1
|
Ataş İ, Ersunan G, Bỉlỉr Ö, Yavaşỉ Ö, Altuntaş M, Karakullukçu S. The utility of NIRS in follow-up of patients with acute ischaemic stroke treated with IV thrombolysis and mechanical thrombectomy in the emergency department. J Thromb Thrombolysis 2024; 57:466-472. [PMID: 38085469 DOI: 10.1007/s11239-023-02920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 03/26/2024]
Abstract
Revascularization treatments (IV thrombolysis, mechanical thrombectomy) related to ischemic stroke have developed in recent years. With devices such as NIRS, non-invasive monitoring of treatment efficacy is provided. In this study, we aimed to use near-infrared spectroscopy (NIRS) as an objective monitoring method to see the effect of intravenous (IV) thrombolysis or mechanical thrombectomy treatments applied for cerebral oxygenation in patients with acute ischemic stroke. This study was carried out as a prospective study involving patients admitted to the emergency department in the years 2021-2022. NIRS measured regional oxygen saturation (rSO2) of both hemispheres of the brain before IV thrombolysis treatment, during the treatment at 0. min, 15. min, 30. min, 45. min, 60. min, after the treatment, and before and after the mechanical thrombectomy procedure. The significance level of the change in rSO2 values measured by NIRS was examined. 80 patients were included in the study. IV thrombolysis was applied to 58 patients, mechanical thrombectomy was applied to 5 of them, and both treatments were applied to 17 of them. In patients receiving IV thrombolysis, a significant difference was found in the affected hemisphere between the NIRS values measured at 0.min-15.min, 0.min-30.min, 0.min-45.min, 0.min-60.min, 0.min-post-treatment, 15.min-60.min (p < 0.001). In the patients included in the study, there was a strong and significant negative correlation between the deltaNIHSS value and the deltaNIRS values in the affected hemisphere (r=- 0.307, p = 0.013). There was a significant increase in the NIRS measurement values during and after the IV thrombolysis treatment in the affected hemisphere in the group with clinical improvement (p < 0.001). It is thought that IV thrombolysis or mechanical thrombectomy treatment applied to patients admitted to the emergency department with acute ischemic stroke can be followed objectively by NIRS.
Collapse
Affiliation(s)
- İsmail Ataş
- Department of Emergency Medicine, Rize State Hospital, 53100, Rize, Turkey.
| | - Gökhan Ersunan
- Department of Emergency Medicine, Recep Tayyip Erdoğan University Training and Research Hospital, 53020, Rize, Turkey
| | - Özlem Bỉlỉr
- Department of Emergency Medicine, Recep Tayyip Erdoğan University Training and Research Hospital, 53020, Rize, Turkey
| | - Özcan Yavaşỉ
- Department of Emergency Medicine, Recep Tayyip Erdoğan University Training and Research Hospital, 53020, Rize, Turkey
| | - Mehmet Altuntaş
- Department of Emergency Medicine, Recep Tayyip Erdoğan University Training and Research Hospital, 53020, Rize, Turkey
| | - Serdar Karakullukçu
- Department of Public Health, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
2
|
Ren W, Lou H, Ren X, Wen G, Wu X, Xia X, Wang S, Yu X, Yan L, Zhang G, Yao J, Lu Y, Wu X. Ketamine promotes the amyloidogenic pathway by regulating endosomal pH. Toxicology 2022; 471:153163. [PMID: 35378374 DOI: 10.1016/j.tox.2022.153163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Ketamine is an anesthetic and addictive drug that can cause cognitive dysfunction and neuroinflammation. Studies have shown that carboxy-terminal fragment derived from β-secretase (CTF-β) and amyloid beta (Aβ), the amyloidogenic products of amyloid precursor protein (APP), can also induce neuroinflammation and impair cognitive function. However, it remains unclear whether ketamine regulates the amyloidogenic pathway. In the endosome, APP is cleaved by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), whose activity is influenced by pH. Endosomal acidification is mainly regulated by sodium hydrogen exchanger 6 (NHE6), which leaks protons out of endosomes, and vacuolar proton translocating ATPases (V-ATPase), which pump protons into endosomes. Therefore, we hypothesized that ketamine lowers the endosomal pH by reducing the endosomal NHE6 protein level, and this hyperacidification promotes the amyloidogenic pathway. We set up C57BL/6 J mouse models using 10, 20, 40, 80, and 100 mg/kg ketamine administration and SH-SY5Y cell models using 1, 10, 100, and 1000 μM ketamine administration to investigate its effects on the amyloidogenic pathway at different doses. Western blotting results showed that 100 mg/kg ketamine treatment in vivo and 1000 μM ketamine treatment in vitro increased endosomal BACE1 and CTF-β protein levels and reduced endosomal NHE6 and APP protein levels. The endosomal accumulation of BACE1 caused by ketamine administration was also observed using confocal imaging. Moreover, flow cytometry indicated that ketamine treatment lowered the endosomal pH value of SH-SY5Y cells. Later, cells were pretreated with monensin to restore the endosomal pH. Monensin did not affect amyloidogenic-related proteins or NHE6 directly; therefore, ketamine-promoted endosomal amyloidogenic processing and BACE1 accumulation were depleted by restoring endosomal acidity through monensin pretreatment. Finally, knockdown of NHE6 promoted the amyloidogenic pathway similarly and prevented further enhancement by ketamine. These results indicated that the effects of ketamine on the amyloidogenic pathway were dependent on the reduction of NHE6 and endosomal pH.
