1
|
Ndabakuranye JP, Belcourt J, Sharma D, O'Connell CD, Mondal V, Srivastava SK, Stacey A, Long S, Fleiss B, Ahnood A. Miniature fluorescence sensor for quantitative detection of brain tumour. LAB ON A CHIP 2024; 24:946-954. [PMID: 38275166 DOI: 10.1039/d3lc00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Fluorescence-guided surgery has emerged as a vital tool for tumour resection procedures. As well as intraoperative tumour visualisation, 5-ALA-induced PpIX provides an avenue for quantitative tumour identification based on ratiometric fluorescence measurement. To this end, fluorescence imaging and fibre-based probes have enabled more precise demarcation between the cancerous and healthy tissues. These sensing approaches, which rely on collecting the fluorescence light from the tumour resection site and its "remote" spectral sensing, introduce challenges associated with optical losses. In this work, we demonstrate the viability of tumour detection at the resection site using a miniature fluorescence measurement system. Unlike the current bulky systems, which necessitate remote measurement, we have adopted a millimetre-sized spectral sensor chip for quantitative fluorescence measurements. A reliable measurement at the resection site requires a stable optical window between the tissue and the optoelectronic system. This is achieved using an antifouling diamond window, which provides stable optical transparency. The system achieved a sensitivity of 92.3% and specificity of 98.3% in detecting a surrogate tumour at a resolution of 1 × 1 mm2. As well as addressing losses associated with collecting and coupling fluorescence light in the current 'remote' sensing approaches, the small size of the system introduced in this work paves the way for its direct integration with the tumour resection tools with the aim of more accurate interoperative tumour identification.
Collapse
Affiliation(s)
| | | | - Deepak Sharma
- School of Engineering, RMIT University, VIC 3000, Australia.
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Cathal D O'Connell
- School of Engineering, RMIT University, VIC 3000, Australia.
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, VIC 3065, Australia
| | - Victor Mondal
- School of Health and Biomedical Sciences, RMIT University, VIC 3000, Australia
| | - Sanjay K Srivastava
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Alastair Stacey
- School of Science, RMIT University, VIC 3000, Australia
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, 08540 New Jersey, USA
| | - Sam Long
- Veterinary Referral Hospital, Victoria, Australia
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, VIC 3000, Australia
| | - Arman Ahnood
- School of Engineering, RMIT University, VIC 3000, Australia.
| |
Collapse
|
2
|
Pogue BW, Zhu TC, Ntziachristos V, Wilson BC, Paulsen KD, Gioux S, Nordstrom R, Pfefer TJ, Tromberg BJ, Wabnitz H, Yodh A, Chen Y, Litorja M. AAPM Task Group Report 311: Guidance for performance evaluation of fluorescence-guided surgery systems. Med Phys 2024; 51:740-771. [PMID: 38054538 DOI: 10.1002/mp.16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The last decade has seen a large growth in fluorescence-guided surgery (FGS) imaging and interventions. With the increasing number of clinical specialties implementing FGS, the range of systems with radically different physical designs, image processing approaches, and performance requirements is expanding. This variety of systems makes it nearly impossible to specify uniform performance goals, yet at the same time, utilization of different devices in new clinical procedures and trials indicates some need for common knowledge bases and a quality assessment paradigm to ensure that effective translation and use occurs. It is feasible to identify key fundamental image quality characteristics and corresponding objective test methods that should be determined such that there are consistent conventions across a variety of FGS devices. This report outlines test methods, tissue simulating phantoms and suggested guidelines, as well as personnel needs and professional knowledge bases that can be established. This report frames the issues with guidance and feedback from related societies and agencies having vested interest in the outcome, coming from an independent scientific group formed from academics and international federal agencies for the establishment of these professional guidelines.
Collapse
Affiliation(s)
- Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy C Zhu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Munich, Helmholtz Zentrum Munich, Munich, Germany
| | - Brian C Wilson
- Department of Medical Biophysics, University of Toronto, University Health Network, Toronto, Ontario, Canada
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Sylvain Gioux
- Department of Biomedical Engineering, University of Strasbourg, Strasbourg, France
| | - Robert Nordstrom
- Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bruce J Tromberg
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Arjun Yodh
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Chen
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Maritoni Litorja
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
3
|
García MJ, Kamaid A, Malacrida L. Label-free fluorescence microscopy: revisiting the opportunities with autofluorescent molecules and harmonic generations as biosensors and biomarkers for quantitative biology. Biophys Rev 2023; 15:709-719. [PMID: 37681086 PMCID: PMC10480099 DOI: 10.1007/s12551-023-01083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, the utilization of advanced fluorescence microscopy technologies has presented numerous opportunities to study or re-investigate autofluorescent molecules and harmonic generation signals as molecular biomarkers and biosensors for in vivo cell and tissue studies. The label-free approaches benefit from the endogenous fluorescent molecules within the cell and take advantage of their spectroscopy properties to address biological questions. Harmonic generation can be used as a tool to identify the occurrence of fibrillar or lipid deposits in tissues, by using second and third-harmonic generation microscopy. Combining autofluorescence with novel techniques and tools such as fluorescence lifetime imaging microscopy (FLIM) and hyperspectral imaging (HSI) with model-free analysis of phasor plots has revolutionized the understanding of molecular processes such as cellular metabolism. These tools provide quantitative information that is often hidden under classical intensity-based microscopy. In this short review, we aim to illustrate how some of these technologies and techniques may enable investigation without the need to add a foreign fluorescence molecule that can modify or affect the results. We address some of the most important autofluorescence molecules and their spectroscopic properties to illustrate the potential of these combined tools. We discuss using them as biomarkers and biosensors and, under the lens of this new technology, identify some of the challenges and potentials for future advances in the field.
