1
|
Kumar R, Singh B. Functional network copolymeric hydrogels derived from moringa gum: Physiochemical, drug delivery and biomedical properties. Int J Biol Macromol 2024; 275:133352. [PMID: 38945716 DOI: 10.1016/j.ijbiomac.2024.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The article explores the synthesis of network hydrogels derived from moringa gum (MG) through a grafting reaction with poly (vinylsulfonic acid) and carbopol. These hydrogels are designed for use in drug delivery (DD) and wound hydrogels dressing (HYDR) applications. The copolymers were characterized by FESEM, EDX, AFM, FTIR, 13C NMR, XRD and DSC. Tetracycline release from hydrogel occurred gradually with a non-Fickian diffusion and was best described by the Hixson-Crowell kinetic model in artificial wound fluid. The HYDR demonstrated compatibility with blood, exhibited antioxidant properties and possessed tensile strength, in addition to their mucoadhesive characteristics. The copolymer dressings absorbed approximately 7 g of simulated fluid. The copolymers exhibited significant antioxidant activity, measuring at 84 % free radicals scavenging, during DPPH assay. These dressings demonstrated permeability to H2O and O2,. The hydrogel alone did not reveal antibacterial activities; however, when combined with antibiotic drug tetracycline, the dressings revealed notable antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The observed biomedical properties suggested that these hydrogels could serve as promising materials for drug delivery HYDR applications.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India.
| |
Collapse
|
2
|
Sharma D, Sharma A, Bala R, Singh B. Investigations on physiochemical and biomedical properties of Aloe vera - Sterculia gum copolymeric dressings impregnated with antibiotic-anesthetic drugs to enhance wound healing. Int J Biol Macromol 2024; 267:131363. [PMID: 38583847 DOI: 10.1016/j.ijbiomac.2024.131363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Recently, various innovative advancements have been made in carbohydrate research to design versatile materials for biomedical applications. The current research focuses on the development of copolymeric hydrogel wound dressings (HWD) using a combination of aloe vera (AV) - sterculia gum (SG) - poly (vinylsulfonic acid) (VSA)-based with the aim to enhancing their efficacy in drug delivery (DD) applications. These hydrogel dressings were encapsulated with levofloxacin and lidocaine to address both microbial infection and pain. Copolymers were characterized by FESEM, SEM, EDS, AFM, 13C NMR, FTIR, XRD, and TGA-DTG analysis. Hydrogel exhibited a fluid absorption capacity of 4.52 ± 0.12 g per gram of polymeric dressing in simulated wound conditions. The hydrogels displayed a sustained release of drugs, demonstrating a non-Fickian diffusion mechanism. Polymer dressings revealed antibacterial, mucoadhesive, antioxidant, biocompatible and non-cytotoxic properties. Additionally, HWD displayed permeability to O2 and water vapour, yet was impermeable to microbial penetration. Overall, the findings of physiological, biochemical and drug delivery properties demonstrated the suitability of materials for wound dressing applications.
