1
|
He M, Hickam BP, Harper N, Cushing SK. Experimental upper bounds for resonance-enhanced entangled two-photon absorption cross section of indocyanine green. J Chem Phys 2024; 160:094305. [PMID: 38445732 DOI: 10.1063/5.0193311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Resonant intermediate states have been proposed to increase the efficiency of entangled two-photon absorption (ETPA). Although resonance-enhanced ETPA (r-ETPA) has been demonstrated in atomic systems using bright squeezed vacuum, it has not been studied in organic molecules. We investigate for the first time r-ETPA in an organic molecular dye, indocyanine green (ICG), when excited by broadband entangled photons in near-IR. Similar to many reported virtual state mediated ETPA (v-ETPA) measurements, no r-ETPA signals are measured, with an experimental upper bound for the cross section placed at 6(±2) × 10-23 cm2. In addition, the classical resonance-enhanced two-photon absorption (r-TPA) cross section of ICG at 800 nm is measured for the first time to be 20(±13) GM, where 1 GM equals 10-50 cm4 s, suggesting that having a resonant intermediate state does not significantly enhance two-photon processes in ICG. The spectrotemporally resolved emission signatures of ICG excited by entangled photons are also presented to support this conclusion.
Collapse
Affiliation(s)
- Manni He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Bryce P Hickam
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Nathan Harper
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
2
|
Díaz Tovar JS, Kassab G, Inada NM, Bagnato VS, Kurachi C. Photobleaching Kinetics and Effect of Solvent in the Photophysical Properties of Indocyanine Green for Photodynamic Therapy. Chemphyschem 2023; 24:e202300381. [PMID: 37431987 DOI: 10.1002/cphc.202300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Indocyanine green is an attractive molecule for photodynamic therapy due to its near infrared absorption, resulting in a higher tissue penetration. However, its quantum yields of the triplet and singlet state have been reported to be low and then, reactive oxygen species are unlikely to be formed. Aiming to understand the ICG role in photodynamic response, its photobleaching behavior in solution has been studied under distinct conditions of CW laser irradiation at 780 and 808 nm, oxygen saturations and solvents. Sensitizer bleaching and photoproduct formation were measured by absorption spectroscopy and analyzed using the PDT bleaching macroscopic model to extract physical parameters. ICG photobleaching occurs even at lower oxygen concentrations, indicating that the molecule presents more than one way of degradation. Photoproducts were produced even in solution of less than 4 % oxygen saturation for both solvents and excitation wavelengths. Also, the amplitude of absorption related to J-dimers was increased during irradiation, but only in 50 % PBS solution. The formation of photoproducts was enhanced in the presence of J-type dimers under low oxygen concentration, and the quantum yields of triplet and singlet states were one order of magnitude and two times higher, respectively, when compared to ICG in distilled H2 O.
Collapse
Affiliation(s)
- Johan Sebastián Díaz Tovar
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-carlense, n° 400 Parque Arnold Schimidt - CEP, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
3
|
Wang D, Chen Y, Xia T, Claudino M, Melendez A, Ni X, Dong C, Liu Z, Yang J. Citric Acid-Based Intrinsic Band-Shifting Photoluminescent Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0152. [PMID: 37256199 PMCID: PMC10226408 DOI: 10.34133/research.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Citric acid, an important metabolite with abundant reactive groups, has been demonstrated as a promising starting material to synthesize diverse photoluminescent materials including small molecules, polymers, and carbon dots. The unique citrate chemistry enables the development of a series of citric acid-based molecules and nanomaterials with intriguing intrinsic band-shifting behavior, where the emission wavelength shifts as the excitation wavelength increases, ideal for chromatic imaging and many other applications. In this review, we discuss the concept of "intrinsic band-shifting photoluminescent materials", introduce the recent advances in citric acid-based intrinsic band-shifting materials, and discuss their potential applications such as chromatic imaging and multimodal sensing. It is our hope that the insightful and forward-thinking discussion in this review will spur the innovation and applications of the unique band-shifting photoluminescent materials.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Yizhu Chen
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Tunan Xia
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Mariana Claudino
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Allison Melendez
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute,
The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences,
The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
5
|
Nicolas MF, Marin JH, Paganoto GT, Fernandes RF, Temperini MLA. Surface-Enhanced Raman and Surface-Enhanced fluorescence of charged dyes based on alginate silver nanoparticles and its calcium alginate hydrogel beads. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121211. [PMID: 35397453 DOI: 10.1016/j.saa.2022.121211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
