1
|
Bhatti HS, Khan S, Zahra M, Mustafa S, Ashraf S, Ahmad I. Characterization of radiofrequency ablated myocardium with optical coherence tomography. Photodiagnosis Photodyn Ther 2022; 40:103151. [PMID: 36228980 DOI: 10.1016/j.pdpdt.2022.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Certain types of cardiac arrhythmias are best treated with radiofrequency (RF) ablation, in which an electrode is inserted into the targeted area of the myocardium and then RF electrical current is applied to heat and destroy surrounding tissue. The resulting ablation lesion usually consists of a coagulative necrotic core surrounded by a rim region of mixed viable and non-viable cells. The characterization of the RF ablated lesion is of potential clinical importance. Here we aim to elaborate optical coherence tomography (OCT) imaging for the characterization of RF-ablated myocardial tissue. In particular, the underlying principles of OCT and its polarization-sensitive counterpart (PS-OCT) are presented, followed by the knowledge needed to interpret their optical images. Studies focused on real-time monitoring of RF lesion formation in the myocardium using OCT systems are summarized. The design and development of various hybrid probes incorporating both OCT guidance and RF ablation catheters are also discussed. Finally, the challenges related to the transmission of OCT imaging systems to cardiac clinics for real-time monitoring of RF lesions are outlined.
Collapse
Affiliation(s)
| | - Shamim Khan
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Madeeha Zahra
- Department of Physics, The Women University Multan, Pakistan
| | - Sonia Mustafa
- Department of Physics, The Women University Multan, Pakistan
| | - Sumara Ashraf
- Department of Physics, The Women University Multan, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
2
|
A Proposal to Perform High Contrast Imaging of Human Palatine Tonsil with Cross Polarized Optical Coherence Tomography. PHOTONICS 2022. [DOI: 10.3390/photonics9040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The palatine tonsils provide the first line of immune defense against foreign pathogens inhaled or ingested. However, a disruption in the epithelial layer within the tonsil crypts can lead to recurrent acute tonsillitis (RAT). Current imaging techniques suffer from poor resolution and contrast and do not allow a classification of the severity of RAT. We have developed a cross-polarized optical coherence tomography system. The system can detect a change in the polarization of the light after the light-tissue interaction. We demonstrate improved resolution and contrast in tonsil imaging with the developed method. Intensity, as well as retardance images of the excised tonsil tissue, were acquired. Features such as crypt epithelium, lymphoid follicles, and dense connective tissue were observed with improved contrast. Cross polarized optical coherence tomography can be a valuable tool in the clinic to evaluate palatine tonsils as it would allow visualizing common tonsil features without the need for any external contrast agent.
Collapse
|
3
|
Park SY, Yang H, Marboe C, Ziv O, Laurita K, Rollins A, Saluja D, Hendon CP. Cardiac endocardial left atrial substrate and lesion depth mapping using near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1801-1819. [PMID: 35519253 PMCID: PMC9045901 DOI: 10.1364/boe.451547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) is a rapid irregular electrical activity in the upper chamber and the most common sustained cardiac arrhythmia. Many patients require radiofrequency ablation (RFA) therapy to restore sinus rhythm. Pulmonary vein isolation requires distinguishing normal atrial wall from the pulmonary vein tissue, and atrial substrate ablation requires differentiating scar tissue, fibrosis, and adipose tissue. However, current anatomical mapping methods for strategically locating ablation sites by identifying structural substrates in real-time are limited. An intraoperative tool that accurately provides detailed structural information and classifies endocardial substrates could help improve RF guidance during RF ablation therapy. In this work, we propose a 7F NIRS integrated ablation catheter and demonstrate endocardial mapping on ex vivo swine (n = 12) and human (n = 5) left atrium (LA). First, pulmonary vein (PV) sleeve, fibrosis and ablation lesions were identified with NIRS-derived contrast indices. Based on these key spectral features, classification algorithms identified endocardial substrates with high accuracy (<11% error). Then, a predictive model for lesion depth was evaluated on classified lesions. Model predictions correlated well with histological measurements of lesion dimensions (R = 0.984). Classified endocardial substrates and lesion depth were represented in 2D spatial maps. These results suggest NIRS integrated mapping catheters can serve as a complementary tool to the current electroanatomical mapping system to improve treatment efficacy.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, New York, USA
