1
|
Le TD, Min JJ, Lee C. Enhanced resolution and sensitivity acoustic-resolution photoacoustic microscopy with semi/unsupervised GANs. Sci Rep 2023; 13:13423. [PMID: 37591911 PMCID: PMC10435476 DOI: 10.1038/s41598-023-40583-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023] Open
Abstract
Acoustic-resolution photoacoustic microscopy (AR-PAM) enables visualization of biological tissues at depths of several millimeters with superior optical absorption contrast. However, the lateral resolution and sensitivity of AR-PAM are generally lower than those of optical-resolution PAM (OR-PAM) owing to the intrinsic physical acoustic focusing mechanism. Here, we demonstrate a computational strategy with two generative adversarial networks (GANs) to perform semi/unsupervised reconstruction with high resolution and sensitivity in AR-PAM by maintaining its imaging capability at enhanced depths. The b-scan PAM images were prepared as paired (for semi-supervised conditional GAN) and unpaired (for unsupervised CycleGAN) groups for label-free reconstructed AR-PAM b-scan image generation and training. The semi/unsupervised GANs successfully improved resolution and sensitivity in a phantom and in vivo mouse ear test with ground truth. We also confirmed that GANs could enhance resolution and sensitivity of deep tissues without the ground truth.
Collapse
Affiliation(s)
- Thanh Dat Le
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, 58128, Jeollanam-do, Korea
| | - Changho Lee
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, 58128, Jeollanam-do, Korea.
| |
Collapse
|
2
|
Gao R, Chen T, Ren Y, Liu L, Chen N, Wong KK, Song L, Ma X, Liu C. Restoring the imaging quality of circular transducer array-based PACT using synthetic aperture focusing technique integrated with 2nd-derivative-based back projection scheme. PHOTOACOUSTICS 2023; 32:100537. [PMID: 37559663 PMCID: PMC10407438 DOI: 10.1016/j.pacs.2023.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
Circular-array-based photoacoustic computed tomography (CA-PACT) is a promising imaging tool owing to its broad acoustic detection coverage and fidelity. However, CA-PACT suffers from poor image quality outside the focal zone along both elevational and lateral dimensions. To address this challenge, we proposed a novel reconstruction strategy by integrating the synthetic aperture focusing technique (SAFT) with the 2nd derivative-based back projection (2nd D-BP) algorithm to restore the image quality outside the focal zone along both the elevational and lateral axes. The proposed solution is a two-phase reconstruction scheme. In the first phase, with the assistance of an acoustic lens, we designed a circular array-based SAFT algorithm to restore the resolution and SNR along the elevational axis. The acoustic lens pushes the boundary of the upper limit of the SAFT scheme to achieve enhanced elevational resolution. In the second phase, we proposed a 2nd D-BP scheme to improve the lateral resolution and suppress noises in 3D imaging results. The 2nd D-BP strategy enhances the image quality along the lateral dimension by up-converting the high spatial frequencies of the object's absorption pattern. We validated the effectiveness of the proposed strategy using both phantoms and in vivo human experiments. The experimental results demonstrated superior image quality (7-fold enhancement in elevational resolution, 3-fold enhancement in lateral resolution, and an 11-dB increase in SNR). This strategy provides a new paradigm in the PACT system as it significantly enhances the spatial resolution and imaging contrast in both the elevational and lateral dimensions while maintaining a large focal zone.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tao Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liangjian Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong China
| | - Kenneth K.Y. Wong
- The University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohui Ma
- The first medical center of Chinese PLA General Hospital, the Department of Vascular and Endovascular Surgery, Beijing, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Thomas A, Paul S, Singh MS. Energy compensated synthetic aperture focusing technique for photoacoustic microscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200157. [PMID: 36097262 DOI: 10.1002/jbio.202200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We report an adaptive energy-compensated synthetic aperture focusing technique (eC-SAFT) for improving the imaging performance of photoacoustic microscopy (PAM) in terms of depth of field (DOF), spatial resolution (both axial and lateral), and SNR. In addition to coherency and time-delay (in conventional SAFT), our beamforming-based reconstruction algorithm takes into account acoustic energy loss-a primary physical parameter in acoustic wave propagation-following Beer-Lambert's law. Experimental validation studies were performed in tissue-mimicking (Agar) phantoms, complex leaf veins, and chicken breast tissues. Results demonstrate that our proposed eC-SAFT+CF outperforms conventional SAFT+CF to improve axial resolution (up to ∼ 5 % ), lateral resolution (up to ∼ 5 % ), SNR (up to ∼ 6 % ) and CR (up to ∼ 8 % ).