Collapse
Affiliation(s)
- María José García
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo & Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Haddad AF, Aghi MK, Butowski N. Novel intraoperative strategies for enhancing tumor control: Future directions. Neuro Oncol 2022; 24:S25-S32. [PMID: 36322096 PMCID: PMC9629473 DOI: 10.1093/neuonc/noac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Maximal safe surgical resection plays a key role in the care of patients with gliomas. A range of technologies have been developed to aid surgeons in distinguishing tumor from normal tissue, with the goal of increasing tumor resection and limiting postoperative neurological deficits. Technologies that are currently being investigated to aid in improving tumor control include intraoperative imaging modalities, fluorescent tumor makers, intraoperative cell and molecular profiling of tumors, improved microscopic imaging, intraoperative mapping, augmented and virtual reality, intraoperative drug and radiation delivery, and ablative technologies. In this review, we summarize the aforementioned advancements in neurosurgical oncology and implications for improving patient outcomes.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Strickland BA, Wedemeyer M, Ruzevick J, Micko A, Shahrestani S, Daneshmand S, Shiroishi MS, Hwang DH, Attenello F, Chen T, Zada G. 5-Aminolevulinic acid-enhanced fluorescence-guided treatment of high-grade glioma using angled endoscopic blue light visualization: technical case series with preliminary follow-up. J Neurosurg 2022; 137:1378-1386. [PMID: 35303704 DOI: 10.3171/2022.1.jns212562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE 5-Aminolevulinic acid (5-ALA)-enhanced fluorescence-guided resection of high-grade glioma (HGG) using microscopic blue light visualization offers the ability to improve extent of resection (EOR); however, few descriptions of HGG resection performed using endoscopic blue light visualization are currently available. In this report, the authors sought to describe their surgical experience and patient outcomes of 5-ALA-enhanced fluorescence-guided resection of HGG using primary or adjunctive endoscopic blue light visualization. METHODS The authors performed a retrospective review of prospectively collected data from 30 consecutive patients who underwent 5-ALA-enhanced fluorescence-guided biopsy or resection of newly diagnosed HGG was performed. Patient demographic data, tumor characteristics, surgical technique, EOR, tumor fluorescence patterns, and progression-free survival were recorded. RESULTS In total, 30 newly diagnosed HGG patients were included for analysis. The endoscope was utilized for direct 5-ALA-guided port-based biopsy (n = 9), microscopic to endoscopic (M2E; n = 18) resection, or exoscopic to endoscopic (E2E; n = 3) resection. All endoscopic biopsies of fluorescent tissue were diagnostic. 5-ALA-enhanced tumor fluorescence was visible in all glioblastoma cases, but only in 50% of anaplastic astrocytoma cases and no anaplastic oligodendroglioma cases. Gross-total resection (GTR) was achieved in 10 patients in whom complete resection was considered safe, with 11 patients undergoing subtotal resection. In all cases, endoscopic fluorescence was more avid than microscopic fluorescence. The endoscope offered the ability to diagnose and resect additional tumor not visualized by the microscope in 83.3% (n = 10/12) of glioblastoma cases, driven by angled lenses and increased fluorescence facilitated by light source delivery within the cavity. Mean volumetric EOR was 90.7% in all resection patients and 98.8% in patients undergoing planned GTR. No complications were attributable to 5-ALA or blue light endoscopy. CONCLUSIONS The blue light endoscope is a viable primary or adjunctive visualization platform for optimization of 5-ALA-enhanced HGG fluorescence. Implementation of the blue light endoscope to guide resection of HGG glioma is feasible and ergonomically favorable, with a potential advantage of enabling increased detection of tumor fluorescence in deep surgical cavities compared to the microscope.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark S Shiroishi
- 3Radiology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Darryl H Hwang
- 3Radiology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | |
Collapse
|
6
|
Improved Protoporphyrin IX-Guided Neurosurgical Tumor Detection with Frequency-Domain Fluorescence Lifetime Imaging. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Precise intraoperative brain tumor visualization supports surgeons in achieving maximal safe resection. In this sense, improved prognosis in patients with high-grade gliomas undergoing protoporphyrin IX fluorescence-guided surgery has been demonstrated. Phase fluorescence lifetime imaging in the frequency-domain has shown promise to distinguish weak protoporphyrin IX fluorescence from competing endogenous tissue fluorophores, thus allowing for brain tumor detection with high sensitivity. In this work, we show that this technique can be further improved by minimizing the crosstalk of autofluorescence signal contributions when only detecting the fluorescence emission above 615 nm. Combining fluorescence lifetime and spectroscopic measurements on a set of 130 ex vivo brain tumor specimens (14 low- and 56 high-grade gliomas, 39 meningiomas and 21 metastases) coherently substantiated the resulting increase of the fluorescence lifetime with respect to the detection band employed in previous work. This is of major interest for obtaining a clear-cut distinction from the autofluorescence background of the physiological brain. In particular, the median fluorescence lifetime of low- and high-grade glioma specimens lacking visual fluorescence during surgical resection was increased from 4.7 ns to 5.4 ns and 2.9 ns to 3.3 ns, respectively. While more data are needed to create statistical evidence, the coherence of what was observed throughout all tumor groups emphasized that this optimization should be taken into account for future studies.