Collapse
Affiliation(s)
- Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Ashima Sharma
- Department of Physiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Ritu Bala
- Department of Chemistry, Government College Dharamshala, Himachal Pradesh, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
3
|
Baljit Singh, Sharma V, Kumari A. Synthesis and Characterization of Sterculia Gum Polysaccharide-Poly(bis[2-methacryloyloxy]ethyl Phosphate Copolymeric Network Hydrogels for Use in Drug Delivery. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Singh B, Devi K, Sharma D, Sharma P. Synthesis and characterization of modified bioactive arabinoxylan-psyllium: Evaluation of molecular interactions, physiochemical and biomedical properties. Int J Biol Macromol 2022; 221:1053-1064. [PMID: 36108744 DOI: 10.1016/j.ijbiomac.2022.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Keeping in view the future prospectus of carbohydrate polymers, present research report is an elaboration, exploration and execution of the research expectancy in area of these polymers by researchers like John F. Kennedy. Herein, molecular interactions and physiochemical properties of modified bioactive arabinoxylan-psyllium have been evaluated for drug delivery applications. Arabinoxylan-psyllium was modified with sulphated and amide copolymers and co-polymers were characterized by SEMs, AFM, FTIR, XRD, solid state 13C NMR, TGA-DSC and water absorption studies. The 13C-NMR and FTIR confirmed grafted copolymers. The polymer-blood interactions revealed non-thrombogenic nature with thrombose percentage 63.17 ± 5.61 % and polymer-mucous membrane interactions showed detachment force 0.237 ± 0.078Nwith bio-membrane in mucoadhesion test. The pH responsible gels exhibited 44.49 ± 3.12 % inhibitions of free radicals in DPPH assay. The polymer-drug interactions demonstrated sustained diffusion of methotrexate with non-Fickian diffusion and Korsmeyer-Peppas kinetic model. Overall, co-polymeric network structure was found useful in colon specific drug delivery.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Kavita Devi
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Prerna Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
5
|
Pozdnyakov A, Emel’yanov A, Ivanova A, Kuznetsova N, Semenova T, Bolgova Y, Korzhova S, Trofimova O, Fadeeva T, Prozorova G. Strong Antimicrobial Activity of Highly Stable Nanocomposite Containing AgNPs Based on Water-Soluble Triazole-Sulfonate Copolymer. Pharmaceutics 2022; 14:206. [PMID: 35057100 PMCID: PMC8781572 DOI: 10.3390/pharmaceutics14010206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
A new hydrophilic polymeric nanocomposite containing AgNPs was synthesized by chemical reduction of metal ions in an aqueous medium in the presence of the copolymer. A new water-soluble copolymer of 1-vinyl-1,2,4-triazole and vinylsulfonic acid sodium salt (poly(VT-co-Na-VSA)) was obtained by free-radical copolymerization and was used as a stabilizing precursor agent. The structural, dimensional, and morphological properties of the nanocomposite were studied by UV-Vis, FTIR, X-ray diffraction, atomic absorption, transmission and scanning electron microscopy, dynamic and electrophoretic light scattering, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. Hydrodynamic diameter of macroclubs for the copolymer was 171 nm, and for the nanocomposite it was 694 nm. Zeta potential for the copolymer was -63.8 mV, and for the nanocomposite it was -70.4 mV. The nanocomposite had strong antimicrobial activity towards Gram-negative and Gram-positive microorganisms: MIC and MBC values were in the range of 0.25-4.0 and 0.5-8.0 μg/mL, respectively.
Collapse
Affiliation(s)
- Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Artem Emel’yanov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Nadezhda Kuznetsova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Tat’yana Semenova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Yuliya Bolgova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Svetlana Korzhova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Olga Trofimova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| | - Tat’yana Fadeeva
- Irkutsk Scientific Center of Surgery and Traumatology, 664003 Irkutsk, Russia;
| | - Galina Prozorova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.E.); (A.I.); (N.K.); (T.S.); (Y.B.); (S.K.); (O.T.); (G.P.)
| |
Collapse
|
6
|
Guan YF, Boo C, Lu X, Zhou X, Yu HQ, Elimelech M. Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling. WATER RESEARCH 2020; 185:116203. [PMID: 32731075 DOI: 10.1016/j.watres.2020.116203] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 05/27/2023]
Abstract
Organic fouling and inorganic scaling are the main hurdles for efficient operation of reverse osmosis (RO) technology in a wide range of applications. This study demonstrates dual-functionality surface modification of thin-film composite (TFC) RO membranes to simultaneously impart anti-scaling and anti-fouling properties. Two different grafting approaches were adapted to functionalize the membrane surface with sulfonic groups: (i) non-specific grafting of vinyl sulfonic acid (VSA) via redox radical initiation polymerization and (ii) covalent bonding of hydroxylamide-O-sulfonic acid (HOSA) to the native carboxylic groups of the polyamide layer via carbodiimide mediated reaction. Both approaches to graft sulfonic groups were effective in increasing surface wettability and negative charge density of the TFC-RO membranes without significant alteration of water and salt permeabilities. Importantly, we verified through surface elemental analysis that covalently bound HOSA effectively covers the native carboxylic groups of the PA layer. Both the VSA and HOSA membranes exhibited lower flux decline during silica scaling and organic (alginate) fouling relative to the control unmodified membrane, demonstrating the unique versatility of sulfonic groups to endow the TFC-RO membranes with dual functionality to resist scaling and fouling. In particular, the HOSA membrane showed excellent physical cleaning efficiencies with water flux recoveries of 92.5 ± 1.0% and 88.4 ± 6.4% for silica scaling and alginate fouling, respectively. Additional results from silica nucleation experiments and atomic force measurements provided insights into the mechanisms of improved resistance to silica scaling and organic fouling imparted by the surface-functionalized sulfonic groups. Our study highlights the promise of controlled functionalization of sulfonic groups on the polyamide layer of TFC membranes to enhance the applications of RO technology in treatment and reuse of waters with high scaling and fouling potential.
