1
|
Benavides-Lara J, Siegel AP, Tsoukas MM, Avanaki K. High-frequency photoacoustic and ultrasound imaging for skin evaluation: Pilot study for the assessment of a chemical burn. JOURNAL OF BIOPHOTONICS 2024; 17:e202300460. [PMID: 38719468 DOI: 10.1002/jbio.202300460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 07/13/2024]
Abstract
Skin architecture and its underlying vascular structure could be used to assess the health status of skin. A non-invasive, high resolution and deep imaging modality able to visualize skin subcutaneous layers and vasculature structures could be useful for determining and characterizing skin disease and trauma. In this study, a multispectral high-frequency, linear array-based photoacoustic/ultrasound (PAUS) probe is developed and implemented for the imaging of rat skin in vivo. The study seeks to demonstrate the probe capabilities for visualizing the skin and its underlying structures, and for monitoring changes in skin structure and composition during a 5-day course of a chemical burn. We analayze composition of lipids, water, oxy-hemoglobin, and deoxy-hemoglobin (for determination of oxygen saturation) in the skin tissue. The study successfully demonstrated the high-frequency PAUS imaging probe was able to provide 3D images of the rat skin architecture, underlying vasculature structures, and oxygen saturation, water, lipids and total hemoglobin.
Collapse
Affiliation(s)
- Juliana Benavides-Lara
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amanda P Siegel
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Maria M Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamran Avanaki
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Akella SS, Lee J, May JR, Puyana C, Kravets S, Dimitropolous V, Tsoukas M, Manwar R, Avanaki K. Using optical coherence tomography to optimize Mohs micrographic surgery. Sci Rep 2024; 14:8900. [PMID: 38632358 PMCID: PMC11024158 DOI: 10.1038/s41598-024-53457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/31/2024] [Indexed: 04/19/2024] Open
Abstract
Mohs micrographic surgery (MMS) is considered the gold standard for treating high-risk cutaneous basal cell carcinoma (BCC), but is expensive, time-consuming, and can be unpredictable as to how many stages will be required or how large the final lesion and corresponding surgical defect will be. This study is meant to investigate whether optical coherence tomography (OCT), a highly researched modality in dermatology, can be used preoperatively to map out the borders of BCC, resulting in fewer stages of MMS or a smaller final defect. In this prospective study, 22 patients with BCC undergoing surgical excision were enrolled at a single institution. All patients had previously received a diagnostic biopsy providing confirmation of BCC and had been referred to our center for excision with MMS. Immediately prior to performing MMS, OCT was used to map the borders of the lesion. MMS then proceeded according to standard protocol. OCT images were compared to histopathology for agreement. Histopathologic analysis of 7 of 22 MMS specimens (32%) revealed a total absence of BCC, indicating resolution of BCC after previous diagnostic biopsy. This outcome was correctly predicted by OCT imaging in 6 of 7 cases (86%). Nine tumors (9/22, 41%) had true BCC and required a single MMS stage, which was successfully predicted by pre-operative OCT analysis in 7 of 9 cases (78%). The final six tumors (27%) had true BCC and required two MMS stages for complete excision; preoperative OCT successfully predicted the need for a second stage in five cases (5/6, 83.3%). Overall, OCT diagnosed BCC with 95.5% accuracy (Cohen's kappa, κ = 0.89 (p-value = < 0.01) in the center of the lesion. Following a diagnostic biopsy, OCT can be used to verify the existence or absence of residual basal cell carcinoma. When residual tumor is present that requires excision with MMS, OCT can be used to predict tumor borders, optimize surgery and minimize the need for additional surgical stages.