Collapse
|
7
|
Choi S, Lee J, Lee K, Yoon SM, Yoon M. Porphyrin-decorated ZnO nanowires as nanoscopic injectors for phototheragnosis of cancer cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj02084j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized protoporphyrin-decorated ZnO-nanowires exhibited optical waveguided and photodynamic properties to be useful nanoscopic injectors for photo-theragnosis of cancer cells.
Collapse
Affiliation(s)
- Sunyoung Choi
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jooran Lee
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
- TheraNovis Inc. 32 Seongnae-ro 6-gil, Gangdong-gu, Seoul, Republic of Korea
| | - Kangmin Lee
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Republic of Korea
| | - Minjoong Yoon
- Molecular/Nano Photochemistry and Photonics Lab, Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
8
|
Becker L, Janssen N, Layland SL, Mürdter TE, Nies AT, Schenke-Layland K, Marzi J. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers (Basel) 2021; 13:cancers13225682. [PMID: 34830837 PMCID: PMC8616063 DOI: 10.3390/cancers13225682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.
Collapse
Affiliation(s)
- Lucas Becker
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Shannon L Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA
| | - Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
9
|
Wadiura LI, Reichert D, Sperl V, Lang A, Kiesel B, Erkkilae M, Wöhrer A, Furtner J, Roetzer T, Leitgeb R, Mischkulnig M, Widhalm G. Influence of dexamethasone on visible 5-ALA fluorescence and quantitative protoporphyrin IX accumulation measured by fluorescence lifetime imaging in glioblastomas: is pretreatment obligatory before fluorescence-guided surgery? J Neurosurg 2021:1-9. [PMID: 34678775 DOI: 10.3171/2021.6.jns21940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) is nowadays widely applied for improved resection of glioblastomas (GBMs). Initially, pretreatment with dexamethasone was considered to be essential for optimal fluorescence effect. However, recent studies reported comparably high rates of visible fluorescence in GBMs despite absence of dexamethasone pretreatment. Recently, the authors proposed fluorescence lifetime imaging (FLIM) for the quantitative analysis of 5-ALA-induced protoporphyrin IX (PpIX) accumulation. The aim of this study was thus to investigate the influence of dexamethasone on visible fluorescence and quantitative PpIX accumulation. METHODS The authors prospectively analyzed the presence of visible fluorescence during surgery in a cohort of patients with GBMs. In this study, patients received dexamethasone preoperatively only if clinically indicated. One representative tumor sample was collected from each GBM, and PpIX accumulation was analyzed ex vivo by FLIM. The visible fluorescence status and mean FLIM values were correlated with preoperative intake of dexamethasone. RESULTS In total, two subgroups with (n = 27) and without (n = 20) pretreatment with dexamethasone were analyzed. All patients showed visible fluorescence independent from preoperative dexamethasone intake. Furthermore, the authors did not find a statistically significant difference in the mean FLIM values between patients with and without dexamethasone pretreatment (p = 0.097). CONCLUSIONS In this first study to date, the authors found no significant influence of dexamethasone pretreatment on either visible 5-ALA fluorescence during GBM surgery or PpIX accumulation based on FLIM. According to these preliminary data, the authors recommend administering dexamethasone prior to fluorescence-guided surgery of GBMs only when clinically indicated.
