1
|
Chawla HS, Chen Y, Wu M, Nikitin P, Gutierrez J, Mohan C, Singh M, Aglyamov SR, Assassi S, Larin KV. Assessment of skin fibrosis in a murine model of systemic sclerosis with multifunctional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036007. [PMID: 40151216 PMCID: PMC11949416 DOI: 10.1117/1.jbo.30.3.036007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Significance Systemic sclerosis (SSc) is a chronic idiopathic disease that causes immune dysregulation, vasculopathy, and organ fibrosis that affects more than 3 million people in the US alone. The modified Rodnan skin score (mRSS) is the current gold standard for diagnosing and staging skin fibrosis in SSc. However, mRSS is subjective, requires extensive training, and has high observer variability. Aim We aim to provide a quantitative method for the assessment of fibrosis. Approach We utilized optical coherence tomography (OCT), its extensions, optical coherence elastography (OCE), and OCT angiography (OCTA) to evaluate SSc-like fibrosis and therapy response in a mouse model. Results We showed stiffness differences between fibrotic and normal mouse skin by week 4 ( p = 0.02 ) during the longitudinal study. In the treatment response study, OCE recorded higher elastic wave velocity in untreated fibrotic skin ( p = 0.04 ). Treated fibrotic skin stiffness was between normal and fibrotic levels. OCTA indicated significantly dilated microvasculature in fibrotic skin versus control ( p ≪ 0.01 ), with more dilation in the treatment group ( p ≪ 0.01 ) than in normal skin. Conclusions Our results indicate that OCT and its extensions effectively analyze dermal fibrosis. OCE revealed increased stiffness in fibrotic skin, OCTA showed vessel dilation, and OCT noted morphological changes in fibrosis tissue.
Collapse
Affiliation(s)
| | - Yanping Chen
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Minghua Wu
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
| | - Pavel Nikitin
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Jessica Gutierrez
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Chandra Mohan
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Shervin Assassi
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
- Baylor College of Medicine, Integrative Physiology, Houston, Texas, United States
| |
Collapse
|
2
|
Zhang Y, Liao J, Feng Z, Yang W, Perelli A, Wang Z, Li C, Huang Z. VP-net: an end-to-end deep learning network for elastic wave velocity prediction in human skin in vivo using optical coherence elastography. Front Bioeng Biotechnol 2024; 12:1465823. [PMID: 39469517 PMCID: PMC11513296 DOI: 10.3389/fbioe.2024.1465823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Acne vulgaris, one of the most common skin conditions, affects up to 85% of late adolescents, currently no universally accepted assessment system. The biomechanical properties of skin provide valuable information for the assessment and management of skin conditions. Wave-based optical coherence elastography (OCE) quantitatively assesses these properties of tissues by analyzing induced elastic wave velocities. However, velocity estimation methods require significant expertise and lengthy image processing times, limiting the clinical translation of OCE technology. Recent advances in machine learning offer promising solutions to simplify velocity estimation process. Methods In this study, we proposed a novel end-to-end deep-learning model, named velocity prediction network (VP-Net), aiming to accurately predict elastic wave velocity from raw OCE data of in vivo healthy and abnormal human skin. A total of 16,424 raw phase slices from 1% to 5% agar-based tissue-mimicking phantoms, 28,270 slices from in vivo human skin sites including the palm, forearm, back of the hand from 16 participants, and 580 slices of facial closed comedones were acquired to train, validate, and test VP-Net. Results VP-Net demonstrated highly accurate velocity prediction performance compared to other deep-learning-based methods, as evidenced by small evaluation metrics. Furthermore, VP-Net exhibited low model complexity and parameter requirements, enabling end-to-end velocity prediction from a single raw phase slice in 1.32 ms, enhancing processing speed by a factor of ∼100 compared to a conventional wave velocity estimation method. Additionally, we employed gradient-weighted class activation maps to showcase VP-Net's proficiency in discerning wave propagation patterns from raw phase slices. VP-Net predicted wave velocities that were consistent with the ground truth velocities in agar phantom, two age groups (20s and 30s) of multiple human skin sites and closed comedones datasets. Discussion This study indicates that VP-Net could rapidly and accurately predict elastic wave velocities related to biomechanical properties of in vivo healthy and abnormal skin, offering potential clinical applications in characterizing skin aging, as well as assessing and managing the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Yilong Zhang
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Jinpeng Liao
- School of Physics and Engineering Technology, University of York, York, United Kingdom
| | - Zhengshuyi Feng
- School of Physics and Engineering Technology, University of York, York, United Kingdom