Collapse
Affiliation(s)
- Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China; Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Chanhee Boo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States; Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Xinglin Lu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States.
| |
Collapse
|
7
|
Hydrophilic functional copolymers of 1-vinyl-1,2,4-triazole with vinylsulfonic acid sodium salt. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-2017-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Khodabandeh A, Arrua RD, Mansour FR, Thickett SC, Hilder EF. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci Rep 2017; 7:7847. [PMID: 28798377 PMCID: PMC5552774 DOI: 10.1038/s41598-017-08423-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022] Open
Abstract
Polymerized High Internal Phase Emulsions (PolyHIPEs) were prepared using emulsion-templating, stabilized by an amphiphilic diblock copolymer prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer consisted of a hydrophilic poly(ethylene glycol) methyl ether acrylate (PEO MA, average Mn 480) segment and a hydrophobic styrene segment, with a trithiocarbonate end-group. These diblock copolymers were the sole emulsifiers used in stabilizing "inverse" (oil-in-water) high internal phase emulsion templates, which upon polymerization resulted in a polyHIPE exhibiting a highly interconnected monolithic structure. The polyHIPEs were characterized by FTIR spectroscopy, BET surface area measurements, SEM, SEM-EDX, and TGA. These materials were subsequently investigated as stationary phase for high-performance liquid chromatography (HPLC) via in situ polymerization in a capillary format as a 'column housing'. Initial separation assessments in reversed-phase (RP) and hydrophilic interaction liquid chromatographic (HILIC) modes have shown that these polyHIPEs are decorated with different microenvironments amongst the voids or domains of the monolithic structure. Chromatographic results suggested the existence of RP/HILIC mixed mode with promising performance for the separation of small molecules.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Fotouh R Mansour
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Department of Pharmaceutical Analytical Chemistry, Tanta University, Tanta, Egypt
| | - Stuart C Thickett
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
9
|
Shaik SH, Donempudi S, Tammishetti S, Rao Garikapati K, Pal Bhadra M. Interpenetrating photopolymers for intraocular lens application. J Appl Polym Sci 2016. [DOI: 10.1002/app.44496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Syed Hussain Shaik
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Shailaja Donempudi
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Shekharam Tammishetti
- Polymers & Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Koteswara Rao Garikapati
- Centre for Chemical Biology, CSIR- Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR- Indian Institute of Chemical Technology; Tarnaka Hyderabad 500007 India
| |
Collapse
|
10
|
Pijls RT, Koole LH, Hanssen HH, Nuijts RM. Flexible Coils with a Drug-Releasing Hydrophilic Coating: A New Platform for Controlled Delivery of Drugs to the Eye? J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504045175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Delivery of drugs to the front-side of the eye is routinely done through eye drops. It is known that approximately 80% of each eye-drop is lost, as a result of rapid clearance of the tear fluid via the naso-lacrymal canal. Consequently, repeated administration through several droplets is usually necessary to achieve a desired effect, such as widening of the pupil prior to corneal surgery. A new ocular drug delivery device was studied. The new device is believed to provide a basis for a more convenient and efficient method for ocular drug delivery. The device is a metallic coil with a hydrophilic, drug-containing polymeric coating. The coil is placed in the conjuctival fornix (under the lower eye-lid) and the drug is slowly released by diffusion into the tear fluid. The capacity of the device could be increased by using the lumen of the coils as a depot for the drug to be released. Preliminary experiments with the new device were performed largely in vitro and in vivo. The latter experiments involved the release of a fluorescent dye and atropine (a potent mydriatic agent) in the eye of several healthy volunteers. The first results obtained with the new device indicate its potential utility. More research and development work is required to define the optimal design of the coil in order to minimize the risk of irritation. Furthermore, the parameters that define the kinetics of the intraocular drug release must be defined and optimized with respect to the exact application.