| | - Haiqiu Yang
- Department of Electrical Engineering, Columbia University, New York, USA
| | - Charles Marboe
- Department of Cell Biology and Pathology, Columbia University Irving Medical Center, New York, USA
| | - Ohad Ziv
- Department of Medicine, Cardiology Division, MetroHealth Hospital, Ohio, USA
| | - Kenneth Laurita
- Department of Medicine, Cardiology Division, MetroHealth Hospital, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, USA
| | - Andrew Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, USA
| | - Deepak Saluja
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, USA
| | | |
Collapse
|
4
|
Abstract
Cross-polarized optical coherence tomography offers improved contrast for samples which can alter the polarization of light when it interacts with the sample. This property has been utilized to screen pathological conditions in several organs. Existing cross-polarized optical coherence tomography systems require several polarization-controlling elements to minimize the optical fiber movement-related image artifacts. In this work, we demonstrate a cross-polarized optical coherence tomography system using unpolarized light and only two quarter-wave plates, which is free from fiber-induced image artifacts. The simplicity of the approach will find many applications in clinical settings.
Collapse
|
5
|
Blessing K, Schirmer J, Sharma G, Singh K. Novel input polarisation independent endoscopic cross-polarised optical coherence tomography probe. JOURNAL OF BIOPHOTONICS 2020; 13:e202000134. [PMID: 32738024 DOI: 10.1002/jbio.202000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Lead by the original idea to perform noninvasive optical biopsies of various tissues, optical coherence tomography found numerous medical applications within the last two decades. The interference based imaging technique opens the possibility to visualise subcellular morphology up to an imaging depth of 3 mm and up to micron level axial and lateral resolution. The birefringence properties of the tissue are visualised with enhanced contrast using polarisation sensitive or cross-polarised optical coherence tomography (OCT) techniques. Although, it requires strict control over the polarisation states, resulting in several polarisation controlling elements. In this work, we propose a novel input-polarisation independent endoscopic system based on cross-polarised OCT. We tested the feasibility of our approach by measuring the polarisation change from a quarter-wave plate for different rotational angles. Further performance tests reveal a lateral resolution of 30 μm and a sensitivity of 103 dB. Images of the human nail bed and cow muscle tissue demonstrate the potential of the system to measure structural and birefringence properties of the tissue endoscopically.
Collapse
Affiliation(s)
- Katharina Blessing
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Judith Schirmer
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gargi Sharma
- Guck Division, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Kanwarpal Singh
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Gan Y, Lye TH, Marboe CC, Hendon CP. Characterization of the human myocardium by optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900094. [PMID: 31400074 PMCID: PMC7456394 DOI: 10.1002/jbio.201900094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/25/2019] [Accepted: 08/08/2019] [Indexed: 05/21/2023]
Abstract
Imaging of cardiac tissue structure plays a critical role in the treatment and understanding of cardiovascular disease. Optical coherence tomography (OCT) offers the potential to provide valuable, high-resolution imaging of cardiac tissue. However, there is a lack of comprehensive OCT imaging data of the human heart, which could improve identification of structural substrates underlying cardiac abnormalities. The objective of this study was to provide qualitative and quantitative analysis of OCT image features throughout the human heart. Fifty human hearts were acquired, and tissues from all chambers were imaged with OCT. Histology was obtained to verify tissue composition. Statistical differences between OCT image features corresponding to different tissue types and chambers were estimated using analysis of variance. OCT imaging provided features that were able to distinguish structures such as thickened collagen, as well as adipose tissue and fibrotic myocardium. Statistically significant differences were found between atria and ventricles in attenuation coefficient, and between adipose and all other tissue types. This study provides an overview of OCT image features throughout the human heart, which can be used for guiding future applications such as OCT-integrated catheter-based treatments or ex vivo investigation of structural substrates.