| | - Wenyue Yang
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Alessandro Perelli
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Zhiqiong Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chunhui Li
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Zhihong Huang
- School of Physics and Engineering Technology, University of York, York, United Kingdom
| |
Collapse
|
3
|
Mekonnen TT, Ambekar YS, Zevallos-Delgado C, Nair A, Zvietcovich F, Zarkoob H, Singh M, Lim YW, Ferrer M, Aglyamov SR, Scarcelli G, Song MJ, Larin KV. Dual optical elastography detects TGF - β -induced alterations in the biomechanical properties of skin scaffolds. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:095002. [PMID: 39295639 PMCID: PMC11409821 DOI: 10.1117/1.jbo.29.9.095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Significance The skin's mechanical properties are tightly regulated. Various pathologies can affect skin stiffness, and understanding these changes is a focus in tissue engineering. Ex vivo skin scaffolds are a robust platform for evaluating the effects of various genetic and molecular interactions on the skin. Transforming growth factor-beta ( TGF - β ) is a critical signaling molecule in the skin that can regulate the amount of collagen and elastin in the skin and, consequently, its mechanical properties. Aim This study investigates the biomechanical properties of bio-engineered skin scaffolds, focusing on the influence of TGF - β , a signaling molecule with diverse cellular functions. Approach The TGF - β receptor I inhibitor, galunisertib, was employed to assess the mechanical changes resulting from dysregulation of TGF - β . Skin scaffold samples, grouped into three categories (control, TGF - β -treated, and TGF - β + galunisertib-treated), were prepared in two distinct culture media-one with aprotinin (AP) and another without. Two optical elastography techniques, namely wave-based optical coherence elastography (OCE) and Brillouin microscopy, were utilized to quantify the biomechanical properties of the tissues. Results Results showed significantly higher wave speed (with AP, p < 0.001 ; without AP, p < 0.001 ) and Brillouin frequency shift (with AP, p < 0.001 ; without AP, p = 0.01 ) in TGF - β -treated group compared with the control group. The difference in wave speed between the control and TGF - β + galunisertib with ( p = 0.10 ) and without AP ( p = 0.36 ) was not significant. Moreover, the TGF - β + galunisertib-treated group exhibited lower wave speed without and with AP and reduced Brillouin frequency shift than the TGF - β -treated group without AP, further strengthening the potential role of TGF - β in regulating the mechanical properties of the samples. Conclusions These findings offer valuable insights into TGF - β -induced biomechanical alterations in bio-engineered skin scaffolds, highlighting the potential of OCE and Brillouin microscopy in the development of targeted therapies in conditions involving abnormal tissue remodeling and fibrosis.
Collapse
Affiliation(s)
- Taye T. Mekonnen
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- University of Sydney, Department of Mechanical Engineering, Sydney, New South Wales, Australia
| | - Yogeshwari S. Ambekar
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | | | - Achuth Nair
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Fernando Zvietcovich
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Pontificia Universidad Catolica del Peru, Department of Engineering, Lima, Peru
| | - Hoda Zarkoob
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Yi Wei Lim
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Marc Ferrer
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Min Jae Song
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| |
Collapse
|
4
|
Kiseleva EB, Sovetsky AA, Ryabkov MG, Gubarkova EV, Plekhanov AA, Bederina EL, Potapov AL, Bogomolova AY, Zaitsev VY, Gladkova ND. Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: A pilot study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400086. [PMID: 38923316 DOI: 10.1002/jbio.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
We report a new application of compression optical coherence elastography (C-OCE) to monitor the emergence of ruptures in individual layers of longitudinally stretched small-intestine walls using tissue samples (n = 36) from nine minipigs. Before stretching, C-OCE successfully estimated stiffness for each intestine-wall layer: longitudinal muscular layer with serosa, circumferential muscular layer, submucosa and mucosa. In stretched samples, C-OCE clearly visualized initial stiffening in both muscular layers. By 25% elongation, a sharp stiffness decrease for the longitudinal muscular layer, indicated emergence of tears in all samples. With further stretching, for most samples, ruptures emerged in the circumferential muscular layer and submucosa, while mucosa remained undamaged. Histology confirmed the OCE-revealed damaging and absence of tissue damage for ~15% elongation. Thus, C-OCE has demonstrated a high potential for determining the safety tissue-stretching threshold which afterward may be used intraoperatively to prevent rupture risk in intestinal tissues stretched during various diagnostic/therapeutic procedures.