Collapse
Affiliation(s)
- Rachel T. Pijls
- Centre for Biomaterials Research, Faculty of Medicine, University of Maastricht, PO Box 616, NL-6200 MD Maastricht, the Netherlands and Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Leo H. Koole
- Centre for Biomaterials Research, Faculty of Medicine, University of Maastricht, PO Box 616, NL-6200 MD Maastricht, the Netherlands and Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,
| | | | - Rudy M.M.A. Nuijts
- Department of Ophthalmology, Academic Hospital, Maastricht, the Netherlands
| |
Collapse
|
11
|
Shen G, Hu X, Guan G, Wang L. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin. PLoS One 2015; 10:e0124811. [PMID: 25919690 PMCID: PMC4412632 DOI: 10.1371/journal.pone.0124811] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/17/2015] [Indexed: 02/05/2023] Open
Abstract
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.
Collapse
Affiliation(s)
- Gaotian Shen
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
| | - Xingyou Hu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
| | - Guoping Guan
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Songjiang District, Shanghai 201620, China
| |
Collapse
|
12
|
RAFT preparation and the aqueous self-assembly of amphiphilic poly(octadecyl acrylate)- block -poly(polyethylene glycol methyl ether acrylate) copolymers. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Graft (partially carboxymethylated guar gum-g-poly vinyl sulfonic acid) copolymer: From synthesis to applications. Carbohydr Polym 2013; 97:597-603. [DOI: 10.1016/j.carbpol.2013.02.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/24/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
|
14
|
|
15
|
Mori H, Saito Y, Takahashi E, Nakabayashi K, Onuma A, Morishima M. Synthesis of sulfonated organic–inorganic hybrids through the radical copolymerization of vinyl sulfonate esters and vinyl trialkoxysilanes. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach. Anal Chim Acta 2012; 740:58-65. [DOI: 10.1016/j.aca.2012.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022]
|
17
|
Mori H, Saito Y, Takahashi E, Nakabayashi K, Onuma A, Morishima M. Controlled synthesis of sulfonated block copolymers having thermoresponsive property by RAFT polymerization of vinyl sulfonate esters. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Yadav M, Sand A, Mishra MM, Tripathy J, Pandey VS, Behari K. Synthesis, characterization and applications of graft copolymer (κ-carrageenan-g-vinylsulfonic acid). Int J Biol Macromol 2012; 50:826-32. [DOI: 10.1016/j.ijbiomac.2011.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/28/2011] [Accepted: 11/19/2011] [Indexed: 11/29/2022]
|
19
|
Tamburro D, Fredolini C, Espina V, Douglas TA, Ranganathan A, Ilag L, Zhou W, Russo P, Espina BH, Muto G, Petricoin EF, Liotta LA, Luchini A. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc 2011; 133:19178-88. [PMID: 21999289 PMCID: PMC3223427 DOI: 10.1021/ja207515j] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 01/05/2023]
Abstract
Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.