Collapse
Affiliation(s)
- Weishu Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Haoyang Lou
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shuying Wang
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojin Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Yan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Guohua Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Shin TJ, Kim PJ, Choi B. How general anesthetics work: from the perspective of reorganized connections within the brain. Korean J Anesthesiol 2022; 75:124-138. [PMID: 35130674 PMCID: PMC8980288 DOI: 10.4097/kja.22078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
General anesthesia is critical for various procedures and surgeries. Despite the widespread use of anesthetics, their precise mechanisms remain poorly understood. Anesthetics inevitably act on the brain, primarily through the modulation of target receptors. Even if the action is specific to an individual neuron, however, long-range effects can occur due to the tremendous interconnectedness of neuronal activity. The strength of this connectivity can be understood using mathematical models that allow for the study of neuronal connectivity dynamics. These models also allow researchers to develop hypotheses on the candidate mechanisms of action of different types of anesthesia. This review highlights the theoretical background associated with the study of the mechanisms of action of anesthetics. We propose a candidate framework that describes how anesthetics act on the brain and consciousness in general.
Collapse
|
4
|
Kim E, Anguluan E, Kum J, Sanchez-Casanova J, Park TY, Kim JG, Kim H. Wearable Transcranial Ultrasound System for Remote Stimulation of Freely Moving Animal. IEEE Trans Biomed Eng 2021; 68:2195-2202. [PMID: 33186099 DOI: 10.1109/tbme.2020.3038018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) has drawn considerable attention in the neuroscience field as a noninvasive approach to modulate brain circuits. However, the conventional approach requires the use of anesthetized or immobilized animal models, which places considerable restrictions on behavior and affects treatment. Thus, this work presents a wireless, wearable system to achieve ultrasound brain stimulation in freely behaving animals. METHODS The wearable tFUS system was developed based on a microcontroller and amplifier circuit. Brain activity induced by tFUS was monitored through cerebral hemodynamic changes using near-infrared spectroscopy. The system was also applied to stroke rehabilitation after temporal middle cerebral artery occlusion (tMCAO) in rats. Temperature calculations and histological results showed the safety of the application even with prolonged 40 min sonication. RESULTS The output ultrasonic wave produced from a custom PZT transducer had a central frequency of 457 kHz and peak to peak pressure of 426 kPa. The device weight was 20 g, allowing a full range of motion. The stimulation was found to induce hemodynamic changes in the sonicated area, while open-field tests showed that ultrasound applied to the ipsilateral hemisphere for 5 consecutive days after the stroke facilitated recovery. CONCLUSION The wearable tFUS system has been designed and implemented on moving rats. The results showed the ability of device to cause both short- and long lasting effects. SIGNIFICANCE The proposed device provides a more natural environment to investigate the effects of tFUS for behavioral and long-term studies.
Collapse
|
5
|
Shim H, Lee J, Kim S. BOLD fMRI and hemodynamic responses to somatosensory stimulation in anesthetized mice: spontaneous breathing vs. mechanical ventilation. NMR IN BIOMEDICINE 2020; 33:e4311. [PMID: 32297409 PMCID: PMC7317444 DOI: 10.1002/nbm.4311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Mouse functional MRI (fMRI) has been of great interest due to the abundance of transgenic models. Due to a mouse's small size, spontaneous breathing has often been used. Because the vascular physiology affecting fMRI might not be controlled normally, its effects on functional responses were investigated with optical intrinsic signal (OIS) imaging and 9.4 T BOLD fMRI. Three conditions were tested in C57BL/6 mice: spontaneous breathing under ketamine and xylazine anesthesia (KX), mechanical ventilation under KX, and mechanical ventilation under isoflurane. Spontaneous breathing under KX induced an average pCO2 of 83 mmHg, whereas a mechanical ventilation condition achieved a pCO2 of 37-41 mmHg within a physiological range. The baseline diameter of arterial and venous vessels was only 7%-9% larger with spontaneous breathing than with mechanical ventilation under KX, but it was much smaller than that in normocapnic isoflurane-anesthetized mice. Three major functional studies were performed. First, CBV-weighted OIS and arterial dilations to 4-second forepaw stimulation were rapid and larger at normocapnia than hypercapnia under KX, but very small under isoflurane. Second, CBV-weighted OIS and arterial dilations by vasodilator acetazolamide were measured for investigating vascular reactivity and were larger in the normocapnic condition than in the hypercapnic condition under KX. Third, evoked OIS and BOLD fMRI responses in the contralateral mouse somatosensory cortex to 20-second forepaw stimulation were faster and larger in the mechanical ventilation than spontaneous breathing. BOLD fMRI peaked at the end of the 20-second stimulation under hypercapnic spontaneous breathing, and at ~9 seconds under mechanical ventilation. The peak amplitude of BOLD fMRI was 2.2% at hypercapnia and ~3.4% at normocapnia. Overall, spontaneous breathing induces sluggish reduced hemodynamic and fMRI responses, but it is still viable for KX anesthesia due to its simplicity, noninvasiveness, and well-localized BOLD activity in the somatosensory cortex.
Collapse
Affiliation(s)
- Hyun‐Ji Shim
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoul06355Republic of Korea
| | - Joonyeol Lee
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging Research (CNIR)Institute for Basic Science (IBS)Suwon16419Republic of Korea
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoul06355Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|