Collapse
Affiliation(s)
- Elena B Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Maksim G Ryabkov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina V Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Anton A Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Evgeniya L Bederina
- University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Arseniy L Potapov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra Y Bogomolova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladimir Y Zaitsev
- Nonlinear Geophysical Processes Department, A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Natalia D Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Parmar A, Singh K. Motion-artifact-free single shot two-beam optical coherence elastography system. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:025003. [PMID: 38390309 PMCID: PMC10883076 DOI: 10.1117/1.jbo.29.2.025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Significance The assessment of the biomechanical properties of the skin using various imaging techniques has been used as a diagnostic tool in dermatology. Optical coherence elastography (OCE) is one of the techniques that allows for the measurement of elastic properties. OCE relies on measuring tissue displacements induced by external sources. Measuring the tissue's mechanical properties in vivo using OCE is often challenging due to bulk tissue movement. Aim This study aimed to develop an OCE system that allows for minimizing the effects of bulk tissue movements. To achieve this, we designed a two-beam OCE system that simultaneously measures the tissue displacement at two locations on the sample. This allows for cancelling the effect of the tissue bulk movement, which is common to both measurement points. Approach We used a piezoelectric transducer to generate surface acoustic waves (SAW) in the sample. The velocity of the excited waves, which is proportional to the rigidity of the sample, was measured by calculating the phase delay of the SAW at two locations on the sample. Simultaneous measurement at two locations was achieved by dividing a single light beam into two by focusing on the sample at two different locations. The two beams travel different optical path lengths, and the reflected signals were depth encoded in a single optical coherence tomography scan using a single reference beam. Results The system was characterized using different tissue-mimicking phantoms and the skin of healthy volunteers at the wrist and the palm. We achieved an approximately 50-fold increase in phase sensitivity measurement. Conclusions We designed a simple two-beam OCE system that effectively minimizes the effect of tissue movement. We believe that the presented system will find immediate applications in the clinic to monitor the progression of systemic sclerosis disease.
Collapse
Affiliation(s)
- Asha Parmar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Experimental Physics, Erlangen, Germany
| | - Kanwarpal Singh
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Experimental Physics, Erlangen, Germany
- McMaster University, Department of Electrical and Computer Engineering, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Desai R, Chawla H, Larin K, Assassi S. Methods for objective assessment of skin involvement in systemic sclerosis. Curr Opin Rheumatol 2023; 35:301-308. [PMID: 37605869 PMCID: PMC11015902 DOI: 10.1097/bor.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PURPOSE OF REVIEW Skin fibrosis is the most prominent disease manifestation of systemic sclerosis (SSc). Although the treatment for other SSc manifestations has expanded over the years, there is limited progress in identifying effective treatment options for SSc skin involvement. This is in part due to limitations in the utilized outcome measures for assessment of skin fibrosis. This review focuses on different emerging assessment tools for SSc skin involvement and their potential use for clinical care and multicenter trials. RECENT FINDINGS Durometer and other device-based methodologies requiring application of direct pressure to the affected skin have been studied in SSc. However, there are concerns that the required application of pressure might be a source of variability. Ultrasound-based methods have been compared with modified Rodnan Skin Score in several studies, indicating acceptable construct validity. However, few studies have examined their criterion validity by providing comparisons to skin histology. Optical coherence-based methods show promising preliminary results for simultaneous assessment of skin fibrosis and vasculopathy. Further standardization and validation (including comparison to skin histology) of these promising novel assessment tools in large, longitudinal SSc cohort studies are needed to establish them as clinically useful outcome measures with acceptable sensitivity to change. SUMMARY Recent advances in imaging techniques provide a promising opportunity for development of a valid and reliable assessment tool for quantification of SSc skin fibrosis, which can pave the way for approval of effective treatment options for this high burden disease manifestation.
Collapse
Affiliation(s)
- Ruhani Desai
- Division of Rheumatology, The University of Texas Health Science Center at Houston, TX, USA
| | - Harshdeep Chawla
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kirill Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
7
|
Pilvar A, Mehendale AM, Karrobi K, El-Adili F, Bujor A, Roblyer D. Spatial frequency domain imaging for the assessment of scleroderma skin involvement. BIOMEDICAL OPTICS EXPRESS 2023; 14:2955-2968. [PMID: 37342706 PMCID: PMC10278615 DOI: 10.1364/boe.489609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by the widespread deposition of excess collagen in the skin and internal organs, as well as vascular dysfunction. The current standard of care technique used to quantify the extent of skin fibrosis in SSc patients is the modified Rodnan skin score (mRSS), which is an assessment of skin thickness based on clinical palpation. Despite being considered the gold standard, mRSS testing requires a trained physician and suffers from high inter-observer variability. In this study, we evaluated the use of spatial frequency domain imaging (SFDI) as a more quantitative and reliable method for assessing skin fibrosis in SSc patients. SFDI is a wide-field and non-contact imaging technique that utilizes spatially modulated light to generate a map of optical properties in biological tissue. The SFDI data were collected at six measurement sites (left and right forearms, hands, and fingers) of eight control subjects and ten SSc patients. mRSS were assessed by a physician, and skin biopsies were collected from subject's forearms and used to assess for markers of skin fibrosis. Our results indicate that SFDI is sensitive to skin changes even at an early stage, as we found a significant difference in the measured optical scattering (μs') between healthy controls and SSc patients with a local mRSS score of zero (no appreciable skin fibrosis by gold standard). Furthermore, we found a strong correlation between the diffuse reflectance (Rd) at a spatial frequency of 0.2 mm-1 and the total mRSS between all subjects (Spearman correlation coefficient = -0.73, p-value < 0.0028), as well as high correlation with histology results. The healthy volunteer results show excellent inter- and intra-observer reliability (ICC > 0.8). Our results suggest that the measurement of tissue μs' and Rd at specific spatial frequencies and wavelengths can provide an objective and quantitative assessment of skin involvement in SSc patients, which could greatly improve the accuracy and efficiency of monitoring disease progression and evaluating drug efficacy.