Collapse
Affiliation(s)
- Davide Tamburro
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Medicine and Experimental Oncology, University of Turin, 10125 Turin, Italy
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Temple A. Douglas
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Adarsh Ranganathan
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Leopold Ilag
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Benjamin H. Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Giovanni Muto
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
- Department of Urology, S. Giovanni Bosco Hospital, Turin 10154, Italy
- Department of Medicine and Experimental Oncology, University of Turin, 10125 Turin, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
20
|
Van Butsele K, Morille M, Passirani C, Legras P, Benoit J, Varshney S, Jérôme R, Jérôme C. Stealth properties of poly(ethylene oxide)-based triblock copolymer micelles: a prerequisite for a pH-triggered targeting system. Acta Biomater 2011; 7:3700-7. [PMID: 21704739 DOI: 10.1016/j.actbio.2011.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/18/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
Evaluation of the biocompatibility of pH-triggered targeting micelles was performed with the goal of studying the effect of a poly(ethylene oxide) (PEO) coating on micelle stealth properties. Upon protonation under acidic conditions, pH-sensitive poly(2-vinylpyridine) (P2VP) blocks were stretched, exhibiting positive charges at the periphery of the micelles as well as being a model targeting unit. The polymer micelles were based on two different macromolecular architectures, an ABC miktoarm star terpolymer and an ABC linear triblock copolymer, which combined three different polymer blocks, i.e. hydrophobic poly(ε-caprolactone), PEO and P2VP. Neutral polymer micelles were formed at physiological pH. These systems were tested for their ability to avoid macrophage uptake, their complement activation and their pharmacological behavior after systemic injection in mice, as a function of their conformation (neutral or protonated). After protonation, complement activation and macrophage uptake were up to twofold higher than for neutral systems. By contrast, when P2VP blocks and the targeting unit were buried by the PEO shell at physiological pH, micelle stealth properties were improved, allowing their future systemic injection with an expected long circulation in blood. Smart systems responsive to pH were thus developed which therefore hold great promise for targeted drug delivery to an acidic tumoral environment.
Collapse
|
21
|
Cajot S, Lautram N, Passirani C, Jérôme C. Design of reversibly core cross-linked micelles sensitive to reductive environment. J Control Release 2011; 152:30-6. [DOI: 10.1016/j.jconrel.2011.03.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/28/2011] [Accepted: 03/24/2011] [Indexed: 11/27/2022]
|
22
|
Varaprasad K, Mohan YM, Vimala K, Mohana Raju K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 2011. [DOI: 10.1002/app.33508] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Serrano MC, Pagani R, Peña J, Vallet-Regí M, Comas JV, Portolés MT. Progenitor-derived endothelial cell response, platelet reactivity and haemocompatibility parameters indicate the potential of NaOH-treated polycaprolactone for vascular tissue engineering. J Tissue Eng Regen Med 2011; 5:238-47. [DOI: 10.1002/term.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Slavin S, De Cuendias A, Ladmiral V, Haddleton DM. Biotin functionalized poly(sulfonic acid)s for bioconjugation:
In situ
binding monitoring by QCM‐D. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stacy Slavin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Anne De Cuendias
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - V. Ladmiral
- Department of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
25
|
Mori H, Kudo E, Saito Y, Onuma A, Morishima M. RAFT Polymerization of Vinyl Sulfonate Esters for the Controlled Synthesis of Poly(lithium vinyl sulfonate) and Sulfonated Block Copolymers. Macromolecules 2010. [DOI: 10.1021/ma100905w] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hideharu Mori
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Eisuke Kudo
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Yousuke Saito
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Atsuhiko Onuma
- Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika, Hitachi 319-1292, Japan
| | - Makoto Morishima
- Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika, Hitachi 319-1292, Japan
| |
Collapse
|
26
|
Preparation and characterization of modified sodium carboxymethyl cellulose via free radical graft copolymerization of vinyl sulfonic acid in aqueous media. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Synthesis and pH-dependent micellization of diblock copolymer mixtures. J Colloid Interface Sci 2009; 329:235-43. [DOI: 10.1016/j.jcis.2008.09.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/28/2008] [Indexed: 11/21/2022]
|
28
|
Bozukova D, Pagnoulle C, De Pauw-Gillet MC, Ruth N, Jérôme R, Jérôme C. Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6649-6658. [PMID: 18503285 DOI: 10.1021/la7033774] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The antifouling properties of poly(2-hydroxyethyl methacrylate- co-methyl methacrylate) hydrogels were improved by the surface grafting of a brush of poly(oligoethylene glycol methyl ether acrylate) [poly(OEGA)]. The atom-transfer radical polymerization (ATRP) of OEGA (degree of polymerization = 8) was initiated from the preactivated surface of the hydrogel under mild conditions, thus in water at 25 degrees C. The catalytic system was optimized on the basis of two ligands [1,1,4,7,10,10-hexamethyl-triethylenetetramine (HMTETA) or tris[2-(dimethylamino)ethyl]amine (Me6TREN)] and two copper salts (CuIBr or CuICl). Faster polymerization was observed for the Me 6TREN/CuIBr combination. The chemical composition and morphology of the coated surface were analyzed by X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, contact angle measurements by the water droplet and captive bubble methods, scanning electron microscopy, and environmental scanning electron microscopy. The hydrophilicity of the surface increased with the molar mass of the grafted poly(OEGA) chains, and the surface modifications were reported in parallel. The antifouling properties of the coatings were tested by in vitro protein adsorption and cell adhesion tests, with green fluorescent protein, beta-lactamase, and lens epithelial cells, as model proteins and model cells, respectively. The grafted poly(OEGA) brush decreased the nonspecific protein adsorption and imparted high cell repellency to the hydrogel surface.