Collapse
Affiliation(s)
- Lisa I Wadiura
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - David Reichert
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Veronika Sperl
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Alexandra Lang
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Barbara Kiesel
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | | | - Adelheid Wöhrer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Julia Furtner
- 5Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology; and.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Thomas Roetzer
- 4Department of Neurology-Division for Neuropathology and Neurochemistry.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Rainer Leitgeb
- 2Center for Medical Physics and Biomedical Engineering.,3Christian Doppler Laboratory OPTRAMED
| | - Mario Mischkulnig
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| | - Georg Widhalm
- 1Department of Neurosurgery.,6Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Austria
| |
Collapse
|
10
|
Abstract
In this work, a new approach was tested to assess the cellular composition of tissues by time-resolved methods of fluorescence analysis of exogenous and endogenous fluorophores. First of all, the differences in fluorescence kinetics of endogenous fluorophores (coenzymes NADH and FAD) in tumour and immunocompetent cells were determined. After that, differences in fluorescence kinetics of photosensitizer 5 ALA-induced protoporphyrin IX were established due to its different metabolism in cells of different phenotypes. Kinetics of photoluminescence of NADH and FAD coenzymes as well as photosensitizer were studied by means of two different methods: time-resolved spectroscopy based on a streak-camera and fibre optic neuroscopy, which served to perform process monitoring and regular fluorescence diagnosis of the probed region. Time-resolved fluorescence microscopy (FLIM) was used as a control technique. Time-resolved spectroscopic fluorescence lifetime analysis was performed on sexually mature female rats induced with glioma C6 brain tumour under in vivo conditions; thus, under conditions where the immune system actively intervenes in the process of oncogenesis. In this regard, the aim of the study was to recognize the cellular composition of the brain tumour tissue, namely the ratio of cancer and immunocompetent cells and their mutual localization. Understanding the role of the immune system thus provides new ways and approaches for further diagnosis and therapy, making tumour-associated immune cells a prime target for modern therapies.
Collapse
|
11
|
Reichert D, Erkkilae MT, Gesperger J, Wadiura LI, Lang A, Roetzer T, Woehrer A, Andreana M, Unterhuber A, Wilzbach M, Hauger C, Drexler W, Kiesel B, Widhalm G, Leitgeb RA. Fluorescence Lifetime Imaging and Spectroscopic Co-Validation for Protoporphyrin IX-Guided Tumor Visualization in Neurosurgery. Front Oncol 2021; 11:741303. [PMID: 34595120 PMCID: PMC8476921 DOI: 10.3389/fonc.2021.741303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Maximal safe resection is a key strategy for improving patient prognosis in the management of brain tumors. Intraoperative fluorescence guidance has emerged as a standard in the surgery of high-grade gliomas. The administration of 5-aminolevulinic acid prior to surgery induces tumor-specific accumulation of protoporphyrin IX, which emits red fluorescence under blue-light illumination. The technology, however, is substantially limited for low-grade gliomas and weakly tumor-infiltrated brain, where low protoporphyrin IX concentrations are outweighed by tissue autofluorescence. In this context, fluorescence lifetime imaging has shown promise to distinguish spectrally overlapping fluorophores. We integrated frequency-domain fluorescence lifetime imaging in a surgical microscope and combined it with spatially registered fluorescence spectroscopy, which can be considered a research benchmark for sensitive protoporphyrin IX detection. Fluorescence lifetime maps and spectra were acquired for a representative set of fresh ex-vivo brain tumor specimens (low-grade gliomas n = 15, high-grade gliomas n = 80, meningiomas n = 41, and metastases n = 35). Combining the fluorescence lifetime with fluorescence spectra unveiled how weak protoporphyrin IX accumulations increased the lifetime respective to tissue autofluorescence. Infiltration zones (4.1ns ± 1.8ns, p = 0.017) and core tumor areas (4.8ns ± 1.3ns, p = 0.040) of low-grade gliomas were significantly distinguishable from non-pathologic tissue (1.6ns ± 0.5ns). Similarly, fluorescence lifetimes for infiltrated and reactive tissue as well as necrotic and core tumor areas were increased for high-grade gliomas and metastasis. Meningioma tumor specimens showed strongly increased lifetimes (12.2ns ± 2.5ns, p = 0.005). Our results emphasize the potential of fluorescence lifetime imaging to optimize maximal safe resection in brain tumors in future and highlight its potential toward clinical translation.
