and optogenetics, which affect the nervous system through induced thermal transients and activation of light-sensitive proteins, respectively. The main advantage of this pair of optical tools is high functional selectivity, which conventional electrical stimulation lacks. Over the past 15 years, the mechanism, safety, and feasibility of optical stimulation techniques have undergone continuous investigation and development. When combined with other methods like optical imaging and high-field functional magnetic resonance imaging, the translation of optical stimulation to clinical practice adds high value. We review the theoretical foundations and current state of optical stimulation, with a particular focus on infrared neural stimulation as a potential bridge linking optical stimulation to personalized medicine.
Collapse
Affiliation(s)
- An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Li Pan
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Key Laboratory of Biomedical Engineering of Education Ministry & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Kenneth E Schriver
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junming Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Anna Wang Roe
- Zhejiang University Interdisciplinary Institute of Neuroscience and Technology (ZIINT), School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhu X, Lin JW, Sander MY. Infrared inhibition impacts on locally initiated and propagating action potentials and the downstream synaptic transmission. NEUROPHOTONICS 2020; 7:045003. [PMID: 33094124 PMCID: PMC7554448 DOI: 10.1117/1.nph.7.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 05/15/2023]
Abstract
Significance: Systematic studies of the physiological outputs induced by infrared (IR)-mediated inhibition of motor nerves can provide guidance for therapeutic applications and offer critical insights into IR light modulation of complex neural networks. Aim: We explore the IR-mediated inhibition of action potentials (APs) that either propagate along single axons or are initiated locally and their downstream synaptic transmission responses. Approach: APs were evoked locally by two-electrode current clamp or at a distance for propagating APs. The neuromuscular transmission was recorded with intracellular electrodes in muscle cells or macro-patch pipettes on terminal bouton clusters. Results: IR light pulses completely and reversibly terminate the locally initiated APs firing at low frequencies, which leads to blocking of the synaptic transmission. However, IR light pulses only suppress but do not block the amplitude and duration of propagating APs nor locally initiated APs firing at high frequencies. Such suppressed APs do not influence the postsynaptic responses at a distance. While the suppression of AP amplitude and duration is similar for propagating and locally evoked APs, only the former exhibits a 7% to 21% increase in the maximum time derivative of the AP rising phase. Conclusions: The suppressed APs of motor axons can resume their waveforms after passing the localized IR light illumination site, leaving the muscular and synaptic responses unchanged. IR-mediated modulation on propagating and locally evoked APs should be considered as two separate models for axonal and somatic modulations.
Collapse
Affiliation(s)
- Xuedong Zhu
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Jen-Wei Lin
- Boston University, Department of Biology, Boston, Massachusetts, United States
| | - Michelle Y. Sander
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Division of Materials Science and Engineering, Brookline, Massachusetts, United States
- Address all correspondence to Michelle Y. Sander,
| |
Collapse
|
4
|
Intracochlear near infrared stimulation: Feasibility of optoacoustic stimulation in vivo. Hear Res 2018; 371:40-52. [PMID: 30458383 DOI: 10.1016/j.heares.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/04/2018] [Accepted: 11/08/2018] [Indexed: 01/12/2023]
Abstract
Intracochlear optical stimulation has been suggested as an alternative approach to hearing prosthetics in recent years. This study investigated the properties of a near infrared laser (NIR) induced optoacoustic effect. Pressure recordings were performed at the external meatus of anaesthetized guinea pigs during intracochlear NIR stimulation. The sound pressure and power spectra were determined. The results were compared to multi unit responses in the inferior colliculus (IC). Additionally, the responses to NIR stimulation were compared to IC responses induced by intracochlear electric stimulation at the same cochlear position to investigate a potentially confounding contribution of direct neural NIR stimulation. The power spectra of the sound recorded at the external meatus (n = 7) had most power at frequencies below 10 kHz and showed little variation for different stimulation sites. The mean spike rates of IC units responding to intracochlear NIR stimulation (n = 222) of 17 animals were significantly correlated with the power of the externally recorded signal at frequencies corresponding to the best frequencies of the IC units. The response strength as well as the sound pressure at the external meatus depended on the pulse peak power of the optical stimulus. The sound pressure recorded at the external meatus reached levels above 70 dB SPL peak equivalent. In hearing animals a cochlear activation apical to the location of the fiber was found. The absence of any NIR responses after pharmacologically deafening and the comparison to electric stimulation at the NIR stimulation site revealed no indication of a confounding direct neural NIR stimulation. Intracochlear optoacoustic stimulation might become useful in combined electro-acoustic stimulation devices in the future.
