1
|
Govorunova EG, Sineshchekov OA, Brown LS, Spudich JL. Biophysical characterization of light-gated ion channels using planar automated patch clamp. Front Mol Neurosci 2022; 15:976910. [PMID: 36017077 PMCID: PMC9396214 DOI: 10.3389/fnmol.2022.976910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
Channelrhodopsins (ChRs) are proteins that guide phototaxis in protists and exhibit light-gated channel conductance when their genes are heterologously expressed in mammalian cells. ChRs are widely used as molecular tools to control neurons and cardiomyocytes with light (optogenetics). Cation- and anion-selective ChRs (CCRs and ACRs, respectively) enable stimulation and inhibition of neuronal activity by depolarization and hyperpolarization of the membrane, respectively. More than 400 natural ChR variants have been identified so far, and high-throughput polynucleotide sequencing projects add many more each year. However, electrophysiological characterization of new ChRs lags behind because it is mostly done by time-consuming manual patch clamp (MPC). Here we report using a high-throughput automated patch clamp (APC) platform, SyncroPatch 384i from Nanion Technologies, for ChR research. We find that this instrument can be used for determination of the light intensity dependence and current-voltage relationships in ChRs and discuss its advantages and limitations.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Oleg A. Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Leonid S. Brown
- Biophysics Interdepartmental Group, Department of Physics, University of Guelph, Guelph, ON, Canada
| | - John L. Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| |
Collapse
|
2
|
Hong W, Jiang C, Qin M, Song Z, Ji P, Wang L, Tu K, Lu L, Guo Z, Yang B, Wang X, Liu J. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor. SCIENCE ADVANCES 2021; 7:eabj4273. [PMID: 34818034 PMCID: PMC8612680 DOI: 10.1126/sciadv.abj4273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Precision medicine calls for high demand of continuous, closed-loop physiological monitoring and accurate control, especially for cardiovascular diseases. Cardiac optogenetics is promising for its superiority of cell selectivity and high time-space accuracy, but the efficacy of optogenetics relative to the input of light stimulus is detected and controlled separately by discrete instruments in vitro, which suffers from time retardation, energy consumption, and poor portability. Thus, a highly integrated system based on implantable sensors combining closed-loop self-monitoring with simultaneous treatment is highly desired. Here, we report a self-adaptive cardiac optogenetics system based on an original negative stretching-resistive strain sensor array for closed-loop heart rate recording and self-adaptive light intensity control. The strain sensor exhibits a dual and synchronous capability of precise monitor and physiological-electrical-optical regulation. In an in vivo ventricular tachycardia model, our system demonstrates the potential of a negative stretching-resistive device in controlling-in-sensor electronics for wearable/implantable autodiagnosis and telehealth applications.
Collapse
Affiliation(s)
- Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunpeng Jiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Pengfei Ji
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Lu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhejun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author.
| |
Collapse
|
3
|
Ochs AR, Karathanos TV, Trayanova NA, Boyle PM. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study. Front Physiol 2021; 12:718622. [PMID: 34526912 PMCID: PMC8435849 DOI: 10.3389/fphys.2021.718622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Optogenetic defibrillation of hearts expressing light-sensitive cation channels (e.g., ChR2) has been proposed as an alternative to conventional electrotherapy. Past modeling work has shown that ChR2 stimulation can depolarize enough myocardium to interrupt arrhythmia, but its efficacy is limited by light attenuation and high energy needs. These shortcomings may be mitigated by using new optogenetic proteins like Guillardia theta Anion Channelrhodopsin (GtACR1), which produces a repolarizing outward current upon illumination. Accordingly, we designed a study to assess the feasibility of GtACR1-based optogenetic arrhythmia termination in human hearts. We conducted electrophysiological simulations in MRI-based atrial or ventricular models (n = 3 each), with pathological remodeling from atrial fibrillation or ischemic cardiomyopathy, respectively. We simulated light sensitization via viral gene delivery of three different opsins (ChR2, red-shifted ChR2, GtACR1) and uniform endocardial illumination at the appropriate wavelengths (blue, red, or green light, respectively). To analyze consistency of arrhythmia termination, we varied pulse timing (three evenly spaced intervals spanning the reentrant cycle) and intensity (atrial: 0.001–1 mW/mm2; ventricular: 0.001–10 mW/mm2). In atrial models, GtACR1 stimulation with 0.005 mW/mm2 green light consistently terminated reentry; this was 10–100x weaker than the threshold levels for ChR2-mediated defibrillation. In ventricular models, defibrillation was observed in 2/3 models for GtACR1 stimulation at 0.005 mW/mm2 (100–200x weaker than ChR2 cases). In the third ventricular model, defibrillation failed in nearly all cases, suggesting that attenuation issues and patient-specific organ/scar geometry may thwart termination in some cases. Across all models, the mechanism of GtACR1-mediated defibrillation was voltage forcing of illuminated tissue toward the modeled channel reversal potential of −40 mV, which made propagation through affected regions impossible. Thus, our findings suggest GtACR1-based optogenetic defibrillation of the human heart may be feasible with ≈2–3 orders of magnitude less energy than ChR2.