Collapse
Affiliation(s)
- David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lisa I Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marco Wilzbach
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Christoph Hauger
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
13
|
Lee J, Kim B, Park B, Won Y, Kim SY, Lee S. Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH. Sci Rep 2021; 11:16864. [PMID: 34413447 PMCID: PMC8376886 DOI: 10.1038/s41598-021-96531-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
A biopsy is often performed for the diagnosis of cancer during a surgical operation. In addition, pathological biopsy is required to discriminate the margin between cancer tissues and normal tissues in surgical specimens. In this study, we presented a novel method for discriminating between tumor and normal tissues using fluorescence lifetime endoscopy (FLE). We demonstrated the relationship between the fluorescence lifetime and pH in fluorescein using the proposed fluorescence lifetime measurement system. We also showed that cancer could be diagnosed based on this relationship by assessing differences in pH based fluorescence lifetime between cancer and normal tissues using two different types of tumor such as breast tumors (MDA-MB-361) and skin tumors (A375), where cancer tissues have ranged in pH from 4.5 to 7.0 and normal tissues have ranged in pH from 7.0 to 7.4. To support this approach, we performed hematoxylin and eosin (H&E) staining test of normal and cancer tissues within a certain area. From these results, we showed the ability to diagnose a cancer using FLE technique, which were consistent with the diagnosis of a cancer with H&E staining test. In summary, the proposed pH-based FLE technique could provide a real time, in vivo, and in-situ clinical diagnostic method for the cancer surgical and could be presented as an alternative to biopsy procedures.
Collapse
Affiliation(s)
- Jooran Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungyeon Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungjun Park
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Youngjae Won
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
- Intek-Medi, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736, South Korea
| | - Seungrag Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
14
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Alfonso-Garcia A, Bec J, Weyers B, Marsden M, Zhou X, Li C, Marcu L. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. JOURNAL OF BIOPHOTONICS 2021; 14:e202000472. [PMID: 33710785 PMCID: PMC8579869 DOI: 10.1002/jbio.202000472] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
Fluorescence lifetime imaging (FLIm) is an optical spectroscopic imaging technique capable of real-time assessments of tissue properties in clinical settings. Label-free FLIm is sensitive to changes in tissue structure and biochemistry resulting from pathological conditions, thus providing optical contrast to identify and monitor the progression of disease. Technical and methodological advances over the last two decades have enabled the development of FLIm instrumentation for real-time, in situ, mesoscopic imaging compatible with standard clinical workflows. Herein, we review the fundamental working principles of mesoscopic FLIm, discuss the technical characteristics of current clinical FLIm instrumentation, highlight the most commonly used analytical methods to interpret fluorescence lifetime data and discuss the recent applications of FLIm in surgical oncology and cardiovascular diagnostics. Finally, we conclude with an outlook on the future directions of clinical FLIm.
Collapse
Affiliation(s)
- Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Julien Bec
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Brent Weyers
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Mark Marsden
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Xiangnan Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department Neurological Surgery, University of California, Davis, California
| |
Collapse
|
16
|
Lukina M, Yashin K, Kiseleva EE, Alekseeva A, Dudenkova V, Zagaynova EV, Bederina E, Medyanic I, Becker W, Mishra D, Berezin M, Shcheslavskiy VI, Shirmanova M. Label-Free Macroscopic Fluorescence Lifetime Imaging of Brain Tumors. Front Oncol 2021; 11:666059. [PMID: 34109119 PMCID: PMC8181388 DOI: 10.3389/fonc.2021.666059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/27/2021] [Indexed: 01/20/2023] Open
Abstract
Advanced stage glioma is the most aggressive form of malignant brain tumors with a short survival time. Real-time pathology assisted, or image guided surgical procedures that eliminate tumors promise to improve the clinical outcome and prolong the lives of patients. Our work is focused on the development of a rapid and sensitive assay for intraoperative diagnostics of glioma and identification of optical markers essential for differentiation between tumors and healthy brain tissues. We utilized fluorescence lifetime imaging (FLIM) of endogenous fluorophores related to metabolism of the glioma from freshly excised brains tissues. Macroscopic time-resolved fluorescence images of three intracranial animal glioma models and surgical samples of patients' glioblastoma together with the white matter have been collected. Several established and new algorithms were applied to identify the imaging markers of the tumors. We found that fluorescence lifetime parameters characteristic of the glioma provided background for differentiation between the tumors and intact brain tissues. All three rat tumor models demonstrated substantial differences between the malignant and normal tissue. Similarly, tumors from patients demonstrated statistically significant differences from the peritumoral white matter without infiltration. While the data and the analysis presented in this paper are preliminary and further investigation with a larger number of samples is required, the proposed approach based on the macroscopic FLIM has a high potential for diagnostics of glioma and evaluation of the surgical margins of gliomas.