Collapse
|
5
|
Barth CW, Gibbs SL. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy. Am J Cancer Res 2017; 7:573-593. [PMID: 28255352 PMCID: PMC5327635 DOI: 10.7150/thno.17433] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.
Collapse
|
6
|
Optoacoustic effect is responsible for laser-induced cochlear responses. Sci Rep 2016; 6:28141. [PMID: 27301846 PMCID: PMC4908384 DOI: 10.1038/srep28141] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation.
Collapse
|
7
|
Abstract
The cavernous nerves, which course along the surface of the prostate gland, are responsible for erectile function. During radical prostatectomy, urologists are challenged in preserving these nerves and their function. Cavernous nerves are microscopic and show variable location in different patients; therefore, postoperative sexual potency rates are widely variable following radical prostatectomy. A variety of technologies, including electrical and optical nerve stimulation, dye-based optical fluorescence and microscopy, spectroscopy, ultrasound and magnetic resonance imaging have all been used to study cavernous nerve anatomy and physiology, and some of these methods are also potential intraoperative methods for identifying and preserving cavernous nerves. However, all of these technologies have inherent limitations, including slow or inconsistent nerve responses, poor image resolution, shallow image depth, slow image acquisition times and/or safety concerns. New and emerging technologies, as well as multimodal approaches combining existing methods, hold promise for improved postoperative sexual outcomes and patient quality of life following radical prostatectomy.
Collapse
|
8
|
Radiant energy required for infrared neural stimulation. Sci Rep 2015; 5:13273. [PMID: 26305106 PMCID: PMC4548241 DOI: 10.1038/srep13273] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/06/2015] [Indexed: 12/15/2022] Open
Abstract
Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm(2), respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.
Collapse
|
9
|
Cayce JM, Wells JD, Malphrus JD, Kao C, Thomsen S, Tulipan NB, Konrad PE, Jansen ED, Mahadevan-Jansen A. Infrared neural stimulation of human spinal nerve roots in vivo. NEUROPHOTONICS 2015; 2:015007. [PMID: 26157986 PMCID: PMC4478764 DOI: 10.1117/1.nph.2.1.015007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/12/2015] [Indexed: 05/13/2023]
Abstract
Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients ([Formula: see text]) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and [Formula: see text]. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at [Formula: see text] and a [Formula: see text] safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans.
Collapse
Affiliation(s)
- Jonathan M. Cayce
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Station B, Box 351631 Nashville, Tennessee 37235-1631, United States
| | - Jonathon D. Wells
- Lockheed Martin, 22121 20th Avenue SE, Bothell, Washington 98021, United States
| | - Jonathan D. Malphrus
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Station B, Box 351631 Nashville, Tennessee 37235-1631, United States
| | - Chris Kao
- Vanderbilt University, Department of Neurological Surgery, 1161 21st Avenue, Nashville, Tennessee 37232-2380, United States
| | - Sharon Thomsen
- University of Texas, Department of Biomedical Engineering, Austin, Texas, and 500 Discovery View Drive, Sequim, Washington 98382, United States
| | - Noel B. Tulipan
- Vanderbilt University, Department of Neurological Surgery, 1161 21st Avenue, Nashville, Tennessee 37232-2380, United States
| | - Peter E. Konrad
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Station B, Box 351631 Nashville, Tennessee 37235-1631, United States
- Vanderbilt University, Department of Neurological Surgery, 1161 21st Avenue, Nashville, Tennessee 37232-2380, United States
| | - E. Duco Jansen
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Station B, Box 351631 Nashville, Tennessee 37235-1631, United States
- Vanderbilt University, Department of Neurological Surgery, 1161 21st Avenue, Nashville, Tennessee 37232-2380, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Station B, Box 351631 Nashville, Tennessee 37235-1631, United States
- Vanderbilt University, Department of Neurological Surgery, 1161 21st Avenue, Nashville, Tennessee 37232-2380, United States
- Address all correspondence to: Anita Mahadevan-Jansen, E-mail:
| |
Collapse
|
10
|
Abstract