This study shows a new SERS (Surface-enhanced Raman Scattering) and SEF (Surface-enhanced Fluorescence) platform approach, in which substrates were constructed from the silver nanoparticles stabilized by alginate polymer (AgALG) and encapsulated in hydrogel calcium alginate beads (AgALGbead). In this regard, the electrostatic repulsion or attraction concerning the charged dyes and the carboxylate groups of the alginate could define the distances between the probe molecules and metallic nanoparticles to determine the SERS or SEF effect. In this sense, the anionic dye named New Indocyanine Green (IR-820) and the cationic dye Rhodamine 6G (Rh6G) were selected to discuss the alginate's ability to quench or enhance the fluorescence and the Raman dyes signals. Furthermore, the SEF effect using the IR-820 dye can be detected for the near-infrared emission (S1 → S0) using the 532 and 633 nm laser lines as well at the visible region (S2 → S0) applying the excitation at 532 nm in the AgALGbead substrates. Nevertheless, the cationic dye provides the Surface-enhanced Resonance Raman Scattering (SERRS) effect and quenching of the fluorescence for the same AgALGbeads substrate at 532 nm laser line.
Collapse
Affiliation(s)
- Mari F Nicolas
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Jayr H Marin
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Giordano T Paganoto
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Rafaella F Fernandes
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Marcia L A Temperini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
6
|
Dimitriev OP, Piryatinski YP, Slominskii YL, Ryabitskii AB. "Awakening" of the S 2 Emission of Tricarbocyanine Dyes Stimulated by Interaction with Carbon Quantum Dots. J Phys Chem Lett 2022; 13:6619-6627. [PMID: 35834739 DOI: 10.1021/acs.jpclett.2c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anti-Kasha emission (i.e., the emission from Sn (n > 1) excited levels) of infrared chromophores which possess intensive absorption and S1 emission in the near-infrared region, but which are spectrally silent in the visible, is a challenging task for relevant applications such as energy conversion, bioimaging, sensitization of solar cells, optical sensors, and so on. Here we demonstrate a dual emission of near-infrared tricarbocyanine dyes with a bright green S2 fluorescence, whose quantum yield increases by 2-4 times together with a strong enhancement of the spontaneous rate of S2 fluorescence, whereas the quantum yield of S1 emission decreases by 2-7 times, respectively, as a result of immobilization of the dye molecule via interaction with carbon quantum dots. The enhanced immobilization-induced S2 emission is shown to occur because of planarization of the molecule and freezing its rotational degrees of freedom as indicated by suppression of the dye hot-band absorption-assisted anti-Stokes S1 emission.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| | | | - Yuri L Slominskii
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska St., Kyiv 02660, Ukraine
| | - Aleksey B Ryabitskii
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska St., Kyiv 02660, Ukraine
| |
Collapse
|
7
|
Shaw PA, Forsyth E, Haseeb F, Yang S, Bradley M, Klausen M. Two-Photon Absorption: An Open Door to the NIR-II Biological Window? Front Chem 2022; 10:921354. [PMID: 35815206 PMCID: PMC9263132 DOI: 10.3389/fchem.2022.921354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The way in which photons travel through biological tissues and subsequently become scattered or absorbed is a key limitation for traditional optical medical imaging techniques using visible light. In contrast, near-infrared wavelengths, in particular those above 1000 nm, penetrate deeper in tissues and undergo less scattering and cause less photo-damage, which describes the so-called "second biological transparency window". Unfortunately, current dyes and imaging probes have severely limited absorption profiles at such long wavelengths, and molecular engineering of novel NIR-II dyes can be a tedious and unpredictable process, which limits access to this optical window and impedes further developments. Two-photon (2P) absorption not only provides convenient access to this window by doubling the absorption wavelength of dyes, but also increases the possible resolution. This review aims to provide an update on the available 2P instrumentation and 2P luminescent materials available for optical imaging in the NIR-II window.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime Klausen
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Hou Z, Guan J, Peng J, Li X, Yu Z, Zheng J. Double crossing conical intersections and anti-Vavilov fluorescence in tetraphenyl ethylene. J Chem Phys 2022; 156:144302. [DOI: 10.1063/5.0082679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Conical intersections (CIs) provide effective fast nonradiative decay pathways for electronic excitation, which can significantly influence molecular photoluminescence properties. However, in many cases, crossing a CI does not have direct observables, making studies of CIs experimentally challenging. Herein, the theoretically predicted double CIs by cis–trans twisting and cyclization in tetraphenyl ethylene, a well-known aggregation-induced emission molecule, are investigated with excitation dependent ultrafast UV/IR spectroscopy and fluorescence. Both the fluorescence quantum yield and the efficiency of cyclization are found to be smaller with a shorter excitation wavelength. An abrupt change occurs at about 300–310 nm. The results imply that crossing the twisting CI has a larger barrier than the cyclization CI, and the cis–trans twisting motion is probably involved with large solvation reorganization.