Collapse
Affiliation(s)
- Anahita Pilvar
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Aarohi M. Mehendale
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kavon Karrobi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Fatima El-Adili
- Division of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Arthritis and Autoimmune Diseases Center, Boston University, Boston, MA 02118, USA
| | - Andreea Bujor
- Division of Rheumatology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Arthritis and Autoimmune Diseases Center, Boston University, Boston, MA 02118, USA
| | - Darren Roblyer
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
8
|
Gao T, Liu S, Wang A, Tang X, Fan Y. Vascular elasticity measurement of the great saphenous vein based on optical coherence elastography. JOURNAL OF BIOPHOTONICS 2023; 16:e202200245. [PMID: 36067058 DOI: 10.1002/jbio.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Vascular elasticity is important in physiological and clinical problems. The mechanical properties of the great saphenous vein (GSV) deserve attention. This research aims to measure the radial elasticity of ex vivo GSV using the optical coherence elasticity (OCE). The finite element model of the phantom is established, the displacement field is calculated, the radial mechanical characteristics of the simulation body are obtained. Furthermore, we performed OCE on seven isolated GSVs. The strain field is obtained by combining the relationship between strain and displacement to obtain the radial elastic modulus of GSVs. In the phantom experiment, the strain of the experimental region of interest is mainly between 0.1 and 0.4, while the simulation result is between 0.06 and 0.40. The radial elastic modulus of GSVs ranged from 3.83 kPa to 7.74 kPa. This study verifies the feasibility of the OCE method for measuring the radial elastic modulus of blood vessels.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shuai Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ancong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Abstract
Systemic sclerosis, also known as scleroderma, is a rare and complex autoimmune connective-tissue disease. Once considered an untreatable and unpredictable condition, research advancements have improved our understanding of its disease pathogenesis and clinical phenotypes and expanded our treatment armamentarium. Early and accurate diagnosis is essential, while ongoing efforts to risk stratify patients have a central role in predicting both organ involvement and disease progression. A holistic approach is required when choosing the optimal therapeutic strategy, balancing the side-effect profile with efficacy and tailoring the treatment according to the goals of care of the patient. This Seminar reviews the multiple clinical dimensions of systemic sclerosis, beginning at a precursor very early stage of disease, with a focus on timely early detection of organ involvement. This Seminar also summarises management considerations according to the pathological hallmarks of systemic sclerosis (eg, inflammation, fibrosis, and vasculopathy) and highlights unmet needs and opportunities for future research and discovery.
Collapse
Affiliation(s)
- Elizabeth R Volkmann
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, CA, USA; David Geffen School of Medicine, Los Angeles, CA, USA.
| | | | - Vanessa Smith
- Department of Internal Medicine and Department of Rheumatology, Ghent University (Hospital), Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre, Ghent, Belgium
| |
Collapse
|
10
|
Volkmann ER, Andréasson K, Smith V. Systemic sclerosis. Lancet 2023; 401:304-318. [PMID: 36442487 DOI: 10.1016/s0140-6736(22)01692-0.systemic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 05/27/2023]
Abstract
Systemic sclerosis, also known as scleroderma, is a rare and complex autoimmune connective-tissue disease. Once considered an untreatable and unpredictable condition, research advancements have improved our understanding of its disease pathogenesis and clinical phenotypes and expanded our treatment armamentarium. Early and accurate diagnosis is essential, while ongoing efforts to risk stratify patients have a central role in predicting both organ involvement and disease progression. A holistic approach is required when choosing the optimal therapeutic strategy, balancing the side-effect profile with efficacy and tailoring the treatment according to the goals of care of the patient. This Seminar reviews the multiple clinical dimensions of systemic sclerosis, beginning at a precursor very early stage of disease, with a focus on timely early detection of organ involvement. This Seminar also summarises management considerations according to the pathological hallmarks of systemic sclerosis (eg, inflammation, fibrosis, and vasculopathy) and highlights unmet needs and opportunities for future research and discovery.
