1
|
Liu H, Teng X, Yu S, Yang W, Kong T, Liu T. Recent Advances in Photoacoustic Imaging: Current Status and Future Perspectives. MICROMACHINES 2024; 15:1007. [PMID: 39203658 PMCID: PMC11356134 DOI: 10.3390/mi15081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging hybrid imaging modality that combines high-contrast optical imaging with high-spatial-resolution ultrasound imaging. PAI can provide a high spatial resolution and significant imaging depth by utilizing the distinctive spectroscopic characteristics of tissue, which gives it a wide variety of applications in biomedicine and preclinical research. In addition, it is non-ionizing and non-invasive, and photoacoustic (PA) signals are generated by a short-pulse laser under thermal expansion. In this study, we describe the basic principles of PAI, recent advances in research in human and animal tissues, and future perspectives.
Collapse
Affiliation(s)
- Huibin Liu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Shuxuan Yu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| | - Tiantian Kong
- Shandong City Service Institute, Yantai 264005, China
| | - Tangying Liu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.L.); (X.T.); (S.Y.); (W.Y.)
| |
Collapse
|
2
|
Zafar M, Manwar R, Avanaki K. Miniaturized preamplifier integration in ultrasound transducer design for enhanced photoacoustic imaging. OPTICS LETTERS 2024; 49:3054-3057. [PMID: 38824326 DOI: 10.1364/ol.512445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Photoacoustic imaging (PAI) utilizes the photoacoustic effect to record both vascular and functional characteristics of a biological tissue. Photoacoustic signals have typically low amplitude that cannot be read efficiently by data acquisition systems. This necessitates the use of one or more amplifiers. These amplifiers are somewhat bulky (e.g., the ZFL-500LN+, Mini-Circuits, USA, or 351A-3-50-NI, Analog Modules Inc., USA). Here, we describe the fabrication and development process of a transducer with a built-in low-noise preamplifier that is encased within the transducer housing. This new, to the best of our knowledge, design could be advantageous for applications where a compact transducer + preamplifier is required. We demonstrate the performance of this compact detection unit in a laser scanning photoacoustic microscopy system by imaging a rat ear ex vivo and a rat brain vasculature in vivo.
Collapse
|
3
|
Prakash R, Manwar R, Avanaki K. Evaluation of 10 current image reconstruction algorithms for linear array photoacoustic imaging. JOURNAL OF BIOPHOTONICS 2024; 17:e202300117. [PMID: 38010300 DOI: 10.1002/jbio.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Various reconstruction algorithms have been implemented for linear array photoacoustic imaging systems with the goal of accurately reconstructing the strength absorbers within the tissue being imaged. Since the existing algorithms have been introduced by different research groups and the context of performance evaluation was not consistent, it is difficult to make a fair comparison between them. In this study, we systematically compared the performance of 10 published image reconstruction algorithms (DAS, UBP, pDAS, DMAS, MV, EIGMV, SLSC, GSC, TR, and FD) using in-vitro phantom data. Evaluations were conducted based on lateral resolution of the reconstructed images, computational time, target detectability, and noise sensitivity. We anticipate the outcome of this study will assist researchers in selecting appropriate algorithms for their linear array PA imaging applications.
Collapse
Affiliation(s)
- Ravi Prakash
- The Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rayyan Manwar
- The Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kamran Avanaki
- The Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Zafar M, McGuire LS, Ranjbaran SM, Matchynski JI, Manwar R, Conti AC, Perrine SA, Avanaki K. Spiral laser scanning photoacoustic microscopy for functional brain imaging in rats. NEUROPHOTONICS 2024; 11:015007. [PMID: 38344025 PMCID: PMC10855442 DOI: 10.1117/1.nph.11.1.015007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 11/22/2024]
Abstract
Significance There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.
Collapse
Affiliation(s)
- Mohsin Zafar
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - Laura Stone McGuire
- University of Illinois at Chicago, Department of Neurosurgery, Chicago, Illinois, United States
| | - Seyed Mohsen Ranjbaran
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - James I Matchynski
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
| | - Rayyan Manwar
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
| | - Alana C Conti
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, Michigan, United States
| | - Shane A Perrine
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Neurosurgery, Detroit, Michigan, United States
- Wayne State University School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, Michigan, United States
| | - Kamran Avanaki
- University of Illinois at Chicago, Department of Biomedical Engineering, The Richard and Loan Hill, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Dermatology, Chicago, Illinois, United States
| |
Collapse
|