Collapse
Affiliation(s)
- Zhuowei Hou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jianxin Guan
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Jie Peng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xinmao Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhihao Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
9
|
Ni W, Gurzadyan GG, Sun L, Gelin MF. Toward efficient photochemistry from upper excited electronic states: Detection of long S 2 lifetime of perylene. J Chem Phys 2021; 155:191102. [PMID: 34800965 DOI: 10.1063/5.0069398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A long 0.9 ps lifetime of the upper excited singlet state in perylene is resolved by femtosecond pump-probe measurements under ultraviolet (4.96 eV) excitation and further validated by theoretical simulations of transient absorption kinetics. This finding prompts exploration and development of novel perylene-based materials for upper excited state photochemistry applications.
Collapse
Affiliation(s)
- Wenjun Ni
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, 116024 Dalian, China
| | - Gagik G Gurzadyan
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, 116024 Dalian, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| |
Collapse
|
10
|
Prompt and Long-Lived Anti-Kasha Emission from Organic Dyes. Molecules 2021; 26:molecules26226999. [PMID: 34834093 PMCID: PMC8623836 DOI: 10.3390/molecules26226999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Anti-Kasha behavior has been the subject of intense debate in the last few years, as demonstrated by the high number of papers appearing in the literature on this topic, dealing with both mechanistic and applicative aspects of this phenomenon. Examples of anomalous emitters reported in the last 10 years are collected in the present review, which is focused on strictly anti-Kasha organic molecules displaying radiative deactivation from Sn and/or Tn, with n greater than 1.
Collapse
|
11
|
Wan S, Xia S, Medford J, Durocher E, Steenwinkel TE, Rule L, Zhang Y, Luck RL, Werner T, Liu H. A ratiometric near-infrared fluorescent probe based on a novel reactive cyanine platform for mitochondrial pH detection. J Mater Chem B 2021; 9:5150-5161. [PMID: 34132313 PMCID: PMC8265329 DOI: 10.1039/d1tb00643f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A near-infrared reactive cyanine platform (probe A) was prepared by condensation of 9-chloro-1,2,3,4-tetrahydro-10-methyl-acridinium iodide with Fisher's aldehyde. A near-infrared fluorescent probe (probe B) was prepared by modifying a reactive chlorine atom of probe A with tert-butyl(2-aminoethyl)carbamate through a substitution reaction. The deprotection of the Boc group of probe B was achieved under an acidic condition, affording an amine-functionalized cyanine dye (probe C). A near-infrared ratiometric fluorescent probe (probe D) for mitochondrial pH detection was synthesized by conjugating a FRET coumarin donor to a FRET cyanine acceptor (probe C) through an amide bond connection. Probe A shows low fluorescence of 2% due to an electron-withdrawing chlorine atom, while probes B-D display high fluorescence quantum yields of 60%, 32%, and 35% in aqueous solutions containing 10% ethanol, respectively. Probes B-D show strong fluorescence with push-pull molecular structures in neutral and basic pH conditions. However, protonation of the probe's second amine at the 9-position under acidic condition disrupts the push-pull feature of the probes, resulting in fluorescence quenching of the new cyanine fluorophores. The probes can selectively stain mitochondria, while probe D was employed to detect pH changes in HeLa cells and Drosophila melanogaster first-instar larvae.