Collapse
Affiliation(s)
- Elizabeth R Volkmann
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, CA, USA; David Geffen School of Medicine, Los Angeles, CA, USA.
| | | | - Vanessa Smith
- Department of Internal Medicine and Department of Rheumatology, Ghent University (Hospital), Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre, Ghent, Belgium
| |
Collapse
|
11
|
Feng X, Li GY, Ramier A, Eltony AM, Yun SH. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater 2022; 146:295-305. [PMID: 35470076 PMCID: PMC11878153 DOI: 10.1016/j.actbio.2022.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Traveling-wave optical coherence elastography (OCE) is a promising technique to measure the stiffness of biological tissues. While OCE has been applied to relatively homogeneous samples, tissues with significantly varying elasticity through depth pose a challenge, requiring depth-resolved measurement with sufficient resolution and accuracy. Here, we develop a broadband Rayleigh-wave OCE technique capable of measuring the elastic moduli of the 3 major skin layers (epidermis, dermis, and hypodermis) reliably by analyzing the dispersion of leaky Rayleigh surface waves over a wide frequency range of 0.1-10 kHz. We show that a previously unexplored, high frequency range of 4-10 kHz is critical to resolve the thin epidermis, while a low frequency range of 0.2-1 kHz is adequate to probe the dermis and deeper hypodermis. We develop a dual bilayer-based inverse model to determine the elastic moduli in all 3 layers and verify its high accuracy with finite element analysis and skin-mimicking phantoms. Finally, the technique is applied to measure the forearm skin of healthy volunteers. The Young's modulus of the epidermis (including the stratum corneum) is measured to be ∼ 4 MPa at 4-10 kHz, whereas Young's moduli of the dermis and hypodermis are about 40 and 15 kPa, respectively, at 0.2-1 kHz. Besides dermatologic applications, this method may be useful for the mechanical analysis of various other layered tissues with sub-mm depth resolution. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first study that resolves the stiffness of the thin epidermis from the dermis and hypodermis, made possible by using high-frequency (4 - 10 kHz) elastic waves and optical coherence elastography. Beyond the skin, this technique may be useful for mechanical characterizations of various layered biomaterials and tissues.
Collapse
Affiliation(s)
- Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Antoine Ramier
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States
| | - Amira M Eltony
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States.
| |
Collapse
|
12
|
Herrick AL, Assassi S, Denton CP. Skin involvement in early diffuse cutaneous systemic sclerosis: an unmet clinical need. Nat Rev Rheumatol 2022; 18:276-285. [PMID: 35292731 PMCID: PMC8922394 DOI: 10.1038/s41584-022-00765-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Abstract
Diffuse cutaneous systemic sclerosis (dcSSc) is associated with high mortality resulting from early internal-organ involvement. Clinicians therefore tend to focus on early diagnosis and treatment of potentially life-threatening cardiorespiratory and renal disease. However, the rapidly progressive painful, itchy skin tightening that characterizes dcSSc is the symptom that has the greatest effect on patients' quality of life, and there is currently no effective disease-modifying treatment for it. Considerable advances have been made in predicting the extent and rate of skin-disease progression (which vary between patients), including the development of techniques such as molecular analysis of skin biopsy samples. Risk stratification for progressive skin disease is especially relevant now that haematopoietic stem-cell transplantation is a treatment option, because stratification will inform the balance of risk versus benefit for each patient. Measurement of skin disease is a major challenge. Results from clinical trials have highlighted limitations of the modified Rodnan skin score (the current gold standard). Alternative patient-reported and other potential outcome measures have been and are being developed. Patients with early dcSSc should be referred to specialist centres to ensure best-practice management, including the management of their skin disease, and to maximize opportunities for inclusion in clinical trials.