Collapse
Affiliation(s)
- Maria Lukina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Konstantin Yashin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena E. Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anna Alekseeva
- Department of Neuromorphology, Research Institute of Human Morphology, Moscow, Russia
| | - Varvara Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena V. Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Evgenia Bederina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Igor Medyanic
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Deependra Mishra
- Department of Radiology, Washington University School of Medicine, St Louis, MO, United States
| | - Mikhail Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO, United States
| | - Vladislav I. Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Becker&Hickl GmbH, Berlin, Germany
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
17
|
Erkkilä MT, Reichert D, Gesperger J, Kiesel B, Roetzer T, Mercea PA, Drexler W, Unterhuber A, Leitgeb RA, Woehrer A, Rueck A, Andreana M, Widhalm G. Macroscopic fluorescence-lifetime imaging of NADH and protoporphyrin IX improves the detection and grading of 5-aminolevulinic acid-stained brain tumors. Sci Rep 2020; 10:20492. [PMID: 33235233 PMCID: PMC7686506 DOI: 10.1038/s41598-020-77268-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Maximal safe tumor resection remains the key prognostic factor for improved prognosis in brain tumor patients. Despite 5-aminolevulinic acid-based fluorescence guidance the neurosurgeon is, however, not able to visualize most low-grade gliomas (LGG) and infiltration zone of high-grade gliomas (HGG). To overcome the need for a more sensitive visualization, we investigated the potential of macroscopic, wide-field fluorescence lifetime imaging of nicotinamide adenine dinucleotide (NADH) and protoporphyrin IX (PPIX) in selected human brain tumors. For future intraoperative use, the imaging system offered a square field of view of 11 mm at 250 mm free working distance. We performed imaging of tumor tissue ex vivo, including LGG and HGG as well as brain metastases obtained from 21 patients undergoing fluorescence-guided surgery. Half of all samples showed visible fluorescence during surgery, which was associated with significant increase in PPIX fluorescence lifetime. While the PPIX lifetime was significantly different between specific tumor tissue types, the NADH lifetimes did not differ significantly among them. However, mainly necrotic areas exhibited significantly lower NADH lifetimes compared to compact tumor in HGG. Our pilot study indicates that combined fluorescence lifetime imaging of NADH/PPIX represents a sensitive tool to visualize brain tumor tissue not detectable with conventional 5-ALA fluorescence.
Collapse
Affiliation(s)
- Mikael T Erkkilä
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Petra A Mercea
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Angelika Rueck
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, N24/4105, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
18
|
Sagoo K, Cumberbatch N, Holland A, Hungerford G. Rapid (FLASH-FLIM) imaging of protoporphyrin IX in a lipid mixture using a CMOS based widefield fluorescence lifetime imaging camera in real time for margin demarcation applications. Methods Appl Fluoresc 2020; 9. [PMID: 32992309 DOI: 10.1088/2050-6120/abbcc6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 01/23/2023]
Abstract
The fluorescence from protoporphyrin IX (PpIX) has been employed to characterise cellular activity and assist in the visualisation of tumour cells. Its formation can be induced by 5-aminolevulonic acid (5-ALA) which is metabolised by tumour cells to form PpIX. The PpIX is localised within the cells, rather than spreading into the vascular system. This, plus its photophysics, exhibits potential in photodynamic therapy. Hence its study and the ability to rapidly image its localisation is of importance, especially in the field of fluorescence guided surgery. This has led to investigations using tissue phantoms and widefield intensity imaging. Aggregation or the presence of photoproducts can alter PpIX emission, which has implications using widefield imaging and a broad wavelength range detection. The use of the fluorescence lifetime imaging (FLIM) is therefore advantageous as it can distinguish between the emissive species as they exhibit different fluorescence lifetimes. Here we use PpIX in a construct consisting of lipid mixture (Intralipid), employed to simulate fat content and optical scattering, in a gellan gum matrix. PpIX in intralipid in aqueous solution was injected into the gellan host to form inclusions. The samples are imaged using commercial widefield TCSPC camera based on a sensor chip with 192 x 128 pixels. Each pixel contains both detection and photon timing enabling the Fluorescence Lifetime Acquisition by Simultaneous Histogramming (FLASH). This "FLASH-FLIM" approach enables widefield fluorescence lifetime images, displayed in real time to be acquired, which has potential for use in visualising tumour boundaries.
