1
|
Li Z, Zhu A, Zhao B, Zhang Y, Zhang Q, Zhou H, Liu T, Li J, Zhou X, Shi Q, Li Y, Liang M, Zhang X, Lu D, Li X. Establishment of a Raman nanosphere based immunochromatographic system for the combined detection of influenza A and B viruses' antigens on a single T-line. NANOTECHNOLOGY 2024; 35:505501. [PMID: 39321818 DOI: 10.1088/1361-6528/ad7f61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
A simple and rapid system based on Raman nanosphere (R-Sphere) immunochromatography was developed in this study for the simultaneous detection of Influenza A, B virus antigens on a single test line (T-line). Two types of R-Sphere with different characteristic Raman spectrum were used as the signal source, which were labeled with monoclonal antibodies against FluA, FluB (tracer antibodies), respectively. A mixture of antibodies containing anti-FluA monoclonal antibody and anti-FluB monoclonal antibody (capture antibody) was sprayed on a single T-line and goat anti-chicken IgY antibody was coated as a C-line, and the antigen solution with known concentration was detected by the strip of lateral flow immunochromatography based on surface-enhanced Raman spectroscopy (SERS). The T-line was scanned with a Raman spectrometer and SERS signals were collected. Simultaneous specific recognition and detection of FluA and FluB were achieved on a single T-line by analyzing the SERS signals. The findings indicated that the test system could identify FluA and FluB in a qualitative manner in just 15 minutes, with a minimum detection threshold of 0.25 ng ml-1, excellent consistency, and specificity. There was no interference with the other four respiratory pathogens, and it exhibited 8 times greater sensitivity compared to the colloidal gold test strip method. The assay system is rapid, sensitive, and does not require repetitive sample pretreatment steps and two viruses can be detected simultaneously on a single T-line by titrating one sample, which improves detection efficiency, and provide a reference for developing multiplexed detection techniques for other respiratory viruses.
Collapse
Affiliation(s)
- Ziyue Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Aolin Zhu
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Binbin Zhao
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Yongwei Zhang
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Qian Zhang
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Hao Zhou
- Xinjiang Xingyi Bio-Science Co., Ltd, Urumqi 830011, People's Republic of China
| | - Tingwei Liu
- Xinjiang Xingyi Bio-Science Co., Ltd, Urumqi 830011, People's Republic of China
| | - Jiutong Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
- Xinjiang Xingyi Bio-Science Co., Ltd, Urumqi 830011, People's Republic of China
| | - Xuelei Zhou
- Xinjiang Xingyi Bio-Science Co., Ltd, Urumqi 830011, People's Republic of China
| | - Qian Shi
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, Xinjiang, People's Republic of China
| | - Yongxin Li
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, Xinjiang, People's Republic of China
| | - Mengjie Liang
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, Xinjiang, People's Republic of China
| | - Xin Zhang
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, Xinjiang, People's Republic of China
| | - Dongmei Lu
- Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, People's Republic of China
| | - Xinxia Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi 830054, People's Republic of China
- Key Laboratory of High Incidence Disease Research in Xinjiang (Xinjiang Medical University), Ministry of Education, Urumqi 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830054, People's Republic of China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830013, People's Republic of China
| |
Collapse
|
2
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
3
|
Liang R, Wang F, Li S, Niu Y, Sun Y, Hong S, Fan A. A sensitive gold nanoflower-based lateral flow assay coupled with gold staining technique for the detection of SARS-CoV-2 antigen. Mikrochim Acta 2024; 191:434. [PMID: 38951317 DOI: 10.1007/s00604-024-06502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
An enhanced lateral flow assay (LFA) is presented for rapid and highly sensitive detection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens with gold nanoflowers (Au NFs) as signaling markers and gold enhancement to amplify the signal intensities. First, the effect of the morphology of gold nanomaterials on the sensitivity of LFA detection was investigated. The results showed that Au NFs prepared by the seed growth method showed a 5-fold higher detection sensitivity than gold nanoparticles (Au NPs) of the same particle size, which may benefit from the higher extinction coefficient and larger specific surface area of Au NFs. Under the optimized experimental conditions, the Au NFs-based LFA exhibited a detection limit (LOD) of 25 pg mL-1 for N protein using 135 nm Au NFs as the signaling probes. The signal was further amplified by using a gold enhancement strategy, and the LOD for the detection of N protein achieved was 5 pg mL-1. The established LFA also exhibited good repeatability and stability and showed applicability in the diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Shanshan Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, PR China
| | - Yinuo Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Sile Hong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, PR China.