Collapse
Affiliation(s)
- Ariane L Herrick
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Shervin Assassi
- McGovern Medical School, The University of Texas, Houston, TX, USA
| | | |
Collapse
|
13
|
Yang C, Xiang Z, Li Z, Nan N, Wang X. Optical coherence elastography to evaluate depth-resolved elasticity of tissue. OPTICS EXPRESS 2022; 30:8709-8722. [PMID: 35299317 DOI: 10.1364/oe.451704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Skin-elasticity measurements can assist in the clinical diagnosis of skin diseases, which has important clinical significance. Accurately determining the depth-resolved elasticity of superficial biological tissue is an important research direction. This paper presents an optical coherence elastography technique that combines surface acoustic waves and shear waves to obtain the elasticity of multilayer tissue. First, the phase velocity of the high-frequency surface acoustic wave is calculated at the surface of the sample to obtain the Young's modulus of the top layer. Then, the shear wave velocities in the other layers are calculated to obtain their respective Young's moduli. In the bilayer phantom experiment, the maximum error in the elastic estimation of each layer was 2.2%. The results show that the proposed method can accurately evaluate the depth-resolved elasticity of layered tissue-mimicking phantoms, which can potentially expand the clinical applications of elastic wave elastography.
Collapse
|
14
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Zvietcovich F, Larin KV. Wave-based optical coherence elastography: The 10-year perspective. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012007. [PMID: 35187403 PMCID: PMC8856668 DOI: 10.1088/2516-1091/ac4512] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After 10 years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and the improvement of medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research aiming to have wave-based OCE working in clinical environments. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion on the current challenges and future directions, including clinical translation research.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204,
| |
Collapse
|
16
|
Singh M, Schill AW, Nair A, Aglyamov SR, Larina IV, Larin KV. Ultra-fast dynamic line-field optical coherence elastography. OPTICS LETTERS 2021; 46:4742-4744. [PMID: 34598188 PMCID: PMC9121022 DOI: 10.1364/ol.435278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 05/12/2023]
Abstract
In this work, we present an ultra-fast line-field optical coherence elastography system (LF-OCE) with an 11.5 MHz equivalent A-line rate. The system was composed of a line-field spectral domain optical coherence tomography system based on a supercontinuum light source, Michelson-type interferometer, and a high-speed 2D spectrometer. The system performed ultra-fast imaging of elastic waves in tissue-mimicking phantoms of various elasticities. The results corroborated well with mechanical testing. Following validation, LF-OCE measurements were made in in situ and in in vivo rabbit corneas under various conditions. The results show the capability of the system to rapidly image elastic waves in tissues.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, Texas 77204, USA
| | - Alexander W. Schill
- Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, Texas 77204, USA
| | - Achuth Nair
- Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, Texas 77204, USA
| | - Salavat R. Aglyamov
- Mechanical Engineering, University of Houston, 4726 Calhoun Rd., N207 Engineering Building 1, Houston, Texas 77204, USA
| | - Irina V. Larina
- Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Rippy JR, Singh M, Aglyamov SR, Larin KV. Ultrasound Shear Wave Elastography and Transient Optical Coherence Elastography: Side-by-Side Comparison of Repeatability and Accuracy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2021; 2:179-186. [PMID: 34179823 PMCID: PMC8224461 DOI: 10.1109/ojemb.2021.3075569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: We compare the repeatability and accuracy of ultrasound shear wave elastography (USE) and transient optical coherence elastography (OCE). Methods: Elastic wave speed in gelatin phantoms and chicken breast was measured with USE and OCE and compared with uniaxial mechanical compression testing. Intra- and Inter-repeatability were analyzed using Bland-Altman plots and intraclass correlation coefficients (ICC). Results: OCE and USE differed from uniaxial testing by a mean absolute percent error of 8.92% and 16.9%, respectively, across eight phantoms of varying stiffness. Upper and lower limits of agreement for intrasample repeatability for USE and OCE were ±0.075 m/s and −0.14 m/s and 0.13 m/s, respectively. OCE and USE both had ICCs of 0.9991. In chicken breast, ICC for USE was 0.9385 and for OCE was 0.9924. Conclusion: OCE and USE can detect small speed changes and give comparable measurements. These measurements correspond well with uniaxial testing.
Collapse
|
18
|
Ghosh B, Mandal M, Mitra P, Chatterjee J. Attenuation corrected-optical coherence tomography for quantitative assessment of skin wound healing and scar morphology. JOURNAL OF BIOPHOTONICS 2021; 14:e202000357. [PMID: 33332734 DOI: 10.1002/jbio.202000357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Imaging the structural modifications of underlying tissues is vital to monitor wound healing. Optical coherence tomography (OCT) images high-resolution sub-surface information, but suffers a loss of intensity with depth, limiting quantification. Hence correcting the attenuation loss is important. We performed swept source-OCT of full-thickness excision wounds for 300 days in mice skin. We used single-scatter attenuation models to determine and correct the attenuation loss in the images. The phantom studies established the correspondence of corrected-OCT intensity (reflectivity) with matrix density and hydration. We histologically validated the corrected-OCT and measured the wound healing rate. We noted two distinct phases of healing-rapid and steady-state. We also detected two compartments in normal scars using corrected OCT that otherwise were not visible in the OCT scans. The OCT reflectivity in the scar compartments corresponded to distinct cell populations, mechanical properties and composition. OCT reflectivity has potential applications in evaluating the therapeutic efficacy of healing and characterizing scars.
