1
|
Chow DJX, Schartner EP, Corsetti S, Upadhya A, Morizet J, Gunn-Moore FJ, Dunning KR, Dholakia K. Quantifying DNA damage following light sheet and confocal imaging of the mammalian embryo. Sci Rep 2024; 14:20760. [PMID: 39237572 PMCID: PMC11377761 DOI: 10.1038/s41598-024-71443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Embryo quality assessment by optical imaging is increasing in popularity. Among available optical techniques, light sheet microscopy has emerged as a superior alternative to confocal microscopy due to its geometry, enabling faster image acquisition with reduced photodamage to the sample. However, previous assessments of photodamage induced by imaging may have failed to measure more subtle impacts. In this study, we employed DNA damage as a sensitive indicator of photodamage. We use light sheet microscopy with excitation at a wavelength of 405 nm for imaging embryo autofluorescence and compare its performance to laser scanning confocal microscopy. At an equivalent signal-to-noise ratio for images acquired with both modalities, light sheet microscopy reduced image acquisition time by ten-fold, and did not induce DNA damage when compared to non-imaged embryos. In contrast, imaging with confocal microscopy led to significantly higher levels of DNA damage within embryos and had a higher photobleaching rate. Light sheet imaging is also capable of inducing DNA damage within the embryo but requires multiple cycles of volumetric imaging. Collectively, this study confirms that light sheet microscopy is faster and safer than confocal microscopy for imaging live embryos, indicating its potential as a label-free diagnostic for embryo quality.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Erik P Schartner
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Stella Corsetti
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Josephine Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Frank J Gunn-Moore
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia.
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
2
|
Sonmez UM, Frey N, LeDuc PR, Minden JS. Fly Me to the Micron: Microtechnologies for Drosophila Research. Annu Rev Biomed Eng 2024; 26:441-473. [PMID: 38959386 DOI: 10.1146/annurev-bioeng-050423-054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.
Collapse
Affiliation(s)
- Utku M Sonmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Current affiliation: Department of Neuroscience, Scripps Research, San Diego, California, USA
- Current affiliation: Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Paiè P, Calisesi G, Candeo A, Comi A, Sala F, Ceccarelli F, De Luigi A, Veglianese P, Muhlberger K, Fokine M, Valentini G, Osellame R, Neil M, Bassi A, Bragheri F. Structured-light-sheet imaging in an integrated optofluidic platform. LAB ON A CHIP 2023; 24:34-46. [PMID: 37791882 DOI: 10.1039/d3lc00639e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms. Nevertheless, these techniques might fail in a comprehensive heterogeneity evaluation because of limited image resolution and bidimensional analysis. Light sheet fluorescence microscopy opened new ways to study in 3D the complexity of cellular functionality in samples ranging from single-cells to micro-tissues, with remarkably fast acquisition and low photo-toxicity. In addition, structured illumination microscopy has been applied to single-cell studies enhancing the resolution of imaging beyond the conventional diffraction limit. The combination of these techniques in a microfluidic environment, which permits automatic sample delivery and translation, would allow exhaustive investigation of cellular heterogeneity with high throughput image acquisition at high resolution. Here we propose an integrated optofluidic platform capable of performing structured light sheet imaging flow cytometry (SLS-IFC). The system encompasses a multicolor directional coupler equipped with a thermo-optic phase shifter, cylindrical lenses and a microfluidic network to generate and shift a patterned light sheet within a microchannel. The absence of moving parts allows a stable alignment and an automated fluorescence signal acquisition during the sample flow. The platform enables 3D imaging of an entire cell in about 1 s with a resolution enhancement capable of revealing sub-cellular features and sub-diffraction limit details.
