1
|
Borșa RM, Toma V, Nășcuțiu MT, Onaciu A, Colceriu-Șimon IM, Băciuț G, Bran S, Dinu CM, Onișor F, Armencea G, Culic C, Hedeșiu MC, Știufiuc RI, Băciuț MF. Understanding the Interaction of Röntgen Radiation Employed in Computed Tomography/Cone Beam Computed Tomography Investigations of the Oral Cavity by Means of Surface-Enhanced Raman Spectroscopy Analysis of Saliva. SENSORS (BASEL, SWITZERLAND) 2024; 24:8021. [PMID: 39771757 PMCID: PMC11679455 DOI: 10.3390/s24248021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra. The changes were more pronounced in the case of CT as compared to CBCT, probably due to the use of a high radiation dose in the case of the first-mentioned technique. These findings underscore the impact of CBCT and CT on salivary composition, highlighting the relevance of SERS as a sensitive method for detecting subtle molecular changes in biofluids post-radiation exposure. This study's results emphasize the importance of monitoring biochemical markers in patients undergoing diagnostic imaging to better understand the systemic effects of ionizing radiation.
Collapse
Affiliation(s)
- Rareș-Mario Borșa
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetics, Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Clinicilor 32, 400001 Cluj-Napoca, Romania
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania;
| | - Valentin Toma
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania;
| | - Melania-Teodora Nășcuțiu
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania;
| | - Anca Onaciu
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania;
| | - Ioana-Maria Colceriu-Șimon
- Department of Conservative Odontology, Division Orthodontics and Dental-Facial Orthopedics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400089 Cluj-Napoca, Romania;
| | - Grigore Băciuț
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Simion Bran
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Cristian-Mihail Dinu
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Florin Onișor
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Gabriel Armencea
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Carina Culic
- Department of Conservative Odontology, Division Odontology, Endodontics, Cariology, Oral Pathology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Moților 33, 400089 Cluj-Napoca, Romania;
| | - Mihaela-Carmen Hedeșiu
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
- Department of Oral Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Avram Iancu 31, 400089 Cluj-Napoca, Romania
| | - Rareș-Ionuț Știufiuc
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Louis Pasteur 6, 400349 Cluj-Napoca, Romania;
- Department of NanoBioPhysics, Institute of Medical Research and Life Sciences—MEDFUTURE, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur 4-6, 400349 Cluj-Napoca, Romania;
- Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, General Henri Mathias Berthelot 2-4, 700483 Iaşi, Romania
| | - Mihaela-Felicia Băciuț
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (M.-T.N.); (G.B.); (S.B.); (C.-M.D.); (F.O.); (G.A.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cardinal Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Zamani E, Ksantini N, Sheehy G, Ember KJI, Baloukas B, Zabeida O, Trang T, Mahfoud M, Sapieha JE, Martinu L, Leblond F. Spectral effects and enhancement quantification in healthy human saliva with surface-enhanced Raman spectroscopy using silver nanopillar substrates. Lasers Surg Med 2024; 56:206-217. [PMID: 38073098 DOI: 10.1002/lsm.23746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Raman spectroscopy as a diagnostic tool for biofluid applications is limited by low inelastic scattering contributions compared to the fluorescence background from biomolecules. Surface-enhanced Raman spectroscopy (SERS) can increase Raman scattering signals, thereby offering the potential to reduce imaging times. We aimed to evaluate the enhancement related to the plasmonic effect and quantify the improvements in terms of spectral quality associated with SERS measurements in human saliva. METHODS Dried human saliva was characterized using spontaneous Raman spectroscopy and SERS. A fabrication protocol was implemented leading to the production of silver (Ag) nanopillar substrates by glancing angle deposition. Two different imaging systems were used to interrogate saliva from 161 healthy donors: a custom single-point macroscopic system and a Raman micro-spectroscopy instrument. Quantitative metrics were established to compare spontaneous RS and SERS measurements: the Raman spectroscopy quality factor (QF), the photonic count rate (PR), the signal-to-background ratio (SBR). RESULTS SERS measurements acquired with an excitation energy four times smaller than with spontaneous RS resulted in improved QF, PR values an order of magnitude larger and a SBR twice as large. The SERS enhancement reached 100×, depending on which Raman bands were considered. CONCLUSIONS Single-point measurement of dried saliva with silver nanopillars substrates led to reproducible SERS measurements, paving the way to real-time tools of diagnosis in human biofluids.