Collapse
Affiliation(s)
- Dimitriya Bozukova
- Center for Education and Research on Macromolecules, Laboratory of Histology and Cytology, University of Liege, B6 Sart-Tilman B-4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Pourjavadi A, Ghasemzadeh H. Carrageenan-g-poly(acrylamide)/poly(vinylsulfonic acid, sodium salt) as a novel semi-IPN hydrogel: Synthesis, characterization, and swelling behavior. POLYM ENG SCI 2007. [DOI: 10.1002/pen.20829] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Shih MF, Shau MD, Chang MY, Chiou SK, Chang JK, Cherng JY. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers. Int J Pharm 2006; 327:117-25. [PMID: 16963207 DOI: 10.1016/j.ijpharm.2006.07.043] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 06/13/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
The aim of this study is to investigate how the presence of liquid crystal, cholesteryl oleyl carbonate, embedded into polymers (PMMA, Eb270, PU) affects the biocompatibility of composite membranes with human blood. The effects of different surface textures of composite membranes on platelet adhesion and platelet activation were evaluated as well. The adhesion and geometric deformation of platelets were demonstrated by SEM. The quantitative assay of platelet activation was determined by measuring the production of P-Selectin, and by measurement of the blood clotting index when PRP blood was incubated with pure polymer films and composite membranes. Moreover, the hemolysis studies on the damage to red blood cells were performed to gain information on the hemocompatibility of these biomaterials. The results showed that inclusion of cholesteryl oleyl carbonate (COC) embedded in composite membranes, improves their biocompatibility with respect to a substantial reduction of platelet adhesion and the controlled decrease of platelet activation. As the COC content of composite membranes was increased, the value of the blood clotting index increased and the production of P-Selectin decreased. The results also showed that the presence of COC resulted in a decrease of hemolysis ratios. Comparing among three different composite membranes, the best biocompatibility is achieved when PU/COC> or ==Eb270/COC>PMMA/COC. The in vitro studies performed in this work suggest that it may be reasonable to use liquid crystal COC as a mean of surface modification to improve the blood compatibility of biopolymers.
Collapse
Affiliation(s)
- Mei-Fen Shih
- Chia Nan University of Pharmacy and Science, 60 Erh-Jen Rd., Sec. 1, Jen-Te, Tainan 717, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
32
|
Mudgil P, Dennis GR, Millar TJ. Interactions of poly(tert-butyl acrylate)-poly(styrene) diblock copolymers with lipids at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:7672-7. [PMID: 16922549 DOI: 10.1021/la060515p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diblock copolymers with hydrophilic poly(tert-butyl acrylate) (PtBA) and hydrophobic poly(styrene) (PS) blocks were synthesized with a view to use them as a surfactant in tear film for increasing the ocular comfort in dry eye syndrome. Interactions of six PtBA-PS copolymers with four important lipids found in the tear film, namely cholesterol, cholesteryl palmitate, dipalmitoyl phosphatidylcholine, and phosphatidylinositol, were studied at the air-water interface using a Langmuir trough. Thermodynamics of mixing of the copolymers and the lipids in the mixed monolayers was determined by calculating excess free energy of mixing. The diblock copolymers showed repulsive interactions with cholesteol and cholesteryl palmitate, near neutral interactions with dipalmitoyl phosphatidylcholine, and attractive interactions with phosphatidylinositol. The lipids interacted with the PS component of the copolymer. The results indicate that a copolymer with a small hydrophilic group and a big hydrophobic group can be a likely candidate for forming stable interactions with the lipids present in the tear film and hence increase the ocular comfort.