Collapse
Affiliation(s)
- Kulwinder Sagoo
- Horiba Jobin Yvon, Glasgow, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nathan Cumberbatch
- HORIBA UK Ltd, Northampton, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Adam Holland
- HORIBA UK Ltd, Northampton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Graham Hungerford
- Horiba Jobin Yvon, 133 Finnieston Street, Glasgow, G3 8HB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
19
|
Krishnaswamy V, Prakash Srinivasan J, Chandra Gabbita A, Ram S. Common man’s intraoperative ultrasound: Basic Sonosite™ probe doubling as real time neuronavigator. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2020.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
20
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Scholz M, Petusseau AF, Gunn JR, Shane Chapman M, Pogue BW. Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis Photodyn Ther 2020; 30:101790. [PMID: 32344195 DOI: 10.1016/j.pdpdt.2020.101790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxic lesions often respond poorly to cancer therapies. Particularly, photodynamic therapy (PDT) consumes oxygen in treated tissues, which in turn lowers its efficacy. Tools for online monitoring of intracellular pO2 are desirable. METHODS The pO2 changes were tracked during photodynamic therapy (PDT) with δ-aminolevulinic acid (ALA) in mouse skin, xenograft tumors, and human skin. ALA was applied either topically as Ameluz cream or systemically by injection. Mitochondrial pO2 was quantified by time-gated lifetime-based imaging of delayed fluorescence (DF) of protoporphyrin IX (PpIX). RESULTS pO2-weighted images were obtained with capture-times of several seconds, radiant exposures near 10 mJ/cm2, spatial resolution of 0.3 mm, and a broad dynamic range 1-50 mmHg, corresponding to DF lifetimes ≈20-2000 μs. The dose-rate effect on oxygen consumption was investigated in mouse skin. A fluence rate of 1.2 mW/cm2 did not cause any appreciable oxygen depletion, whereas 6 mW/cm2 and 12 mW/cm2 caused severe oxygen depletion after radiant exposures of only 0.4-0.8 J/cm2 and <0.2 J/cm2, respectively. Reoxygenation after PDT was studied too. With a 5 J/cm2 radiant exposure, the recovery times were 10-60 min, whereas with 2 J/cm2 they were only 1-6 min. pO2 distribution was spatially non-uniform at (sub)-millimeter scale, which underlines the necessity of tracking pO2 changes by imaging rather than point-detection. CONCLUSIONS Time-gated imaging of PpIX DF seems to be a unique tool for direct online monitoring of pO2 changes during PDT with a promising potential for research purposes as well as for comparatively easy clinical translation to improve efficacy in PDT treatment.
Collapse
Affiliation(s)
- Marek Scholz
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| | - Arthur F Petusseau
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Jason R Gunn
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - M Shane Chapman
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| | - Brian W Pogue
- Center for Imaging Medicine, Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA.
| |
Collapse
|
22
|
Suero Molina E, Stögbauer L, Jeibmann A, Warneke N, Stummer W. Validating a new generation filter system for visualizing 5-ALA-induced PpIX fluorescence in malignant glioma surgery: a proof of principle study. Acta Neurochir (Wien) 2020; 162:785-793. [PMID: 32034493 PMCID: PMC7066295 DOI: 10.1007/s00701-020-04227-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The BLUE 400 filter system (Carl Zeiss Meditec, Oberkochen, Germany) has provided visualization of 5-ALA-induced fluorescence-guided surgery for more than 20 years. Nevertheless, constraints, e.g., limited background discrimination during hemostasis, obstruct fluency of surgery. A novel filter with improved background visualization was developed, requiring validation regarding fluorescence discrimination. The aim of this article is to determine diagnostic accuracy and perception of protoporphyrin IX (PpIX) discrimination of a novel filter system with higher background illumination (BLUE 400 AR) compared with the gold standard, BLUE 400. METHODS A surgical microscope equipped with both BLUE 400 and BLUE 400 AR was used. Comparisons were performed on a biological basis and on the visual perception of margins. High-resolution images were compared during and after surgery by senior neurosurgeons. In a predefined biopsy algorithm, four biopsies per patient at tumor margins of PpIX fluorescence and adjacent brain were acquired using BLUE 400 AR only from regions intended for resection and assessed for cell count and density. RESULTS Thirty-two patients with malignant gliomas were included in this study. BLUE 400 AR markedly enhanced the brightness of the surgical field, allowing superior discrimination of brain anatomy. A total of 128 biopsies from fluorescence margins were collected. Positive predictive value (PPV) was 98.44% (95% CI, 90.06-99.77%) for malignant glioma. Residual median cell density in non-fluorescent tissue was 13% (IQR 13 to 31). Perception of the location of fluorescent margins on HD images was equivalent for both filter combinations. CONCLUSIONS BLUE 400 AR demonstrated superior background compared with conventional BLUE 400 in malignant glioma surgery but comparable fluorescence margins and PPV. Therefore, BLUE 400 AR can be considered safe and effective in supporting malignant glioma surgery.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, D-48149, Münster, Germany
| | - Louise Stögbauer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, D-48149, Münster, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital of Münster, Münster, Germany
| | - Nils Warneke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, D-48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, D-48149, Münster, Germany.
| |
Collapse
|
23
|
Reichert D, Erkkilä MT, Holst G, Hecker-Denschlag N, Wilzbach M, Hauger C, Drexler W, Gesperger J, Kiesel B, Roetzer T, Unterhuber A, Widhalm G, Leitgeb RA, Andreana M. Towards real-time wide-field fluorescence lifetime imaging of 5-ALA labeled brain tumors with multi-tap CMOS cameras. BIOMEDICAL OPTICS EXPRESS 2020; 11:1598-1616. [PMID: 32206431 PMCID: PMC7075617 DOI: 10.1364/boe.382817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 05/24/2023]
Abstract
Fluorescence guided neurosurgery based on 5-aminolevulinic acid (5-ALA) has significantly increased maximal safe resections. Fluorescence lifetime imaging (FLIM) of 5-ALA could further boost this development by its increased sensitivity. However, neurosurgeons require real-time visual feedback which was so far limited in dual-tap CMOS camera based FLIM. By optimizing the number of phase frames required for reconstruction, we here demonstrate real-time 5-ALA FLIM of human high- and low-grade glioma with up to 12 Hz imaging rate over a wide field of view (11.0 x 11.0 mm). Compared to conventional fluorescence imaging, real-time FLIM offers enhanced contrast of weakly fluorescent tissue.
