1
|
Brunner A, Unterberger SH, Auer H, Hautz T, Schneeberger S, Stalder R, Badzoka J, Kappacher C, Huck CW, Zelger B, Pallua JD. Suitability of Fourier transform infrared microscopy for the diagnosis of cystic echinococcosis in human tissue sections. JOURNAL OF BIOPHOTONICS 2024; 17:e202300513. [PMID: 38531615 DOI: 10.1002/jbio.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Cystic echinococcosis (CE) is a global health concern caused by cestodes, posing diagnostic challenges due to nonspecific symptoms and inconclusive radiographic results. Diagnosis relies on histopathological evaluation of affected tissue, demanding comprehensive tools. In this retrospective case study, Fourier transform infrared microscopy was explored for detecting and identifying CE through biochemical changes in human tissue sections. Tissue samples from 11 confirmed CE patients were analyzed. Archived FFPE blocks were cut and stained, and then CE-positive unstained sections were examined using Fourier transform infrared microscopy post-deparaffinization. Results revealed the method's ability to distinguish echinococcus elements from human tissue, irrespective of organ type. This research showcases the potential of mid-infrared microscopy as a valuable diagnostic tool for CE, offering promise in enhancing diagnostic precision in the face of the disease's complexities.
Collapse
Affiliation(s)
- A Brunner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - S H Unterberger
- Department of Material-Technology, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - H Auer
- Department of Medical Parasitology, Clinical Institute of Hygiene and Medical Microbiology, Medical University of Vienna, Vienna, Austria
| | - T Hautz
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - S Schneeberger
- OrganLifeTM, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - R Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - J Badzoka
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - C Kappacher
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - C W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innsbruck, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - J D Pallua
- Department of Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Zhou H, Li D, Ren Z, Xu C, Wang LF, Lee C. Surface plasmons-phonons for mid-infrared hyperspectral imaging. SCIENCE ADVANCES 2024; 10:eado3179. [PMID: 38809968 PMCID: PMC11135386 DOI: 10.1126/sciadv.ado3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Surface plasmons have proven their ability to boost the sensitivity of mid-infrared hyperspectral imaging by enhancing light-matter interactions. Surface phonons, a counterpart technology to plasmons, present unclear contributions to hyperspectral imaging. Here, we investigate this by developing a plasmon-phonon hyperspectral imaging system that uses asymmetric cross-shaped nanoantennas composed of stacked plasmon-phonon materials. The phonon modes within this system, controlled by light polarization, capture molecular refractive index intensity and lineshape features, distinct from those observed with plasmons, enabling more precise and sensitive molecule identification. In a deep learning-assisted imaging demonstration of severe acute respiratory syndrome coronavirus (SARS-CoV), phonons exhibit enhanced identification capabilities (230,400 spectra/s), facilitating the de-overlapping and observation of the spatial distribution of two mixed SARS-CoV spike proteins. In addition, the plasmon-phonon system demonstrates increased identification accuracy (93%), heightened sensitivity, and enhanced detection limits (down to molecule monolayers). These findings extend phonon polaritonics to hyperspectral imaging, promising applications in imaging-guided molecule screening and pharmaceutical analysis.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu 215123, China
- NUS Graduate School–Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
3
|
Delrue C, Speeckaert R, Oyaert M, Kerre T, Rottey S, Coopman R, Huvenne W, De Bruyne S, Speeckaert MM. Infrared Spectroscopy: A New Frontier in Hematological Disease Diagnosis. Int J Mol Sci 2023; 24:17007. [PMID: 38069330 PMCID: PMC10707114 DOI: 10.3390/ijms242317007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Hematological diseases, due to their complex nature and diverse manifestations, pose significant diagnostic challenges in healthcare. The pressing need for early and accurate diagnosis has driven the exploration of novel diagnostic techniques. Infrared (IR) spectroscopy, renowned for its noninvasive, rapid, and cost-effective characteristics, has emerged as a promising adjunct in hematological diagnostics. This review delves into the transformative role of IR spectroscopy and highlights its applications in detecting and diagnosing various blood-related ailments. We discuss groundbreaking research findings and real-world applications while providing a balanced view of the potential and limitations of the technique. By integrating advanced technology with clinical needs, we offer insights into how IR spectroscopy may herald a new era of hematological disease diagnosis.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | | | - Matthijs Oyaert
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (M.O.); (S.D.B.)
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Renaat Coopman
- Department of Oral, Maxillofacial and Plastic Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Wouter Huvenne
- Department of Head and Neck Surgery, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sander De Bruyne
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (M.O.); (S.D.B.)
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|