1
|
Huber M, Zada L, Ivleva NP, Ariese F. Multi-Parameter Analysis of Nanoplastics in Flow: Taking Advantage of High Sensitivity and Time Resolution Enabled by Stimulated Raman Scattering. Anal Chem 2024; 96:8949-8955. [PMID: 38771150 PMCID: PMC11154663 DOI: 10.1021/acs.analchem.3c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Here, we demonstrate the detection of nanoplastics (NPLs) in flow with stimulated Raman scattering (SRS) for the first time. NPLs (plastic particles <1000 nm) have recently been detected in different environmental samples and personal care products. However, their characterization is still an analytical challenge. Multiple parameters, including size, chemical composition, and concentration (particle number and mass), need to be determined. In an earlier paper, online field flow fractionation (FFF)-Raman analysis with optical trapping was shown to be a promising tool for the detection of particles in this size range. SRS, which is based on the enhancement of a vibrational transition by the matching energy difference of two laser beams, would allow for much more sensitive detection and, hence, much shorter acquisition times compared to spontaneous Raman microspectroscopy (RM). Here, we show the applicability of SRS for the flow-based analysis of individual, untrapped NPLs. It was possible to detect polyethylene (PE), polystyrene (PS), and poly(methyl methacrylate) (PMMA) beads with diameters of 100-5000 nm. The high time resolution of 60.5 μs allows us to detect individual signals per particle and to correlate the number of detected particles to the injected mass concentration. Furthermore, due to the high time resolution, optically trapped beads could be distinguished from untrapped beads by their peak shapes. The SRS wavenumber settings add chemical selectivity to the measurement. Whereas optical trapping is necessary for the flow-based detection of particles by spontaneous RM, the current study demonstrates that SRS can detect particles in a flow without trapping. Additionally, the mean particle size could be estimated using the mean width (duration) and intensity of the SRS signals.
Collapse
Affiliation(s)
- Maximilian
J. Huber
- Chair
of Analytical Chemistry and Water Chemistry, Institute of Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Liron Zada
- LaserLaB
Amsterdam, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Natalia P. Ivleva
- Chair
of Analytical Chemistry and Water Chemistry, Institute of Water Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Freek Ariese
- LaserLaB
Amsterdam, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Chadha RS, Guerrero JA, Wei L, Sanchez LM. Seeing is Believing: Developing Multimodal Metabolic Insights at the Molecular Level. ACS CENTRAL SCIENCE 2024; 10:758-774. [PMID: 38680555 PMCID: PMC11046475 DOI: 10.1021/acscentsci.3c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
This outlook explores how two different molecular imaging approaches might be combined to gain insight into dynamic, subcellular metabolic processes. Specifically, we discuss how matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and stimulated Raman scattering (SRS) microscopy, which have significantly pushed the boundaries of imaging metabolic and metabolomic analyses in their own right, could be combined to create comprehensive molecular images. We first briefly summarize the recent advances for each technique. We then explore how one might overcome the inherent limitations of each individual method, by envisioning orthogonal and interchangeable workflows. Additionally, we delve into the potential benefits of adopting a complementary approach that combines both MSI and SRS spectro-microscopy for informing on specific chemical structures through functional-group-specific targets. Ultimately, by integrating the strengths of both imaging modalities, researchers can achieve a more comprehensive understanding of biological and chemical systems, enabling precise metabolic investigations. This synergistic approach holds substantial promise to expand our toolkit for studying metabolites in complex environments.
Collapse
Affiliation(s)
- Rahuljeet S Chadha
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 United States
| | - Jason A Guerrero
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064 United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064 United States
| |
Collapse
|
3
|
Orr JPM, Myckatyn TM. Discussion: Baker Grade IV Capsular Contracture Is Correlated with an Increased Amount of Silicone Material: An Intrapatient Study. Plast Reconstr Surg 2023; 152:1201-1202. [PMID: 38019688 DOI: 10.1097/prs.0000000000010717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Affiliation(s)
- Jonah P M Orr
- From the Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| | - Terence M Myckatyn
- From the Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| |
Collapse
|
4
|
Gruber ES, Stadlbauer V, Pichler V, Resch-Fauster K, Todorovic A, Meisel TC, Trawoeger S, Hollóczki O, Turner SD, Wadsak W, Vethaak AD, Kenner L. To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. EXPOSURE AND HEALTH 2022; 15:33-51. [PMID: 36873245 PMCID: PMC9971145 DOI: 10.1007/s12403-022-00470-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.