Collapse
Affiliation(s)
- Anjali Thomas
- Biomedical Instrumentation and Imaging Laboratory (BIIL), School of Physics (SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| | - Souradip Paul
- Biomedical Instrumentation and Imaging Laboratory (BIIL), School of Physics (SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| | - Mayanglambam Suheshkumar Singh
- Biomedical Instrumentation and Imaging Laboratory (BIIL), School of Physics (SoP), Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, India
| |
Collapse
|
4
|
Mao Q, Zhao W, Qian X, Tao C, Liu X. Improving photoacoustic imaging in low signal-to-noise ratio by using spatial and polarity coherence. PHOTOACOUSTICS 2022; 28:100427. [PMID: 36466730 PMCID: PMC9709228 DOI: 10.1016/j.pacs.2022.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
To suppress the noise and sidelobe of photoacoustic images, a method is proposed combined with spatial coherence and polarity coherence. In this method, PA signals are delayed, multiplied, then performed polarity coherence, and finally summed. The polarity of delayed-and-multiplied signals rather than the amplitude is considered in polarity coherence operation. The polarity coherence factor is calculated based on the standard deviation of the polarity. Then, the factor as weights is applied to the coherent sum output after spatial autocorrelation to finally obtain the image. The simulated and experimental results prove that the noise level can be effectively suppressed due to its relatively low polarity coherence factor. Compared with the delay-and-sum method, the quantitative results in simulations show that the image contrast and full-width at half-maximum of the proposed method increase by about 227.0 % and 56.5 % when the signal-to-noise ratio of the raw signal is 0 dB, respectively. Besides achieving a better image contrast, this method obtains improvements in sidelobe attenuation and has a narrow main lobe.
Collapse
Affiliation(s)
- Qiuqin Mao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Weiwei Zhao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoqin Qian
- Department of Ultrasound, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212000, China
| | - Chao Tao
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaojun Liu
- Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Gao R, Xue Q, Ren Y, Zhang H, Song L, Liu C. Achieving depth-independent lateral resolution in AR-PAM using the synthetic-aperture focusing technique. PHOTOACOUSTICS 2022; 26:100328. [PMID: 35242539 PMCID: PMC8861412 DOI: 10.1016/j.pacs.2021.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Acoustic-resolution photoacoustic microscopy (AR-PAM) is a promising imaging modality that renders images with ultrasound resolution and extends the imaging depth beyond the optical ballistic regime. To achieve a high lateral resolution, a large numerical aperture (NA) of a focused transducer is usually applied for AR-PAM. However, AR-PAM fails to hold its performance in the out-of-focus region. The lateral resolution and signal-to-noise ratio (SNR) degrade substantially, thereby leading to a significantly deteriorated image quality outside the focal area. Based on the concept of the synthetic-aperture focusing technique (SAFT), various strategies have been developed to address this challenge. These include 1D-SAFT, 2D-SAFT, adaptive-SAFT, spatial impulse response (SIR)-based schemes, and delay-multiply-and-sum (DMAS) strategies. These techniques have shown progress in achieving depth-independent lateral resolution, while several challenges remain. This review aims to introduce these developments in SAFT-based approaches, highlight their fundamental mechanisms, underline the advantages and limitations of each approach, and discuss the outlook of the remaining challenges for future advances.
Collapse
Affiliation(s)
- Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiang Xue
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, The Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hai Zhang
- Department of Ultrasound, First Affiliated Hospital of Southern University of Science and Technology, The Shenzhen Medical Ultrasound Engineering Center, Shenzhen People's Hospital, Shenzhen 518020, China
- Department of Ultrasound, The Second Clinical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author.
| |
Collapse
|
6
|
Kim H, Kim JY, Cho S, Ahn J, Kim Y, Kim H, Kim C. Performance comparison of high-speed photoacoustic microscopy: opto-ultrasound combiner versus ring-shaped ultrasound transducer. Biomed Eng Lett 2022; 12:147-153. [PMID: 35529340 PMCID: PMC9046515 DOI: 10.1007/s13534-022-00218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic microscopy (PAM) embedded with a 532 nm pulse laser is widely used to visualize the microvascular structures in both small animals and humans in vivo. An opto-ultrasound combiner (OUC) is often utilized in high-speed PAM to confocally align the optical and acoustic beams to improve the system's sensitivity. However, acoustic impedance mismatch in the OUC results in little improvement in the sensitivity. Alternatively, a ring-shaped ultrasound transducer (RUT) can also accomplish the confocal configuration. Here, we compare the performance of OUC and RUT modules through ultrasound pulse-echo tests and PA imaging experiments. The signal-to-noise ratios (SNRs) of the RUT-based system were 15 dB, 12 dB, and 7 dB higher when compared to the OUC-based system for ultrasound pulse-echo test, PA phantom imaging test, and PA in-vivo imaging test, respectively. In addition, the RUT-based system could image the microvascular structures of small parts of a mouse body in a few seconds with minimal loss in SNR. Thus, with increased sensitivity, improved image details, and fast image acquisition, we believe the RUT-based systems could play a significant role in the design of future fast-PAM systems.