Collapse
Affiliation(s)
- David Reichert
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, 1090 Vienna, Austria
- These authors contributed equally to this work
| | - Mikael T. Erkkilä
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
- These authors contributed equally to this work
| | - Gerhard Holst
- PCO AG, Science and Research, 93309 Kelheim, Germany
| | | | | | | | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, 1090 Vienna, Austria
| | - Barbara Kiesel
- General Hospital and Medical University of Vienna, Department of Neurosurgery, 1090 Vienna, Austria
| | - Thomas Roetzer
- General Hospital and Medical University of Vienna, Institute of Neurology, 1090 Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
| | - Georg Widhalm
- General Hospital and Medical University of Vienna, Department of Neurosurgery, 1090 Vienna, Austria
| | - Rainer A. Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, 1090 Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, 1090 Vienna, Austria
| |
Collapse
|
24
|
Erkkilä MT, Reichert D, Hecker-Denschlag N, Wilzbach M, Hauger C, Leitgeb RA, Gesperger J, Kiesel B, Roetzer T, Widhalm G, Drexler W, Unterhuber A, Andreana M. Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-7. [PMID: 32096368 PMCID: PMC7039165 DOI: 10.1117/1.jbo.25.7.071202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
SIGNIFICANCE 5-Aminolevulinic acid (5-ALA)-based fluorescence guidance in conventional neurosurgical microscopes is limited to strongly fluorescent tumor tissue. Therefore, more sensitive, intrasurgical 5-ALA fluorescence visualization is needed. AIM Macroscopic fluorescence lifetime imaging (FLIM) was performed ex vivo on 5-ALA-labeled human glioma tissue through a surgical microscope to evaluate its feasibility and to compare it to fluorescence intensity imaging. APPROACH Frequency-domain FLIM was integrated into a surgical microscope, which enabled parallel wide-field white-light and fluorescence imaging. We first characterized our system and performed imaging of two samples of suspected low-grade glioma, which were compared to histopathology. RESULTS Our imaging system enabled macroscopic FLIM of a 6.5 × 6.5 mm2 field of view at spatial resolutions <20 μm. A frame of 512 × 512 pixels with a lifetime accuracy <1 ns was obtained in 65 s. Compared to conventional fluorescence imaging, FLIM considerably highlighted areas with weak 5-ALA fluorescence, which was in good agreement with histopathology. CONCLUSIONS Integration of macroscopic FLIM into a surgical microscope is feasible and a promising method for improved tumor delineation.
Collapse
Affiliation(s)
- Mikael T. Erkkilä
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - David Reichert
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | | | - Marco Wilzbach
- Carl Zeiss Meditec AG, Advanced Development Microsurgery, Oberkochen, Germany
| | - Christoph Hauger
- Carl Zeiss Meditec AG, Advanced Development Microsurgery, Oberkochen, Germany
| | - Rainer A. Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Barbara Kiesel
- General Hospital and Medical University of Vienna, Department of Neurosurgery, Vienna, Austria
| | - Thomas Roetzer
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Georg Widhalm
- General Hospital and Medical University of Vienna, Department of Neurosurgery, Vienna, Austria
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| |
Collapse
|
25
|
Okkelman IA, Puschhof J, Papkovsky DB, Dmitriev RI. Visualization of Stem Cell Niche by Fluorescence Lifetime Imaging Microscopy. Methods Mol Biol 2020; 2171:65-97. [PMID: 32705636 DOI: 10.1007/978-1-0716-0747-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM), enabling live quantitative multiparametric analyses, is an emerging bioimaging approach in tissue engineering and regenerative medicine. When combined with stem cell-derived intestinal organoid models, FLIM allows for tracing stem cells and monitoring of their proliferation, metabolic fluxes, and oxygenation. It is compatible with the use of live Matrigel-grown intestinal organoids produced from primary adult stem cells, crypts, and transgenic Lgr5-GFP mice. In this chapter we summarize available experimental protocols, imaging platforms (one- and two-photon excited FLIM, phosphorescence lifetime imaging microscopy (PLIM)) and provide the anticipated data for FLIM imaging of the live intestinal organoids, focusing on labeling of cell proliferation, its colocalization with the stem cell niche, measured local oxygenation, autofluorescence, and some other parameters. The protocol is illustrated with examples of multiparameter imaging, employing spectral and "time domain"-based separation of dyes, probes, and assays.
Collapse
Affiliation(s)
- Irina A Okkelman
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|