Collapse
Affiliation(s)
- Elisabeth S. Gruber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Andrea Todorovic
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Styria, Austria
| | - Thomas C. Meisel
- General and Analytical Chemistry, Montanuniversitaet Leoben, Styria, Austria
| | - Sibylle Trawoeger
- Division of Systematic Theology and its Didactics, Faculty of Catholic Theology, University of Wuerzburg, Wuerzburg, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP UK
- Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Unit of Marine and Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
| | - Lukas Kenner
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Laboratory Animal Pathology, Department of Pathology Medical, University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Multimodal, label-free fluorescence and Raman imaging of amyloid deposits in snap-frozen Alzheimer's disease human brain tissue. Commun Biol 2021; 4:474. [PMID: 33859370 PMCID: PMC8050064 DOI: 10.1038/s42003-021-01981-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) neuropathology is characterized by hyperphosphorylated tau containing neurofibrillary tangles and amyloid-beta (Aβ) plaques. Normally these hallmarks are studied by (immuno-) histological techniques requiring chemical pretreatment and indirect labelling. Label-free imaging enables one to visualize normal tissue and pathology in its native form. Therefore, these techniques could contribute to a better understanding of the disease. Here, we present a comprehensive study of high-resolution fluorescence imaging (before and after staining) and spectroscopic modalities (Raman mapping under pre-resonance conditions and stimulated Raman scattering (SRS)) of amyloid deposits in snap-frozen AD human brain tissue. We performed fluorescence and spectroscopic imaging and subsequent thioflavin-S staining of the same tissue slices to provide direct confirmation of plaque location and correlation of spectroscopic biomarkers with plaque morphology; differences were observed between cored and fibrillar plaques. The SRS results showed a protein peak shift towards the β-sheet structure in cored amyloid deposits. In the Raman maps recorded with 532 nm excitation we identified the presence of carotenoids as a unique marker to differentiate between a cored amyloid plaque area versus a non-plaque area without prior knowledge of their location. The observed presence of carotenoids suggests a distinct neuroinflammatory response to misfolded protein accumulations.
Collapse
|
6
|
Shi L, Fung AA, Zhou A. Advances in stimulated Raman scattering imaging for tissues and animals. Quant Imaging Med Surg 2021; 11:1078-1101. [PMID: 33654679 PMCID: PMC7829158 DOI: 10.21037/qims-20-712] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy has emerged in the last decade as a powerful optical imaging technology with high chemical selectivity, speed, and subcellular resolution. Since the invention of SRS microscopy, it has been extensively employed in life science to study composition, structure, metabolism, development, and disease in biological systems. Applications of SRS in research and the clinic have generated new insights in many fields including neurobiology, tumor biology, developmental biology, metabolomics, pharmacokinetics, and more. Herein we review the advances and applications of SRS microscopy imaging in tissues and animals, as well as envision future applications and development of SRS imaging in life science and medicine.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andy Zhou
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Endoscopic Optical Imaging Technologies and Devices for Medical Purposes: State of the Art. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The growth and development of optical components and, in particular, the miniaturization of micro-electro-mechanical systems (MEMSs), has motivated and enabled researchers to design smaller and smaller endoscopes. The overarching goal of this work has been to image smaller previously inaccessible luminal organs in real time, at high resolution, in a minimally invasive manner that does not compromise the comfort of the subject, nor introduce additional risk. Thus, an initial diagnosis can be made, or a small precancerous lesion may be detected, in a small-diameter luminal organ that would not have otherwise been possible. Continuous advancement in the field has enabled a wide range of optical scanners. Different scanning techniques, working principles, and the applications of endoscopic scanners are summarized in this review.
Collapse
|