Collapse
Affiliation(s)
- Shulin Wan
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bishnoi S, Kumari A, Rehman S, Minz A, Senapati S, Nayak D, Gupta S. Fusogenic Viral Protein-Based Near-Infrared Active Nanocarriers for Biomedical Imaging. ACS Biomater Sci Eng 2021; 7:3351-3360. [PMID: 34111927 DOI: 10.1021/acsbiomaterials.1c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An effective drug delivery system (DDS) relies on an efficient cellular uptake and faster intracellular delivery of theranostic agents, bypassing the endosomal mediated degradation of the payload. The use of viral nanoparticles (VNPs) permits such advancement, as the viruses are naturally evolved to infiltrate the host cells to deliver their genetic material. As a proof of concept, we bioengineered the vesicular stomatitis virus glycoprotein (VSV-G)-based near-infrared (NIR) active viral nanoconstructs (NAVNs) encapsulating indocyanine green dye (ICG) for NIR bioimaging. NAVNs are spherical in size and have the intrinsic cellular-fusogenic properties of VSV-G. Further, the NIR imaging displaying higher fluorescence intensity in NAVNs treated cells suggests enhanced cellular uptake and delivery of ICG by NAVNs compared to the free form of ICG. The overall study highlights the effectiveness of VSV-G-based VNPs as an efficient delivery system for NIR fluorescence imaging.
Collapse
Affiliation(s)
- Suman Bishnoi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Anshu Kumari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Medicine, University of Maryland Baltimore, Maryland 21201, United States
| | - Sheeba Rehman
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Aliva Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | | | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
13
|
Deng X, He C, Cheng H, Li J, Lu Y, Qiu P, Wang K. Measurement of two-photon properties of indocyanine green in water and human plasma excited at the 1700-nm window. JOURNAL OF BIOPHOTONICS 2020; 13:e202000299. [PMID: 33026179 DOI: 10.1002/jbio.202000299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Indocyanine green (ICG) is a human compatible dye and is ideal for deep-tissue two-photon fluorescence (2PF) microscopy excited at the 1700-nm window in vivo. However, the two-photon excitation and emission properties of this dye remain unknown. Here we demonstrate measurement of the two-photon excitation and emission properties of ICG in both water and human plasma, using home-built two-photon action cross-sectional measurement and two-photon emission spectrum measurement systems. Our results show that excited from 1600 to 1800 nm, 2PF can be generated from ICG dissolved in both water and human plasma. The measured two-photon action cross-sectional ησ2 of ICG dissolved in human plasma is an order-of-magnitude larger than that dissolved in water. The measured two-photon emission spectrum overlaps with the one-photon emission spectrum for ICG dissolved in both human plasma and water. Our results will provide key two-photon parameters for the clinical use of ICG.
Collapse
Affiliation(s)
- Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chen He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Hui Cheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jia Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yuan Lu
- Department of Dermatology, The Sixth Hospital of Shenzhen University (Nanshan Hospital), Shenzhen, China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Kumari A, Kumari K, Gupta S. Protease Responsive Essential Amino-Acid Based Nanocarriers for Near-Infrared Imaging. Sci Rep 2019; 9:20334. [PMID: 31889129 PMCID: PMC6937316 DOI: 10.1038/s41598-019-56871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/18/2019] [Indexed: 11/09/2022] Open
Abstract
Delivery of the theranostic agents with effective concentration to the desired sites inside the body is a major challenge in disease management. Nanotechnology has gained attention for the delivery of theranostic agents to the targeted location. The use of essential amino-acid based homopolymers for the synthesis of biocompatible and biodegradable nanoparticles (NPs) could serve as a nanocarrier for delivery applications. In this study, poly-l-lysine (PLL) and salts were used to fabricate the NPs for the delivery of exogenous contrast agents. Here, indocyanine green (ICG) was encapsulated within these NPs, and a simple two-step green chemistry-based self-assembly process was used for the fabrication. The morphological and biochemical characterizations confirm the formation of ICG encapsulating spherical PLL NPs with an average diameter of ~225 nm. Further, a detailed study has been carried out to understand the role of constituents in the assembly mechanism of PLL NPs. Our results show a controlled release of the ICG from PLL NPs in the presence of the proteolytic enzyme. In-vitro cellular studies suggest that the PLL NPs were readily taken up by the cells showing their superior delivery efficiency of ICG in comparison to the free-form of the ICG.
Collapse
Affiliation(s)
- Anshu Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Kalpana Kumari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
- Metallurgical Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|