Methods to control neural activity by light have been introduced to the field of neuroscience. During the last decade, several techniques have been established, including optogenetics, thermogenetics, and infrared neural stimulation. The techniques allow investigators to turn-on or turn-off neural activity. This review is an attempt to show the importance of the techniques for the auditory field and provide insight in the similarities, overlap, and differences of the techniques. Discussing the mechanism of each of the techniques will shed light on the abilities and challenges for each of the techniques. The field has been grown tremendously and a review cannot be complete. However, efforts are made to summarize the important points and to refer the reader to excellent papers and reviews to specific topics. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Claus-Peter Richter
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611, USA; Dept. of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208, USA; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| | - Xiaodong Tan
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Cayce JM, Friedman RM, Chen G, Jansen ED, Mahadevan-Jansen A, Roe AW. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 2013; 84:181-90. [PMID: 23994125 DOI: 10.1016/j.neuroimage.2013.08.040] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Infrared neural stimulation (INS) is an alternative neurostimulation modality that uses pulsed infrared light to evoke spatially precise neural activity that does not require direct contact with neural tissue. With these advantages INS has the potential to increase our understanding of specific neural pathways and impact current diagnostic and therapeutic clinical applications. In order to develop this technique, we investigate the feasibility of INS (λ=1.875μm, fiber diameter=100-400μm) to activate and modulate neural activity in primary visual cortex (V1) of Macaque monkeys. Infrared neural stimulation was found to evoke localized neural responses as evidenced by both electrophysiology and intrinsic signal optical imaging (OIS). Single unit recordings acquired during INS indicated statistically significant increases in neuron firing rates that demonstrate INS evoked excitatory neural activity. Consistent with this, INS stimulation led to focal intensity-dependent reflectance changes recorded with OIS. We also asked whether INS is capable of stimulating functionally specific domains in visual cortex and of modulating visually evoked activity in visual cortex. We found that application of INS via 100μm or 200μm fiber optics produced enhancement of visually evoked OIS response confined to the eye column where INS was applied and relative suppression of the other eye column. Stimulating the cortex with a 400μm fiber, exceeding the ocular dominance width, led to relative suppression, consistent with involvement of inhibitory surrounds. This study is the first to demonstrate that INS can be used to either enhance or diminish visual cortical response and that this can be done in a functional domain specific manner. INS thus holds great potential for use as a safe, non-contact, focally specific brain stimulation technology in primate brains.
Collapse
Affiliation(s)
- Jonathan M Cayce
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
12
|
Tozburun S, Stahl CD, Hutchens TC, Lagoda GA, Burnett AL, Fried NM. Continuous-wave infrared subsurface optical stimulation of the rat prostate cavernous nerves using a 1490-nm diode laser. Urology 2013; 82:969-73. [PMID: 23953608 DOI: 10.1016/j.urology.2013.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/08/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To optimize the infrared laser wavelength and optical nerve stimulation (ONS) parameters for both deep and rapid subsurface cavernous nerve (CN) stimulation in a rat model, in vivo. MATERIALS AND METHODS A 150-mW, 1490-nm diode laser providing an optical penetration depth (OPD) of 518 μm in water was operated in continuous-wave mode during stimulation of the CNs in 8 rats for 15 seconds irradiation time through a custom-built, single-mode fiber optic probe capable of producing a collimated, 1-mm diameter laser beam. Successful ONS was judged by an intracavernous pressure response in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 nm and 1550 nm near-infrared diode laser wavelengths. RESULTS Subsurface ONS of the rat CN was successful through fascia layers with a thickness up to 380 μm using an incident laser power of ∼50 mW. Intracavernous pressure response times as short as 4.6 ± 0.2 seconds were recorded using higher laser powers below the nerve damage threshold. CONCLUSION The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper penetration than 1455-nm diode laser and more rapid and efficient nerve stimulation than 1550-nm diode laser.
Collapse
Affiliation(s)
- Serhat Tozburun
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC; Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA.
| | | | | | | | | | | |
Collapse
|