Collapse
Affiliation(s)
- Sruti S Akella
- Department of Dermatology, University of Illinois-Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jenna Lee
- Department of Dermatology, University of Illinois-Chicago, Chicago, IL, USA
| | - Julia Roma May
- School of Medicine, University of Illinois-Chicago, Chicago, IL, USA
| | - Carolina Puyana
- Department of Dermatology, University of Illinois-Chicago, Chicago, IL, USA
| | - Sasha Kravets
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois-Chicago, Chicago, IL, USA
| | | | - Maria Tsoukas
- Department of Dermatology, University of Illinois-Chicago, Chicago, IL, USA
| | - Rayyan Manwar
- Department of Biomedical Engineering, University of Illinois-Chicago, Chicago, IL, USA
| | - Kamran Avanaki
- Department of Dermatology, University of Illinois-Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, University of Illinois-Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Lee J, Beirami MJ, Ebrahimpour R, Puyana C, Tsoukas M, Avanaki K. Optical coherence tomography confirms non-malignant pigmented lesions in phacomatosis pigmentokeratotica using a support vector machine learning algorithm. Skin Res Technol 2023; 29:e13377. [PMID: 37357662 PMCID: PMC10228288 DOI: 10.1111/srt.13377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Phacomatosis pigmentokeratotica (PPK), an epidermal nevus syndrome, is characterized by the coexistence of nevus spilus and nevus sebaceus. Within the nevus spilus, an extensive range of atypical nevi of different morphologies may manifest. Pigmented lesions may fulfill the ABCDE criteria for melanoma, which may prompt a physician to perform a full-thickness biopsy. MOTIVATION Excisions result in pain, mental distress, and physical disfigurement. For patients with a significant number of nevi with morphologic atypia, it may not be physically feasible to biopsy a large number of lesions. Optical coherence tomography (OCT) is a non-invasive imaging modality that may be used to visualize non-melanoma and melanoma skin cancers. MATERIALS AND METHOD In this study, we used OCT to image pigmented lesions with morphologic atypia in a patient with PPK and assessed their quantitative optical properties compared to OCT cases of melanoma. We implement a support vector machine learning algorithm with Gabor wavelet transformation algorithm during post-image processing to extract optical properties and calculate attenuation coefficients. RESULTS The algorithm was trained and tested to extract and classify textural data. CONCLUSION We conclude that implementing this post-imaging machine learning algorithm to OCT images of pigmented lesions in PPK has been able to successfully confirm benign optical properties. Additionally, we identified remarkable differences in attenuation coefficient values and tissue optical characteristics, further defining separating benign features of pigmented lesions in PPK from malignant features.
Collapse
Affiliation(s)
- Jenna Lee
- Department of DermatologyUniversity of Illinois‐ChicagoChicagoIllinoisUSA
| | - Mohammad Javad Beirami
- Center for Cognitive ScienceInstitute for Convergence Science and Technology (ICST)Sharif University of TechnologyTehranIslamic Republic of Iran
| | - Reza Ebrahimpour
- Center for Cognitive ScienceInstitute for Convergence Science and Technology (ICST)Sharif University of TechnologyTehranIslamic Republic of Iran
- Department of Computer EngineeringShahid Rajaee Teacher Training UniversityTehranIslamic Republic of Iran
- School of Cognitive SciencesInstitute for Research in Fundamental Sciences (IPM)TehranIslamic Republic of Iran
| | - Carolina Puyana
- Department of DermatologyUniversity of Illinois‐ChicagoChicagoIllinoisUSA
| | - Maria Tsoukas
- Department of DermatologyUniversity of Illinois‐ChicagoChicagoIllinoisUSA
| | - Kamran Avanaki
- Department of DermatologyUniversity of Illinois‐ChicagoChicagoIllinoisUSA
- Department of Biomedical EngineeringUniversity of Illinois‐ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
Abuelmakarem HS, Hamdy O, Sliem MA, El-Azab J, Ahmed WA. Early cancer detection using the fluorescent Ashwagandha chitosan nanoparticles combined with near-infrared light diffusion characterization: in vitro study. Lasers Med Sci 2023; 38:37. [PMID: 36627516 PMCID: PMC9832086 DOI: 10.1007/s10103-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
Early cancer diagnosis through characterizing light propagation and nanotechnology increases the survival rate. The present research is aimed at evaluating the consequence of using natural nanoparticles in cancer therapy and diagnosis. Colon cancer cells were differentiated from the normal cells via investigating light diffusion combined with the fluorescence effect of the Ashwagandha chitosan nanoparticles (Ash C NPs). Ionic gelation technique synthesized the Ash C NPs. High-resolution transmission electron microscope, dynamic light scattering, and zeta potential characterized Ash C NPs. Fourier transform infrared spectroscopy analyzed Ash C NPs, chitosan, and Ashwagandha root water extract. Moreover, the MTT assay evaluated the cytotoxicity of Ash C NPs under the action of near-infrared light (NIR) irradiation. The MTT assay outcomes were statistically analyzed by Bonferroni post hoc multiple two-group comparisons using one-way variance analysis (ANOVA). Based on the Monte-Carlo simulation technique, the spatially resolved steady-state diffusely reflected light from the cancerous and healthy cells is acquired. The diffuse equation reconstructed the optical fluence rate using the finite element technique. The fluorescent effect of the nanoparticles was observed when the cells were irradiated with NIR. The MTT assay revealed a decrease in the cell viability under the action of Ash C NPs with and without laser irradiation. Colon cancer and normal cells were differentiated based on the optical characterization after laser irradiation. The light diffusion equation was successfully resolved for the fluence rate on cells' surfaces showing different normal and cancer cells values. Ash C NPs appeared its fluorescent effect in the presence of NIR laser.