| |
Collapse
|
4
|
Liu X, Li J, Wang K, Li X, Wang S, Guo G, Zheng Q, Zhang M, Zeng J. Near-infrared responsive gold nanorods for highly sensitive colorimetric and photothermal lateral flow immuno-detection of SARS-CoV-2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2597-2605. [PMID: 38618693 DOI: 10.1039/d4ay00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The highly infectious characteristics of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the necessity of sensitive and rapid nucleocapsid (N) protein-based antigen testing for early triage and epidemic management. In this study, a colorimetric and photothermal dual-mode lateral flow immunoassay (LFIA) platform for the rapid and sensitive detection of the SARS-CoV-2 N protein was developed based on gold nanorods (GNRs), which possessed tunable local surface plasma resonance (LSPR) absorption peaks from UV-visible to near-infrared (NIR). The LSPR peak was adjusted to match the NIR emission laser 808 nm by controlling the length-to-diameter ratio, which could maximize the photothermal conversion efficiency and achieve photothermal detection signal amplification. Qualitative detection of SARS-CoV-2 N protein was achieved by observing the strip color, and the limit of detection was 2 ng mL-1, while that for photothermal detection was 0.096 ng mL-1. Artificial saliva samples spiked with the N protein were analyzed with the recoveries ranging from 84.38% to 107.72%. The intra-assay and inter-assay coefficients of variation were 6.76% and 10.39%, respectively. We further evaluated the reliability of this platform by detecting 40 clinical samples collected from nasal swabs, and the results matched well with that of nucleic acid detection (87.5%). This method shows great promise in early disease diagnosis and screening.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jingwen Li
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Kun Wang
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Xiang Li
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Shenming Wang
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Gengchen Guo
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Qiaowen Zheng
- College of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Maosheng Zhang
- College of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| | - Jingbin Zeng
- State Key Laboratory of Chemical Safety, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
5
|
Wang W, Srivastava S, Garg A, Xiao C, Hawks S, Pan J, Duggal N, Isaacman-VanWertz G, Zhou W, Marr LC, Vikesland PJ. Digital Surface-Enhanced Raman Spectroscopy-Lateral Flow Test Dipstick: Ultrasensitive, Rapid Virus Quantification in Environmental Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4926-4936. [PMID: 38452107 PMCID: PMC10956432 DOI: 10.1021/acs.est.3c10311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level. The developed digital SERS-LFTs demonstrate limits of detection (LODs) of 180 fg for SARS-CoV-2 spike protein, 120 fg for nucleocapsid protein, and 7 plaque forming units for intact virus, all within <30 min. Importantly, digital SERS-LFT methods maintain their robustness and their LODs in the presence of indoor dust, thus underscoring their potential for accurate and reliable virus diagnosis and quantification in real-world environmental settings.
Collapse
Affiliation(s)
- Wei Wang
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Sonali Srivastava
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Aditya Garg
- Department
of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chuan Xiao
- Department
of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Seth Hawks
- Department
of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jin Pan
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nisha Duggal
- Department
of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gabriel Isaacman-VanWertz
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Zhou
- Department
of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Linsey C. Marr
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| | - Peter J. Vikesland
- Department
of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Institute of Critical Technology and Applied Science (ICTAS)
Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Guo Y, Wang S, Li P, Zhang P, Wang W. Rapid Colloidal Gold Immunoassay for Pharmacokinetic Evaluation of Vancomycin in the Cerebrospinal Fluid and Plasma of Beagle Dogs. SENSORS (BASEL, SWITZERLAND) 2023; 23:8978. [PMID: 37960677 PMCID: PMC10649247 DOI: 10.3390/s23218978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Vancomycin (VAN), a glycopeptide antibiotic, is the preferred therapeutic agent for treating Gram-positive bacteria. Rapid and precise quantification of VAN levels in cerebrospinal fluid (CSF) and plasma is crucial for optimized drug administration, particularly among elderly patients. Herein, we introduce a novel clinical test strip utilizing colloidal gold competitive immunoassay technology for the expedient detection of VAN. This test strip enables the detection of VAN concentrations in clinical samples such as plasma within 10 min and has a limit of detection of 10.3 ng/mL, with an inhibitory concentration 50% (IC50) value of 44.5 ng/mL. Furthermore, we used the test strip for pharmacokinetic analysis of VAN in the CSF and plasma of beagle dogs. Our results provide valuable insights into the fluctuations of the drug concentration in the CSF and plasma over a 24 h period after a single intravenous dose of 12 mg/kg. The test strip results were compared with the results obtained via liquid chromatography-mass spectrometry methods, and the measured VAN concentrations in the CSF and plasma via both of the methods showed excellent agreement.