Collapse
Affiliation(s)
- Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seonghee Cho
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yeonggeun Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Hyungham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
7
|
Photoacoustic imaging aided with deep learning: a review. Biomed Eng Lett 2021; 12:155-173. [DOI: 10.1007/s13534-021-00210-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
|
8
|
Amjadian M, Mostafavi SM, Chen J, Kavehvash Z, Zhu J, Wang L. Super-Resolution Photoacoustic Microscopy Using Structured-Illumination. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2197-2207. [PMID: 33856988 DOI: 10.1109/tmi.2021.3073555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel super-resolution volumetric photoacoustic microscopy, based on the theory of structured-illumination, is proposed in this paper. The structured-illumination will be introduced in order to surpass the diffraction limit in a photoacoustic microscopy (PAM) structure. Through optical excitation of the targeted object with a sinusoidal spatial fringe pattern, the object's frequency spectrum is forced to shift in the spatial frequency domain. The shifting in the desired direction leads to the passage of the high-frequency contents of the object through the passband of the acoustic diffraction frequency response. Finally, combining the low-frequency image with the high-frequency parts in four regular orientations in the spatial frequency domain is equivalent to imaging the targeted object with an imaging system of two-fold bandwidth and thus half lateral resolution. In order to obtain the image of out-of-focus regions and improve the lateral resolution outside the focal region of a PAM imaging system, Fourier-domain reconstruction algorithm based on the synthetic aperture focusing technique (SAFT) using the virtual detector concept is utilized for reduction in the required computational load and time. The performance of the proposed imaging system is validated with in vivo and ex vivo targets. The experimental results obtained from several tungsten filaments in the depth range of 1.2 mm, show an improvement of -6 dB lateral resolution from 55- [Formula: see text] to 25- [Formula: see text] and also an improvement of signal-to-noise ratio (SNR) from 16-22 dB to 27-33 dB in the proposed system.
Collapse
|
9
|
Yang G, Amidi E, Zhu Q. Photoacoustic tomography reconstruction using lag-based delay multiply and sum with a coherence factor improves in vivo ovarian cancer diagnosis. BIOMEDICAL OPTICS EXPRESS 2021; 12:2250-2263. [PMID: 33996227 PMCID: PMC8086484 DOI: 10.1364/boe.417525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 05/03/2023]
Abstract
Ovarian cancer is the fifth most common cause of death due to cancer, and it is the deadliest of all gynecological cancers. Diagnosing ovarian cancer via conventional photoacoustic delay-and-sum beamforming (DAS) presents several challenges, such as poor image resolution and low lesion to background tissue contrast. To address these concerns, we propose an improved beamformer named lag-based delay multiply and sum combined with coherence factor (DMAS-LAG-CF). Simulations and phantom experiments demonstrate that compared with the conventional DAS, the proposed algorithm can provide 1.39 times better resolution and 10.77 dB higher contrast. For patient data, similar performance on contrast ratios has been observed. However, since the diagnostic accuracy between cancer and benign/normal groups is a significant measure, we have extracted photoacoustic histogram features of mean, kurtosis and skewness. DMAS-LAG-CF can improve cancer diagnosis with an AUC of 0.91 for distinguishing malignant vs. benign ovarian lesions when mean and skewness are used as features.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Mozaffarzadeh M, Moore C, Golmoghani EB, Mantri Y, Hariri A, Jorns A, Fu L, Verweij MD, Orooji M, de Jong N, Jokerst JV. Motion-compensated noninvasive periodontal health monitoring using handheld and motor-based photoacoustic-ultrasound imaging systems. BIOMEDICAL OPTICS EXPRESS 2021; 12:1543-1558. [PMID: 33796371 PMCID: PMC7984772 DOI: 10.1364/boe.417345] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 05/06/2023]
Abstract
Simultaneous visualization of the teeth and periodontium is of significant clinical interest for image-based monitoring of periodontal health. We recently reported the application of a dual-modality photoacoustic-ultrasound (PA-US) imaging system for resolving periodontal anatomy and periodontal pocket depths in humans. This work utilized a linear array transducer attached to a stepper motor to generate 3D images via maximum intensity projection. This prior work also used a medical head immobilizer to reduce artifacts during volume rendering caused by motion from the subject (e.g., breathing, minor head movements). However, this solution does not completely eliminate motion artifacts while also complicating the imaging procedure and causing patient discomfort. To address this issue, we report the implementation of an image registration technique to correctly align B-mode PA-US images and generate artifact-free 2D cross-sections. Application of the deshaking technique to PA phantoms revealed 80% similarity to the ground truth when shaking was intentionally applied during stepper motor scans. Images from handheld sweeps could also be deshaken using an LED PA-US scanner. In ex vivo porcine mandibles, pigmentation of the enamel was well-estimated within 0.1 mm error. The pocket depth measured in a healthy human subject was also in good agreement with our prior study. This report demonstrates that a modality-independent registration technique can be applied to clinically relevant PA-US scans of the periodontium to reduce operator burden of skill and subject discomfort while showing potential for handheld clinical periodontal imaging.