Collapse
Affiliation(s)
- Biswajoy Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mousumi Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pabitra Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
19
|
Csuka EA, Ward SC, Ekelem C, Csuka DA, Ardigò M, Mesinkovska NA. Reflectance Confocal Microscopy, Optical Coherence Tomography, and Multiphoton Microscopy in Inflammatory Skin Disease Diagnosis. Lasers Surg Med 2021; 53:776-797. [PMID: 33527483 DOI: 10.1002/lsm.23386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Technological advances in medicine have brought about many novel skin imaging devices. This review aims to evaluate the scientific evidence supporting the use of noninvasive optical imaging techniques to aid in the diagnosis and prognosis of inflammatory skin diseases. STUDY DESIGN/MATERIALS AND METHODS PubMed and Scopus were searched in September 2020 according to PRISMA guidelines for articles using reflectance confocal microscopy (RCM), optical coherence tomography (OCT), and multiphoton microscopy (MPM) in inflammatory skin diseases, excluding studies monitoring treatment efficacy. RESULTS At the time of the study, there were 66 articles that addressed the utilization of noninvasive imaging in interface, spongiotic, psoriasiform, vesiculobullous, and fibrosing/sclerosing inflammatory skin dermatoses: RCM was utilized in 46, OCT in 16, and MPM in 5 articles. RCM was most investigated in psoriasiform dermatoses, whereas OCT and MPM were both most investigated in spongiotic dermatoses, including atopic dermatitis and allergic contact dermatitis. CONCLUSIONS There is preliminary evidence to support the diagnostic potential of noninvasive optical imaging techniques in inflammatory skin diseases. Improvements in the devices and further correlation with histology will help broaden their utility. Additional studies are needed to determine the parameters for diagnostic features, disease differentiation, and staging of inflammatory skin conditions. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Ella A Csuka
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Suzanne C Ward
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Chloe Ekelem
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - David A Csuka
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| | - Marco Ardigò
- San Gallicano Dermatological Institute-IRCCS, Via Chianesi 53, Rome, 00144, Italy
| | - Natasha A Mesinkovska
- Department of Dermatology, University of California, Irvine, Irvine, California, 92697
| |
Collapse
|
20
|
Flower VA, Barratt SL, Hart DJ, Mackenzie AB, Shipley JA, Ward SG, Pauling JD. High-frequency Ultrasound Assessment of Systemic Sclerosis Skin Involvement: Intraobserver Repeatability and Relationship With Clinician Assessment and Dermal Collagen Content. J Rheumatol 2020; 48:867-876. [PMID: 33132218 DOI: 10.3899/jrheum.200234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The modified Rodnan skin score (mRSS) remains the preferred method for skin assessment in systemic sclerosis (SSc). There are concerns regarding high interobserver variability of mRSS and negative clinical trials utilizing mRSS as the primary endpoint. High-frequency ultrasound (HFUS) allows objective assessment of cutaneous fibrosis in SSc. We investigated the relationship between HFUS with both mRSS and dermal collagen. METHODS Skin thickness (ST), echogenicity, and novel shear wave elastography (SWE) were assessed in 53 patients with SSc and 15 healthy controls (HCs) at the finger, hand, forearm, and abdomen. The relationship between HFUS parameters with mRSS (n = 53) and dermal collagen (10 patients with SSc and 10 HCs) was investigated. Intraobserver repeatability of HFUS was calculated using intraclass correlation coefficients (ICCs). RESULTS HFUS assessment of ST (hand/forearm) and SWE (finger/hand) correlated with local mRSS at some sites. Subclinical abnormalities in ST, echogenicity, and SWE were present in clinically uninvolved SSc skin. Additionally, changes in echogenicity and SWE were sometimes apparent despite objectively normal ST on HFUS. ST, SWE, and local mRSS correlated strongly with collagen quantification (r = 0.697, 0.709, 0.649, respectively). Intraobserver repeatability was high for all HFUS parameters (ICCs for ST = 0.946-0.978; echogenicity = 0.648-0.865; and SWE = 0.953-0.973). CONCLUSION Our data demonstrate excellent reproducibility and reassuring convergent validity with dermal collagen content. Detection of subclinical abnormalities is an additional benefit of HFUS. The observed correlations with collagen quantification support further investigation of HFUS as an alternative to mRSS in clinical trial settings.