Collapse
Affiliation(s)
- Yechang Guo
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Shaofeng Wang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
| | - Peiyue Li
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Pan Zhang
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
| | - Wei Wang
- School of Integrated Circuits, Peking University, Beijing 100871, China; (Y.G.); (P.L.); (P.Z.)
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| |
Collapse
|
7
|
Rivas-Macho A, Eletxigerra U, Diez-Ahedo R, Barros Á, Merino S, Goñi-de-Cerio F, Olabarria G. Development of an Electrochemical Sensor for SARS-CoV-2 Detection Based on Loop-Mediated Isothermal Amplification. BIOSENSORS 2023; 13:924. [PMID: 37887117 PMCID: PMC10605850 DOI: 10.3390/bios13100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 6 million deaths all over the world, demonstrating the need for a simple, fast and cost-effective point-of-care (POC) test for the detection of the virus. In this work, we developed an electrochemical sensor for SARS-CoV-2 virus detection on clinical samples based on loop-mediated isothermal amplification (LAMP). With the development of this novel sensor, the time of each measurement is significantly reduced by avoiding the DNA extraction step and replacing it with inactivation of the sample by heating it at 95 °C for 10 min. To make the reaction compatible with the sample pre-treatment, an RNase inhibitor was added directly to the premix. The LAMP product was measured in a novel, easy-to-use manufactured sensor containing a custom-made screen-printed carbon electrode. Electrochemical detection was performed with a portable potentiostat, and methylene blue was used as the redox-transducing molecule. The developed sensor achieved a limit of detection of 62 viral copies and was 100% specific for the detection of the SARS-CoV-2 virus. The performance of the electrochemical sensor was validated with nasopharyngeal samples, obtaining a sensibility and specificity of 100% compared to the gold standard RT-PCR method.
Collapse
Affiliation(s)
- Ane Rivas-Macho
- Gaiker, GAIKER Technology Centre, Basque Research and Technology Alliance, 48170 Zamudio, Spain
- Molecular Biology and Biomedicine PhD Program, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Unai Eletxigerra
- Surface Chemistry and Nanotechnologies Unit, Tekniker, 20600 Eibar, Spain
| | - Ruth Diez-Ahedo
- Surface Chemistry and Nanotechnologies Unit, Tekniker, 20600 Eibar, Spain
| | - Ángela Barros
- Surface Chemistry and Nanotechnologies Unit, Tekniker, 20600 Eibar, Spain
| | - Santos Merino
- Surface Chemistry and Nanotechnologies Unit, Tekniker, 20600 Eibar, Spain
- Electricity and Electronics Department, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Felipe Goñi-de-Cerio
- Gaiker, GAIKER Technology Centre, Basque Research and Technology Alliance, 48170 Zamudio, Spain
| | - Garbiñe Olabarria
- Gaiker, GAIKER Technology Centre, Basque Research and Technology Alliance, 48170 Zamudio, Spain
| |
Collapse
|
8
|
Wang Q, Lyu W, Zhou J, Yu C. Sleep condition detection and assessment with optical fiber interferometer based on machine learning. iScience 2023; 26:107244. [PMID: 37496677 PMCID: PMC10366502 DOI: 10.1016/j.isci.2023.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
The prevalence of sleep disorders has increased because of the fast-paced and stressful modern lifestyle, negatively impacting the quality of human life and work efficiency. It is crucial to address sleep problems. However, the current practice of diagnosing sleep disorders using polysomnography (PSG) has limitations such as complexity, large equipment, and low portability, hindering its practicality for daily use. To overcome these challenges, in this article an optical fiber sensor is proposed as a viable solution for sleep monitoring. This device offers benefits like low power consumption, non-invasiveness, absence of interference, and real-time health monitoring. We introduce the sensor with an optical fiber interferometer to capture ballistocardiography (BCG) and electrocardiogram (ECG) signals from the human body. Furthermore, a new machine learning method is proposed for sleep condition detection. Experimental results demonstrate the superior performance of this architecture and the proposed model in monitoring and assessing sleep quality.
Collapse
Affiliation(s)
- Qing Wang
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Weimin Lyu
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jing Zhou
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Changyuan Yu
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
| |
Collapse
|