Collapse
Affiliation(s)
- Petra Paiè
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Gianmaria Calisesi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Andrea Comi
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Federico Sala
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Francesco Ceccarelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Ada De Luigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy
| | - Pietro Veglianese
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano, 20156, Italy
| | - Korbinian Muhlberger
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, 11421, Sweden
| | - Michael Fokine
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, Stockholm, 11421, Sweden
| | - Gianluca Valentini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Mark Neil
- Physics Department, Imperial College London, Prince Consort Road, London, SW7 2BB, UK
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| | - Francesca Bragheri
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy.
| |
Collapse
|
4
|
Pozzi P, Candeo A, Paiè P, Bragheri F, Bassi A. Artificial intelligence in imaging flow cytometry. FRONTIERS IN BIOINFORMATICS 2023; 3:1229052. [PMID: 37877042 PMCID: PMC10593470 DOI: 10.3389/fbinf.2023.1229052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Affiliation(s)
- Paolo Pozzi
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Alessia Candeo
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Petra Paiè
- Department of Physics, Politecnico di Milano, Milano, Italy
| | - Francesca Bragheri
- Institute for Photonics and Nanotechnologies, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milano, Italy
| |
Collapse
|
5
|
Zhu T, Nie J, Yu T, Zhu D, Huang Y, Chen Z, Gu Z, Tang J, Li D, Fei P. Large-scale high-throughput 3D culture, imaging, and analysis of cell spheroids using microchip-enhanced light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:1659-1669. [PMID: 37078040 PMCID: PMC10110308 DOI: 10.1364/boe.485217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Light sheet microscopy combined with a microchip is an emerging tool in biomedical research that notably improves efficiency. However, microchip-enhanced light-sheet microscopy is limited by noticeable aberrations induced by the complex refractive indices in the chip. Herein, we report a droplet microchip that is specifically engineered to be capable of large-scale culture of 3D spheroids (over 600 samples per chip) and has a polymer index matched to water (difference <1%). When combined with a lab-built open-top light-sheet microscope, this microchip-enhanced microscopy technique allows 3D time-lapse imaging of the cultivated spheroids with ∼2.5-µm single-cell resolution and a high throughput of ∼120 spheroids per minute. This technique was validated by a comparative study on the proliferation and apoptosis rates of hundreds of spheroids with or without treatment with the apoptosis-inducing drug Staurosporine.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Nie
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yanyi Huang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Chemistry, Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Tang
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongyu Li
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Fei
- School of Optical and Electronic Information - Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Hedde PN, Le BT, Gomez EL, Duong L, Steele RE, Ahrar S. SPIM-Flow: An Integrated Light Sheet and Microfluidics Platform for Hydrodynamic Studies of Hydra. BIOLOGY 2023; 12:biology12010116. [PMID: 36671808 PMCID: PMC9856110 DOI: 10.3390/biology12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Selective plane illumination microscopy (SPIM), or light sheet microscopy, is a powerful imaging approach. However, access to and interfacing microscopes with microfluidics have remained challenging. Complex interfacing with microfluidics has limited the SPIM's utility for studying the hydrodynamics of freely moving multicellular organisms. We developed SPIM-Flow, an inexpensive light sheet platform that enables easy integration with microfluidics. We used SPIM-Flow to investigate the hydrodynamics of a freely moving Hydra polyp via particle tracking in millimeter-sized chambers. Initial experiments across multiple animals, feeding on a chip (Artemia franciscana nauplii used as food), and baseline behaviors (tentacle swaying, elongation, and bending) indicated the organisms' health inside the system. Fluidics were used to investigate Hydra's response to flow. The results suggested that the animals responded to an established flow by bending and swaying their tentacles in the flow direction. Finally, using SPIM-Flow in a proof-of-concept experiment, the shear stress required to detach an animal from a surface was demonstrated. Our results demonstrated SPIM-Flow's utility for investigating the hydrodynamics of freely moving animals.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA 92612, USA
- Correspondence: (P.N.H.); (S.A.)
| | - Brian T. Le
- Department of Biomedical Engineering, CSU Long Beach, Long Beach, CA 90840, USA
| | - Erika L. Gomez
- Department of Biomedical Engineering, CSU Long Beach, Long Beach, CA 90840, USA
| | - Leora Duong
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Robert E. Steele
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Siavash Ahrar
- Department of Biomedical Engineering, CSU Long Beach, Long Beach, CA 90840, USA
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: (P.N.H.); (S.A.)