Collapse
Affiliation(s)
- Esmat Zamani
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Nassim Ksantini
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Guillaume Sheehy
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Katherine J I Ember
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Bill Baloukas
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
| | - Oleg Zabeida
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
| | - Tran Trang
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Myriam Mahfoud
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Ludvik Martinu
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
| | - Frédéric Leblond
- Department of Engineering Physics, Polytechnique Montreal, Montréal, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| |
Collapse
|
3
|
Farooq A, Wood CD, Ladbury JE, Evans SD. On-chip Raman spectroscopy of live single cells for the staging of oesophageal adenocarcinoma progression. Sci Rep 2024; 14:1761. [PMID: 38242991 PMCID: PMC10799027 DOI: 10.1038/s41598-024-52079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
The absence of early diagnosis contributes to oesophageal cancer being the sixth most common cause of global cancer-associated deaths, with a 5-year survival rate of < 20%. Barrett's oesophagus is the main pre-cancerous condition to adenocarcinoma development, characterised by the morphological transition of oesophageal squamous epithelium to metaplastic columnar epithelium. Early tracking and treatment of oesophageal adenocarcinoma could dramatically improve with diagnosis and monitoring of patients with Barrett's Oesophagus. Current diagnostic methods involve invasive techniques such as endoscopies and, with only a few identified biomarkers of disease progression, the detection of oesophageal adenocarcinoma is costly and challenging. In this work, single-cell Raman spectroscopy was combined with microfluidic techniques to characterise the development of oesophageal adenocarcinoma through the progression of healthy epithelial, Barrett's oesophagus and oesophageal adenocarcinoma cell lines. Principal component analysis and linear discriminant analysis were used to classify the different stages of cancer progression. with the ability to differentiate between healthy and cancerous cells with an accuracy of 97%. Whilst the approach could also separate the dysplastic stages from healthy or cancer with high accuracy-the intra-class separation was approximately 68%. Overall, these results highlight the potential for rapid and reliable diagnostic/prognostic screening of Barrett's Oesophagus patients.
Collapse
Affiliation(s)
- Alisha Farooq
- School of Physics and Astronomy, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christopher D Wood
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Zniber M, Vahdatiyekta P, Huynh TP. Analysis of urine using electronic tongue towards non-invasive cancer diagnosis. Biosens Bioelectron 2023; 219:114810. [PMID: 36272349 DOI: 10.1016/j.bios.2022.114810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Electronic tongues (e-tongues) have been broadly employed in monitoring the quality of food, beverage, cosmetics, and pharmaceutical products, and in diagnosis of diseases, as the e-tongues can discriminate samples of high complexity, reduce interference of the matrix, offer rapid response. Compared to other analytical approaches using expensive and complex instrumentation as well as required sample preparation, the e-tongue is non-destructive, miniaturizable and on-site method with little or no preparation of samples. Even though e-tongues are successfully commercialized, their application in cancer diagnosis from urine samples is underestimated. In this review, we would like to highlight the various analytical techniques such as Raman spectroscopy, infrared spectroscopy, fluorescence spectroscopy, and electrochemical methods (potentiometry and voltammetry) used as e-tongues for urine analysis towards non-invasive cancer diagnosis. Besides, different machine learning approaches, for instance, supervised and unsupervised learning algorithms are introduced to analyze extracted chemical data. Finally, capabilities of e-tongues in distinguishing between patients diagnosed with cancer and healthy controls are highlighted.