Collapse
Affiliation(s)
- Victoria A Flower
- V.A. Flower, Consultant Rheumatologist, MBBS, PhD, J.D. Pauling, Consultant Rheumatologist and Senior Lecturer, BMBS, PhD, Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Royal United Hospitals NHS Foundation Trust, Bath, Department of Pharmacy and Pharmacology, University of Bath, Bath;
| | - Shaney L Barratt
- S.L. Barratt, BMBS, PhD, Department of Respiratory Medicine, North Bristol NHS Trust, Bristol, Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol
| | - Darren J Hart
- D.J. Hart, Clinical Scientist, PhD, J.A. Shipley, Clinical Scientist, PhD, Clinical Measurement and Imaging Department, Royal National Hospital for Rheumatic Diseases, Royal United Hospitals NHS Foundation Trust, Bath
| | - Amanda B Mackenzie
- A.B. Mackenzie, Senior Lecturer, PhD, Department of Pharmacy and Pharmacology, University of Bath, Bath
| | - Jacqueline A Shipley
- D.J. Hart, Clinical Scientist, PhD, J.A. Shipley, Clinical Scientist, PhD, Clinical Measurement and Imaging Department, Royal National Hospital for Rheumatic Diseases, Royal United Hospitals NHS Foundation Trust, Bath
| | - Stephen G Ward
- S.G. Ward, Professor, PhD, Centre for Therapeutic Innovation & Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - John D Pauling
- V.A. Flower, Consultant Rheumatologist, MBBS, PhD, J.D. Pauling, Consultant Rheumatologist and Senior Lecturer, BMBS, PhD, Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Royal United Hospitals NHS Foundation Trust, Bath, Department of Pharmacy and Pharmacology, University of Bath, Bath
| |
Collapse
|
21
|
Yao X, Li D, Park HC, Chen D, Guan H, Mahendroo M, Li X. Ultra-sensitive optical coherence elastography using a high-dynamic-range force loading scheme for cervical rigidity assessment. BIOMEDICAL OPTICS EXPRESS 2020; 11:688-698. [PMID: 32133219 PMCID: PMC7041475 DOI: 10.1364/boe.383720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 05/29/2023]
Abstract
An ultra-sensitive, wide-range force loading scheme is proposed for compression optical coherence elastography (OCE) that allows for the quantitative analysis of cervical tissue elasticity ex vivo. We designed a force loading apparatus featuring a water sink for minuscule incremental loading through a volume-controlled water droplet, from which the Young's modulus can be calculated by fitting the stress-strain curve. We validated the performance of the proposed OCE system on homogenous agar phantoms, showing the Young's modulus can be accurately estimated using this scheme. We then measured the Young's modulus of rodent cervical tissues acquired at different gestational ages, showing that the cervical rigidity of rodents was significantly dropped when entering the third trimester of pregnancy.
Collapse
Affiliation(s)
- Xinwen Yao
- Department of Biomedical Engineering, 720 Rutland Ave, Baltimore, MD 21205, USA
- SERI-NTU Advanced Ocular Engineering (STANCE), 50 Nanyang Drive #04-13, Singapore 637553, Singapore
- These authors contribute equally to this work
| | - Dawei Li
- Department of Biomedical Engineering, 720 Rutland Ave, Baltimore, MD 21205, USA
- These authors contribute equally to this work
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Defu Chen
- Department of Biomedical Engineering, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Honghua Guan
- Department of Biomedical Engineering, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xingde Li
- Department of Biomedical Engineering, 720 Rutland Ave, Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Larin KV, Scarcelli G, Yakovlev VV. Optical elastography and tissue biomechanics. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31758675 PMCID: PMC6873628 DOI: 10.1117/1.jbo.24.11.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/31/2019] [Indexed: 05/18/2023]
Abstract
Mechanical forces play an important role in the behavior and development of biological systems and disease at all spatial scales, from cells and their constituents to tissues and organs. Such forces have a profound influence on the health, structural integrity, and normal function of cells and organs. Accurate knowledge of cell and tissue biomechanical properties is essential to map the distribution of forces and mechanical cues in biological systems. Cell and tissue biomechanical properties are also known to be important on their own as indicators of health or diseases state. Hence, optical elastography and biomechanics methods can aid in the understanding and clinical diagnosis of a wide variety of diseases. We provide a brief overview and highlight of the Optical Elastography and Tissue Biomechanics VI conference, which took place in San Francisco, February 2 and 3, 2019, as a part of Photonics West symposium.
Collapse
Affiliation(s)
- Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Department of Biomedical Engineering, College Park, Maryland, United States
| | - Vladislav V. Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|