Collapse
Affiliation(s)
- Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- These authors contributed equally
| | - Colman Moore
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Erfan Barzegar Golmoghani
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
- These authors contributed equally
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ali Hariri
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alec Jorns
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lei Fu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Martin D Verweij
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Mahdi Orooji
- Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nico de Jong
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, 2628 CJ Delft, The Netherlands
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Materials Science Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Cebrecos A, García-Garrigós JJ, Descals A, Jiménez N, Benlloch JM, Camarena F. Beamforming for large-area scan and improved SNR in array-based photoacoustic microscopy. ULTRASONICS 2021; 111:106317. [PMID: 33310407 DOI: 10.1016/j.ultras.2020.106317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 05/11/2023]
Abstract
Beamforming enhances the performance of array-based photoacoustic microscopy (PAM) systems for large-area scan. In this study, we quantify the imaging performance of a large field-of-view optical-resolution photoacoustic-microscopy system using an phased-array detector. The system combines a low-cost pulsed-laser diode with a 128-element linear ultrasound probe. Signal-to-noise ratio (SNR) and generalized contrast-to-noise ratio (gCNR) are quantified using the phased-array detector and applying three beamforming strategies: a no-beamforming method equivalent to a single-element flat transducer, a fixed focus beamforming method that mimics a single-element focused transducer, and a dynamic focus beamforming using a delay-and-sum (DAS) algorithm. The imaging capabilities of the system are demonstrated generating high-resolution images of tissue-mimicking phantoms containing sub-millimetre ink tubes and an ex vivo rabbit's ear. The results show that dynamic focus DAS beamforming increases and homogenizes SNR along 1-cm2 images, reaching values up to 15 dB compared to an unfocused detector and up to 30 dB compared to out-of-focus regions of the fixed focus configuration. Moreover, the obtained values of gCNR using the DAS beamformer indicate an excellent target visibility, both on phantoms and ex vivo. This strategy makes it possible to scan larger surfaces compared to standard configurations using single-element detectors, paving the way for advanced array-based PAM systems.
Collapse
Affiliation(s)
- A Cebrecos
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain.
| | - J J García-Garrigós
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - A Descals
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - N Jiménez
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - J M Benlloch
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - F Camarena
- Instituto de Instrumentación para Imagen Molecular (i3M), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
12
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
13
|
Sharma A, Pramanik M. Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6826-6839. [PMID: 33408964 PMCID: PMC7747888 DOI: 10.1364/boe.411257] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 05/03/2023]
Abstract
In acoustic resolution photoacoustic microscopy (AR-PAM), a high numerical aperture focused ultrasound transducer (UST) is used for deep tissue high resolution photoacoustic imaging. There is a significant degradation of lateral resolution in the out-of-focus region. Improvement in out-of-focus resolution without degrading the image quality remains a challenge. In this work, we propose a deep learning-based method to improve the resolution of AR-PAM images, especially at the out of focus plane. A modified fully dense U-Net based architecture was trained on simulated AR-PAM images. Applying the trained model on experimental images showed that the variation in resolution is ∼10% across the entire imaging depth (∼4 mm) in the deep learning-based method, compared to ∼180% variation in the original PAM images. Performance of the trained network on in vivo rat vasculature imaging further validated that noise-free, high resolution images can be obtained using this method.
Collapse
Affiliation(s)
- Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|