Collapse
Affiliation(s)
- Mohammed Zniber
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Parastoo Vahdatiyekta
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, 20500, Turku, Finland.
| |
Collapse
|
5
|
El-Mashtoly SF, Gerwert K. Diagnostics and Therapy Assessment Using Label-Free Raman Imaging. Anal Chem 2021; 94:120-142. [PMID: 34852454 DOI: 10.1021/acs.analchem.1c04483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samir F El-Mashtoly
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
6
|
Giamougiannis P, Silva RVO, Freitas DLD, Lima KMG, Anagnostopoulos A, Angelopoulos G, Naik R, Wood NJ, Martin-Hirsch PL, Martin FL. Raman spectroscopy of blood and urine liquid biopsies for ovarian cancer diagnosis: identification of chemotherapy effects. JOURNAL OF BIOPHOTONICS 2021; 14:e202100195. [PMID: 34296515 DOI: 10.1002/jbio.202100195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Blood plasma and serum Raman spectroscopy for ovarian cancer diagnosis has been applied in pilot studies, with promising results. Herein, a comparative analysis of these biofluids, with a novel assessment of urine, was conducted by Raman spectroscopy application in a large patient cohort. Spectra were obtained through samples measurements from 116 ovarian cancer patients and 307 controls. Principal component analysis identified significant spectral differences between cancers without previous treatment (n = 71) and following neo-adjuvant chemotherapy (NACT), (n = 45). Application of five classification algorithms achieved up to 73% sensitivity for plasma, high specificities and accuracies for both blood biofluids, and lower performance for urine. A drop in sensitivities for the NACT group in plasma and serum, with an opposite trend in urine, suggest that Raman spectroscopy could identify chemotherapy-related changes. This study confirms that biofluids' Raman spectroscopy can contribute in ovarian cancer's diagnostic work-up and demonstrates its potential in monitoring treatment response.
Collapse
Affiliation(s)
- Panagiotis Giamougiannis
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Raissa V O Silva
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Daniel L D Freitas
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Antonios Anagnostopoulos
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Georgios Angelopoulos
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Raj Naik
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Nicholas J Wood
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Pierre L Martin-Hirsch
- Department of Obstetrics and Gynaecology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | | |
Collapse
|
7
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
8
|
Maitra I, Date RS, Martin FL. Towards screening Barrett's oesophagus: current guidelines, imaging modalities and future developments. Clin J Gastroenterol 2020; 13:635-649. [PMID: 32495144 PMCID: PMC7519897 DOI: 10.1007/s12328-020-01135-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Barrett's oesophagus is the only known precursor to oesophageal adenocarcinoma (OAC). Although guidelines on the screening and surveillance exist in Barrett's oesophagus, the current strategies are inadequate. Oesophagogastroduodenoscopy (OGD) is the gold standard method in screening for Barrett's oesophagus. This invasive method is expensive with associated risks negating its use as a current screening tool for Barrett's oesophagus. This review explores current definitions, epidemiology, biomarkers, surveillance, and screening in Barrett's oesophagus. Imaging modalities applicable to this condition are discussed, in addition to future developments. There is an urgent need for an alternative non-invasive method of screening and/or surveillance which could be highly beneficial towards reducing waiting times, alleviating patient fears and reducing future costs in current healthcare services. Vibrational spectroscopy has been shown to be promising in categorising Barrett's oesophagus through to high-grade dysplasia (HGD) and OAC. These techniques need further validation through multicentre trials.
Collapse
Affiliation(s)
- Ishaan Maitra
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE UK
| | | | | |
Collapse
|
9
|
Derruau S, Robinet J, Untereiner V, Piot O, Sockalingum GD, Lorimier S. Vibrational Spectroscopy Saliva Profiling as Biometric Tool for Disease Diagnostics: A Systematic Literature. Molecules 2020; 25:E4142. [PMID: 32927716 PMCID: PMC7570680 DOI: 10.3390/molecules25184142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Saliva is a biofluid that can be considered as a "mirror" reflecting our body's health status. Vibrational spectroscopy, Raman and infrared, can provide a detailed salivary fingerprint that can be used for disease biomarker discovery. We propose a systematic literature review based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to evaluate the potential of vibrational spectroscopy to diagnose oral and general diseases using saliva as a biological specimen. Literature searches were recently conducted in May 2020 through MEDLINE-PubMed and Scopus databases, without date limitation. Finally, over a period of 10 years, 18 publications were included reporting on 10 diseases (three oral and seven general diseases), with very high diagnostic performance rates in terms of sensitivity, specificity, and accuracy. Thirteen articles were related to six different cancers of the following anatomical sites: mouth, nasopharynx, lung, esophagus, stomach, and breast. The other diseases investigated and included in this review were periodontitis, Sjögren's syndrome, diabetes, and myocardial infarction. Moreover, most articles focused on Raman spectroscopy (n = 16/18) and more specifically surface-enhanced Raman spectroscopy (n = 12/18). Interestingly, vibrational spectroscopy appears promising as a rapid, label-free, and non-invasive diagnostic salivary biometric tool. Furthermore, it could be adapted to investigate subclinical diseases-even if developmental studies are required.