Collapse
Affiliation(s)
- Hala S Abuelmakarem
- System and Biomedical Engineering Department, The Higher Institute of Engineering, El Shoruk Academy, El-Shorouk, Egypt.
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt.
| | - Omnia Hamdy
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILE), Cairo University, Giza, 12613, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Al-Ula, Medina, Saudi Arabia
| | - Jala El-Azab
- Department of Engineering Applications of Lasers, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza Governorate, Giza, 12613, Egypt
| | - Wafaa A Ahmed
- Cancer Biology Department, Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Huang J, Cui Y, Yang Y, Li H, Zhang Y, Yang H, Du S, Bai J. Optical Coherence Tomography and Microdialysis for Microneedle-Mediated Penetration Enhancement Study of Paeoniflorin-Loaded Ethosomes. Skin Pharmacol Physiol 2021; 34:183-193. [PMID: 33957631 DOI: 10.1159/000514321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND To understand the cumulative effect of topical formulations after medication, evaluate the therapeutic effect of microneedle-assisted (MN-assisted) paeoniflorin-loaded ethosomes (TGP-E), and explore the potential for deep penetration of drugs, this paper uses microdialysis to systematically study the percutaneous pharmacokinetics of TGP-E. METHODS First, optical coherence tomography (OCT) was used to study the effectiveness of microneedle puncture. Second, a microdialysis method and a UPLC-MS method for determining the amount of paeoniflorin (Pae) in dialysate were established. Finally, the transdermal pharmacokinetics of TGP-E was studied using in vivo microdialysis in rats under the above MN-assisted conditions. RESULTS The optimal MN-assisted conditions were obtained at a microneedle length of 500 μm, a pressure of 3 N, and an action time of 3 min. The pharmacokinetic results demonstrated that the maximum drug concentration (Cmax) and the area under the curve (AUC) of the TGP-E gel were higher than the TGP-saline solution gel, and the mean retention time was lower. These indicated that microneedle can promote the entry of the ethosomes into the skin for in vivo experiments and greatly improve the possibility of deep penetration of the water-soluble Pae. CONCLUSION Therefore, the microneedle-ethosomes delivery system is a more ideal means for promoting the deep penetration of Pae. These findings may provide a reference for the combination of multiple penetration-enhancement ways to promote drug absorption, and also provide a new insight to realize the development of novel, safe, and more effective dosage forms and administration routes of drugs.
Collapse
Affiliation(s)
- Jiayi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yahua Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanling Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huahua Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haiju Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Kratkiewicz K, Manwar R, Zhou Y, Mozaffarzadeh M, Avanaki K. Technical considerations in the Verasonics research ultrasound platform for developing a photoacoustic imaging system. BIOMEDICAL OPTICS EXPRESS 2021; 12:1050-1084. [PMID: 33680559 PMCID: PMC7901326 DOI: 10.1364/boe.415481] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging functional and molecular imaging technology that has attracted much attention in the past decade. Recently, many researchers have used the vantage system from Verasonics for simultaneous ultrasound (US) and photoacoustic (PA) imaging. This was the motivation to write on the details of US/PA imaging system implementation and characterization using Verasonics platform. We have discussed the experimental considerations for linear array based PAI due to its popularity, simple setup, and high potential for clinical translatability. Specifically, we describe the strategies of US/PA imaging system setup, signal generation, amplification, data processing and study the system performance.