Collapse
Affiliation(s)
- Alexander R Ochs
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Thomas V Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Nyns ECA, Jin T, Fontes MS, van den Heuvel T, Portero V, Ramsey C, Bart CI, Zeppenfeld K, Schalij MJ, van Brakel TJ, Ramkisoensing AA, Qi Zhang G, Poelma RH, Ördög B, de Vries AAF, Pijnappels DA. Optical ventricular cardioversion by local optogenetic targeting and LED implantation in a cardiomyopathic rat model. Cardiovasc Res 2021; 118:2293-2303. [PMID: 34528100 PMCID: PMC9328286 DOI: 10.1093/cvr/cvab294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/09/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Ventricular tachyarrhythmias (VTs) are common in the pathologically remodelled heart. These arrhythmias can be lethal, necessitating acute treatment like electrical cardioversion to restore normal rhythm. Recently, it has been proposed that cardioversion may also be realized via optically controlled generation of bioelectricity by the arrhythmic heart itself through optogenetics and therefore without the need of traumatizing high-voltage shocks. However, crucial mechanistic and translational aspects of this strategy have remained largely unaddressed. Therefore, we investigated optogenetic termination of VTs 1) in the pathologically remodelled heart using a 2) implantable multi-LED device for 3) in vivo closed-chest, local illumination. METHODS AND RESULTS In order to mimic a clinically relevant sequence of events, transverse aortic constriction (TAC) was applied to adult male Wistar rats before optogenetic modification. This modification took place three weeks later by intravenous delivery of adeno-associated virus vectors encoding red-activatable channelrhodopsin (ReaChR) or Citrine for control experiments. At 8 to 10 weeks after TAC, VTs were induced ex vivo and in vivo, followed by programmed local illumination of the ventricular apex by a custom-made implanted multi-LED device. This resulted in effective and repetitive VT termination in the remodelled adult rat heart after optogenetic modification, leading to sustained restoration of sinus rhythm in the intact animal. Mechanistically, studies on the single cell and tissue level revealed collectively that, despite the cardiac remodelling, there were no significant differences in bioelectricity generation and subsequent transmembrane voltage responses between diseased and control animals, thereby providing insight into the observed robustness of optogenetic VT termination. CONCLUSION Our results show that implant-based optical cardioversion of VTs is feasible in the pathologically remodelled heart in vivo after local optogenetic targeting because of preserved optical control over bioelectricity generation. These findings add novel mechanistic and translational insight into optical ventricular cardioversion.
Collapse
Affiliation(s)
- Emile C A Nyns
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Tianyi Jin
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Magda S Fontes
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Titus van den Heuvel
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Catilin Ramsey
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Arti A Ramkisoensing
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - René H Poelma
- Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Balazs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|
5
|
Scalco A, Moro N, Mongillo M, Zaglia T. Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Front Physiol 2021; 12:726895. [PMID: 34531763 PMCID: PMC8438220 DOI: 10.3389/fphys.2021.726895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the "fight-or-flight response." Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain-heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Moro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Li J, Li H, Rao P, Luo J, Wang X, Wang L. Shining light on cardiac electrophysiology: From detection to intervention, from basic research to translational applications. Life Sci 2021; 274:119357. [PMID: 33737082 DOI: 10.1016/j.lfs.2021.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cardiac arrhythmias are an important group of cardiovascular diseases, which can occur alone or in association with other cardiovascular diseases. The development of cardiac arrhythmias cannot be separated from changes in cardiac electrophysiology, and the investigation and clarification of cardiac electrophysiological changes are beneficial for the treatment of cardiac arrhythmias. However, electrical energy-based pacemakers and defibrillators, which are widely used to treat arrhythmias, still have certain disadvantages. Thereby, optics promises to be used for optical manipulation and its use in biomedicine is increasing. Since visible light is readily absorbed and scattered in living tissues and tissue penetration is shallow, optical modulation for cells and tissues requires conversion media that convert light energy into bioelectrical activity. In this regard, fluorescent dyes, light-sensitive ion channels, and optical nanomaterials can assume this role, the corresponding optical mapping technology, optogenetics technology, and optical systems based on luminescent nanomaterials have been introduced into the research in cardiovascular field and are expected to be new tools for the study and treatment of cardiac arrhythmias. In addition, infrared and near-infrared light has strong tissue penetration, which is one of the excellent options of external trigger for achieving optical modulation, and is also widely used in the study of optical modulation of biological activities. Here, the advantages of optical applications are summarized, the research progresses and emerging applications of optical-based technologies as detection and intervention tools for cardiac electrophysiological are highlighted. Moreover, the prospects for future applications of optics in clinical diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, PR China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Junmiao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
7
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|