Collapse
Affiliation(s)
- Stéphane Derruau
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 45 rue Cognacq-Jay, 51092 Reims, France
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
| | - Julien Robinet
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
| | - Valérie Untereiner
- Université de Reims Champagne-Ardenne, PICT, 51 rue Cognacq-Jay, 51097 Reims, France;
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
- Université de Reims Champagne-Ardenne, PICT, 51 rue Cognacq-Jay, 51097 Reims, France;
| | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT-EA7506, UFR de Pharmacie, 51 rue Cognacq-Jay, 51097 Reims, France; (O.P.); (G.D.S.)
| | - Sandrine Lorimier
- Université de Reims Champagne-Ardenne, Département de Biologie Orale, UFR Odontologie, 2 rue du Général Koenig, 51100 Reims, France; (S.D.); (J.R.)
- Pôle de Médecine Bucco-dentaire, Centre Hospitalier Universitaire de Reims, 45 rue Cognacq-Jay, 51092 Reims, France
- Université de Reims Champagne-Ardenne, GRESPI-EA4694, UFR Sciences Exactes et Naturelles, 51687 Reims, France
| |
Collapse
|
10
|
Establishing spectrochemical changes in the natural history of oesophageal adenocarcinoma from tissue Raman mapping analysis. Anal Bioanal Chem 2020; 412:4077-4087. [PMID: 32333079 PMCID: PMC7320044 DOI: 10.1007/s00216-020-02637-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Raman spectroscopy is a fast and sensitive technique able to identify molecular changes in biological specimens. Herein, we report on three cases where Raman microspectroscopy was used to distinguish normal vs. oesophageal adenocarcinoma (OAC) (case 1) and Barrett’s oesophagus vs. OAC (cases 2 and 3) in a non-destructive and highly accurate fashion. Normal and OAC tissues were discriminated using principal component analysis plus linear discriminant analysis (PCA-LDA) with 97% accuracy (94% sensitivity and 100% specificity) (case 1); Barrett’s oesophagus vs. OAC tissues were discriminated with accuracies ranging from 98 to 100% (97–100% sensitivity and 100% specificity). Spectral markers responsible for class differentiation were obtained through the difference-between-mean spectrum for each group and the PCA loadings, where C–O–C skeletal mode in β-glucose (900 cm−1), lipids (967 cm−1), phosphodioxy (1296 cm−1), deoxyribose (1456 cm−1) and collagen (1445, 1665 cm−1) were associated with normal and OAC tissue differences. Phenylalanine (1003 cm−1), proline/collagen (1066, 1445 cm−1), phospholipids (1130 cm−1), CH2 angular deformation (1295 cm−1), disaccharides (1462 cm−1) and proteins (amide I, 1672/5 cm−1) were associated with Barrett’s oesophagus and OAC tissue differences. These findings show the potential of using Raman microspectroscopy imaging for fast and accurate diagnoses of oesophageal pathologies and establishing subtle molecular changes predisposing to adenocarcinoma in a clinical setting. Graphical abstract demonstrating how oesophageal tissue is processed through Raman mapping analysis in order to detect spectral differences between stages of oesophageal transformation to adenocarcinoma ![]()
Collapse
|
11
|
Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev 2020; 49:7428-7453. [DOI: 10.1039/d0cs01019g] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes recent progress made using Raman spectroscopy and machine learning for potential universal medical diagnostic applications.
Collapse
Affiliation(s)
| | - Igor K. Lednev
- Department of Chemistry
- University at Albany
- SUNY
- Albany
- USA
| |
Collapse
|