Collapse
Affiliation(s)
- Karl Kratkiewicz
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
- These authors have contributed
equally
| | - Rayyan Manwar
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
- These authors have contributed
equally
| | - Yang Zhou
- Wayne State University, Department of
Biomedical Engineering, Detroit, MI 48201, USA
| | - Moein Mozaffarzadeh
- Laboratory of Medical Imaging, Department
of Imaging Physics, Delft University of Technology, The Netherlands
| | - Kamran Avanaki
- Richard and Loan Hill Department of
Bioengineering, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
7
|
Hessler M, Jalilian E, Xu Q, Reddy S, Horton L, Elkin K, Manwar R, Tsoukas M, Mehregan D, Avanaki K. Melanoma Biomarkers and Their Potential Application for In Vivo Diagnostic Imaging Modalities. Int J Mol Sci 2020; 21:E9583. [PMID: 33339193 PMCID: PMC7765677 DOI: 10.3390/ijms21249583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and remains a diagnostic challenge in the dermatology clinic. Several non-invasive imaging techniques have been developed to identify melanoma. The signal source in each of these modalities is based on the alteration of physical characteristics of the tissue from healthy/benign to melanoma. However, as these characteristics are not always sufficiently specific, the current imaging techniques are not adequate for use in the clinical setting. A more robust way of melanoma diagnosis is to "stain" or selectively target the suspect tissue with a melanoma biomarker attached to a contrast enhancer of one imaging modality. Here, we categorize and review known melanoma diagnostic biomarkers with the goal of guiding skin imaging experts to design an appropriate diagnostic tool for differentiating between melanoma and benign lesions with a high specificity and sensitivity.
Collapse
Affiliation(s)
- Monica Hessler
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
| | - Shriya Reddy
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
| | - Luke Horton
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Kenneth Elkin
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.H.); (Q.X.); (S.R.); (L.H.); (K.E.); (R.M.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Maria Tsoukas
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Darius Mehregan
- Department of Dermatology, School of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
8
|
FCC-Net: A Full-Coverage Collaborative Network for Weakly Supervised Remote Sensing Object Detection. ELECTRONICS 2020. [DOI: 10.3390/electronics9091356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With an ever-increasing resolution of optical remote-sensing images, how to extract information from these images efficiently and effectively has gradually become a challenging problem. As it is prohibitively expensive to label every object in these high-resolution images manually, there is only a small number of high-resolution images with detailed object labels available, highly insufficient for common machine learning-based object detection algorithms. Another challenge is the huge range of object sizes: it is difficult to locate large objects, such as buildings and small objects, such as vehicles, simultaneously. To tackle these problems, we propose a novel neural network based remote sensing object detector called full-coverage collaborative network (FCC-Net). The detector employs various tailored designs, such as hybrid dilated convolutions and multi-level pooling, to enhance multiscale feature extraction and improve its robustness in dealing with objects of different sizes. Moreover, by utilizing asynchronous iterative training alternating between strongly supervised and weakly supervised detectors, the proposed method only requires image-level ground truth labels for training. To evaluate the approach, we compare it against a few state-of-the-art techniques on two large-scale remote-sensing image benchmark sets. The experimental results show that FCC-Net significantly outperforms other weakly supervised methods in detection accuracy. Through a comprehensive ablation study, we also demonstrate the efficacy of the proposed dilated convolutions and multi-level pooling in increasing the scale invariance of an object detector.
Collapse
|
9
|
Manwar R, Kratkiewicz K, Avanaki K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. MICROMACHINES 2020; 11:E692. [PMID: 32708869 PMCID: PMC7407969 DOI: 10.3390/mi11070692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Jalilian E, Elkin K, Shin SR. Novel Cell-Based and Tissue Engineering Approaches for Induction of Angiogenesis as an Alternative Therapy for Diabetic Retinopathy. Int J Mol Sci 2020; 21:E3496. [PMID: 32429094 PMCID: PMC7278952 DOI: 10.3390/ijms21103496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of long-term diabetes and the most common cause of blindness, increasing morbidity in the working-age population. The most effective therapies for these complications include laser photocoagulation and anti-vascular endothelial growth factor (VEGF) intravitreal injections. However, laser and anti-VEGF drugs are untenable as a final solution as they fail to address the underlying neurovascular degeneration and ischemia. Regenerative medicine may be a more promising approach, aimed at the repair of blood vessels and reversal of retinal ischemia. Stem cell therapy has introduced a novel way to reverse the underlying ischemia present in microvascular complications in diseases such as diabetes. The present review discusses current treatments, their side effects, and novel cell-based and tissue engineering approaches as a potential alternative therapeutic approach.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Kenneth Elkin
- Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA;
| |
Collapse
|