| |
Collapse
|
7
|
Buchanan BC, Yoon JY. Microscopic Imaging Methods for Organ-on-a-Chip Platforms. MICROMACHINES 2022; 13:328. [PMID: 35208453 PMCID: PMC8879989 DOI: 10.3390/mi13020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Microscopic imaging is essential and the most popular method for in situ monitoring and evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an overview of how various imaging methods can be used to image organ-on-a-chip platforms, including transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imaging), and smartphone-based imaging (including microscope attachment-based, quantitative phase, and lens-free imaging). While various microscopic imaging methods have been demonstrated for conventional microfluidic devices, a relatively small number of microscopic imaging methods have been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic devices and future directions will be introduced in this review.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
8
|
Zhou P, He H, Ma H, Wang S, Hu S. A Review of Optical Imaging Technologies for Microfluidics. MICROMACHINES 2022; 13:mi13020274. [PMID: 35208397 PMCID: PMC8877635 DOI: 10.3390/mi13020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Microfluidics can precisely control and manipulate micro-scale fluids, and are also known as lab-on-a-chip or micro total analysis systems. Microfluidics have huge application potential in biology, chemistry, and medicine, among other fields. Coupled with a suitable detection system, the detection and analysis of small-volume and low-concentration samples can be completed. This paper reviews an optical imaging system combined with microfluidics, including bright-field microscopy, chemiluminescence imaging, spectrum-based microscopy imaging, and fluorescence-based microscopy imaging. At the end of the article, we summarize the advantages and disadvantages of each imaging technology.
Collapse
Affiliation(s)
- Pan Zhou
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China;
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Haipeng He
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Guangdong ACXEL Micro & Nano Tech Co., Ltd., Foshan 528000, China
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, Foshan University, Foshan 528225, China;
- Correspondence: (S.W.); (S.H.)
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
- Correspondence: (S.W.); (S.H.)
| |
Collapse
|
9
|
Modular multimodal platform for classical and high throughput light sheet microscopy. Sci Rep 2022; 12:1969. [PMID: 35121789 PMCID: PMC8817037 DOI: 10.1038/s41598-022-05940-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has become an important tool for biological and biomedical research. Although several illumination and detection strategies have been developed, the sample mounting still represents a cumbersome procedure as this is highly dependent on the type of sample and often this might be time consuming. This prevents the use of LSFM in other promising applications in which a fast and straightforward sample-mounting procedure and imaging are essential. These include the high-throughput research fields, e.g. in drug screenings and toxicology studies. Here we present a new imaging paradigm for LSFM, which exploits modularity to offer multimodal imaging and straightforward sample mounting strategy, enhancing the flexibility and throughput of the system. We describe its implementation in which the sample can be imaged either as in any classical configuration, as it flows through the light-sheet using a fluidic approach, or a combination of both. We also evaluate its ability to image a variety of samples, from zebrafish embryos and larvae to 3D complex cell cultures.
Collapse
|
10
|
Strategies for improved temporal response of glass-based optical switches. Sci Rep 2022; 12:239. [PMID: 34997131 PMCID: PMC8742015 DOI: 10.1038/s41598-021-04218-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
We present an optimization of the dynamics of integrated optical switches based on thermal phase shifters. These devices have been fabricated in the volume of glass substrates by femtosecond laser micromachining and are constituted by an integrated Mach–Zehnder interferometer and a superficial heater. Simulations, surface micromachining and innovative layouts allowed us to improve the temporal response of the optical switches down to a few milliseconds. In addition, taking advantage of an electrical pulse shaping approach where an optimized voltage signal is applied to the heater, we proved a switching time as low as 78 µs, about two orders of magnitude shorter with respect to the current state of the art of thermally-actuated optical switches in glass.
Collapse
|
11
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|