Collapse
Affiliation(s)
- Poonam Mudgil
- School of Natural Sciences, Parramatta Campus, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
| | | | | |
Collapse
|
33
|
Mohan YM, Dickson JP, Geckeler KE. Swelling and diffusion characteristics of novel semi-interpenetrating network hydrogels composed of poly[(acrylamide)-co-(sodium acrylate)] and poly[(vinylsulfonic acid), sodium salt]. POLYM INT 2006. [DOI: 10.1002/pi.2113] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Bajpai AK. Blood protein adsorption onto macroporous semi-interpenetrating polymer networks (IPNs) of poly(ethylene glycol) (PEG) and poly(2-hydroxyethyl methacrylate) (PHEMA) and assessment ofin vitro blood compatibility. POLYM INT 2006. [DOI: 10.1002/pi.2137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Bajpai AK, Mishra DD. Adsorption of fibrinogen onto macroporous, biocompatible sponges based on poly(2-hydroxyethyl methacrylate). J Appl Polym Sci 2006. [DOI: 10.1002/app.24127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Roosjen A, de Vries J, van der Mei HC, Norde W, Busscher HJ. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. J Biomed Mater Res B Appl Biomater 2005; 73:347-54. [PMID: 15736286 DOI: 10.1002/jbm.b.30227] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about their stability and effectiveness in biological fluids. In this study, PEO coatings coupled to a glass substratum through silyl ether bonds were exposed for different time intervals to saliva, urine, or phosphate-buffered saline (PBS) as a reference at 37 degrees C. After exposure, the effectiveness of the coatings against bacterial adhesion was assessed in a parallel plate flow chamber. The coatings appeared effective against Staphylococcus epidermidis adhesion for 24, 48, and 0.5 h in PBS, urine, and saliva, respectively. Using XPS and contact-angle measurements, the variations in effectiveness could be attributed to conditioning film formation. The overall short stability results from hydrolysis of the coupling of the PEO chains to the substratum.
Collapse
Affiliation(s)
- Astrid Roosjen
- Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Mudgil P, Dennis GR, Millar TJ. The surface pressure dynamics and appearance of mixed monolayers of cholesterol and different sized polystyrenes at an air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:1338-1345. [PMID: 15697279 DOI: 10.1021/la0482498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic polymers are increasingly being used in situations where they are designed to interact with biological systems. As a result, it is important to investigate the interactions of the polymers with biochemicals. We have used cholesterol, as an example of an important biological surfactant component, to study its interactions with polystyrene. Mixed monolayers of cholesterol and one of two different molecular weight polystyrenes were formed at an air-water interface to investigate their interactions and to determine whether the size of the polystyrene affected the interaction. The pressure-area (pi-A) isocycles of mixed monolayers of cholesterol and polystyrene MW 2700 or polystyrene MW32700 showed that strongest attractive interactions occur at high surface pressures and in polystyrene rich films. The excess area and excess free energy of mixing were most negative at high surface pressures and at high mole fraction of polystyrene. The most stable mixed monolayers were formed with X(PS2700) = 0.9 and X(PS32700) = 0.09. Microscopic observation of the mixed monolayers of cholesterol and polystyrene showed the formation of stable islands in the cholesterol/polystyrene mixtures. These observations, the nature of the inflection points in the isocycles, and the anomalous changes in free energy lead us to conclude that there is a stable rearrangement of polystyrene into compact islands when it is mixed with cholesterol. Any excess cholesterol is excluded from these islands and remains as a separate film surrounding the islands.
Collapse
Affiliation(s)
- Poonam Mudgil
- School of Science, Food and Horticulture, University of Western Sydney, Penrith South DC, NSW, Australia 1797
| | | | | |
Collapse
|