Collapse
Affiliation(s)
- Yu Gan
- Department of Electrical Engineering, Columbia University, New York, New York
| | - Theresa H. Lye
- Department of Electrical Engineering, Columbia University, New York, New York
| | - Charles C. Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, New York, New York
- Correspondence: Christine P. Hendon, Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY 10032.
| |
Collapse
|
7
|
Lye TH, Marboe CC, Hendon CP. Imaging of subendocardial adipose tissue and fiber orientation distributions in the human left atrium using optical coherence tomography. J Cardiovasc Electrophysiol 2019; 30:2950-2959. [PMID: 31661178 PMCID: PMC6916589 DOI: 10.1111/jce.14255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Background Optical coherence tomography (OCT) has the potential to provide real‐time imaging guidance for atrial fibrillation ablation, with promising results for lesion monitoring. OCT can also offer high‐resolution imaging of tissue composition, but there is insufficient cardiac OCT data to inform the use of OCT to reveal important tissue architecture of the human left atrium. Thus, the objective of this study was to define OCT imaging data throughout the human left atrium, focusing on the distribution of adipose tissue and fiber orientation as seen from the endocardium. Methods and Results Human hearts (n = 7) were acquired for imaging the left atrium with OCT. A spectral‐domain OCT system with 1325 nm center wavelength, 6.5 μm axial resolution, 15 μm lateral resolution, and a maximum imaging depth of 2.51 mm in the air was used. Large‐scale OCT image maps of human left atrial tissue were developed, with adipose thickness and fiber orientation extracted from the imaging data. OCT imaging showed scattered distributions of adipose tissue around the septal and pulmonary vein regions, up to a depth of about 0.43 mm from the endocardial surface. The total volume of adipose tissue detected by OCT over one left atrium ranged from 1.42 to 28.74 mm3. Limited fiber orientation information primarily around the pulmonary veins and the septum could be identified. Conclusion OCT imaging could provide adjunctive information on the distribution of subendocardial adipose tissue, particularly around thin areas around the pulmonary veins and septal regions. Variations in OCT‐detected tissue composition could potentially assist ablation guidance.
Collapse
Affiliation(s)
- Theresa H Lye
- Department of Electrical Engineering, Columbia University, New York, NY
| | - Charles C Marboe
- Department of Pathology, Columbia University Medical Center, New York, NY
| | | |
Collapse
|
8
|
Park SY, Singh-Moon RP, Wan EY, Hendon CP. Towards real-time multispectral endoscopic imaging for cardiac lesion quality assessment. BIOMEDICAL OPTICS EXPRESS 2019; 10:2829-2846. [PMID: 31259054 PMCID: PMC6583339 DOI: 10.1364/boe.10.002829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 05/08/2023]
Abstract
Atrial fibrillation (Afib) can lead to life threatening conditions such as heart failure and stroke. During Afib treatment, clinicians aim to repress unusual electrical activity by electrically isolating the pulmonary veins (PV) from the left atrium (LA) using radiofrequency ablation. However, current clinical tools are limited in reliably assessing transmurality of the ablation lesions and detecting the presence of gaps within ablation lines, which can warrant repeat procedures. In this study, we developed an endoscopic multispectral reflectance imaging (eMSI) system for enhanced discrimination of tissue treatment at the PV junction. The system enables direct visualization of cardiac lesions through an endoscope at acquisition rates up to 25 Hz. Five narrowband, high-power LEDs were used to illuminate the sample (450, 530, 625, 810 and 940nm) and combinatory parameters were calculated based on their relative reflectance. A stitching algorithm was employed to generate large field-of-view, multispectral mosaics of the ablated PV junction from individual eMSI images. A total of 79 lesions from 15 swine hearts were imaged, ex vivo. Statistical analysis of the acquired five spectral data sets and ratiometric maps revealed significant differences between transmural lesions, non-transmural lesions around the venoatrial junctions, unablated posterior wall of left atrium tissue, and pulmonary vein (p < 0.0001). A pixel-based quadratic discriminant analysis classifier was applied to distinguish four tissue types: PV, untreated LA, non-transmural and transmural lesions. We demonstrate tissue type classification accuracies of 80.2% and 92.1% for non-transmural and transmural lesions, and 95.0% and 92.8% for PV and untreated LA sites, respectively. These findings showcase the potential of eMSI for lesion validation and may help to improve AFib treatment efficacy.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA
| | - Rajinder P. Singh-Moon
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA
| | - Elaine Y. Wan
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Christine P. Hendon
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA
| |
Collapse
|
9
|
Hendon CP, Lye TH, Yao X, Gan Y, Marboe CC. Optical coherence tomography imaging of cardiac substrates. Quant Imaging Med Surg 2019; 9:882-904. [PMID: 31281782 PMCID: PMC6571187 DOI: 10.21037/qims.2019.05.09] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the United States. Knowledge of a patient's heart structure will help to plan procedures, potentially identifying arrhythmia substrates, critical structures to avoid, detect transplant rejection, and reduce ambiguity when interpreting electrograms and functional measurements. Similarly, basic research of numerous cardiac diseases would greatly benefit from structural imaging at cellular scale. For both applications imaging on the scale of a myocyte is needed, which is approximately 100 µm × 10 µm. The use of optical coherence tomography (OCT) as a tool for characterizing cardiac tissue structure and function has been growing in the past two decades. We briefly review OCT principles and highlight important considerations when imaging cardiac muscle. In particular, image penetration, tissue birefringence, and light absorption by blood during in vivo imaging are important factors when imaging the heart with OCT. Within the article, we highlight applications of cardiac OCT imaging including imaging heart tissue structure in small animal models, quantification of myofiber organization, monitoring of radiofrequency ablation (RFA) lesion formation, structure-function analysis enabled by functional extensions of OCT and multimodal analysis and characterizing important substrates within the human heart. The review concludes with a summary and future outlook of OCT imaging the heart, which is promising with progress in optical catheter development, functional extensions of OCT, and real time image processing to enable dynamic imaging and real time tracking during therapeutic procedures.
Collapse
Affiliation(s)
| | | | | | - Yu Gan
- Columbia University, New York, NY, USA
| | | |
Collapse
|
10
|
Tissue-Specific Optical Mapping Models of Swine Atria Informed by Optical Coherence Tomography. Biophys J 2019; 114:1477-1489. [PMID: 29590604 PMCID: PMC5883619 DOI: 10.1016/j.bpj.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.
Collapse
|
11
|
Lye TH, Iyer V, Marboe CC, Hendon CP. Mapping the human pulmonary venoatrial junction with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:434-448. [PMID: 30800491 PMCID: PMC6377904 DOI: 10.1364/boe.10.000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 05/24/2023]
Abstract
Imaging guidance provided by optical coherence tomography (OCT) could improve the outcomes of atrial fibrillation (AF) ablation by providing detailed structural information of the pulmonary veins, which are critical targets during ablation. In this study, stitched volumetric OCT images of venoatrial junctions from post-mortem human hearts were acquired and compared to histology. Image features corresponding to venous media and myocardial sleeves, as well as fiber orientation and fibrosis, were identified and found to vary between veins. Imaging of detailed tissue architecture could improve understanding of the AF structural substrate within the pulmonary veins and assist the guidance of ablation procedures.
Collapse
Affiliation(s)
- Theresa H. Lye
- Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Vivek Iyer
- Columbia University Medical Center, 630 W 168th Street, New York, NY 10032, USA
| | - Charles C. Marboe
- Columbia University Medical Center, 630 W 168th Street, New York, NY 10032, USA
| | | |
Collapse
|