1
|
Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm 2021; 604:120749. [PMID: 34051319 DOI: 10.1016/j.ijpharm.2021.120749] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/25/2023]
Abstract
In recent years, transdermal preparations have emerged as one of the most promising modes of administration. In particular, dissolving microneedles have attracted extensive attention because of their painlessness, safety, high delivery efficiency and easily operation for patients. This article mainly reviews the preparation methods, the types of matrix polymer materials, the content of dissolving microneedles performance testing, and the applications of dissolving microneedles. It is expected to lay a solid knowledge foundation for the in-depth study of the dissolving microneedles.
Collapse
Affiliation(s)
- Lijing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ranran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Siqi Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
2
|
Zhang Y, Jiang G, Yu W, Liu D, Xu B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:18-26. [DOI: 10.1016/j.msec.2017.12.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 12/07/2017] [Indexed: 11/24/2022]
|
3
|
Ritz U, Kögler P, Höfer I, Frank P, Klees S, Gebhard S, Brendel C, Kaufmann K, Hofmann A, Rommens PM, Jonas U. Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan–amylose blends with cytokines for a human co-culture model of human osteoblasts and endothelial cells. J Mater Chem B 2016; 4:6552-6564. [DOI: 10.1039/c6tb00654j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polysaccharide hyrogel composites demonstrate fundamental potential as biomaterials for bone regeneration in vitro.
Collapse
Affiliation(s)
- Ulrike Ritz
- University Medical Center of the Johannes Gutenberg University Mainz
- Department of Orthopaedics and Traumatology
- Biomatics Group Mainz
- Germany
| | - Peter Kögler
- Macromolecular Chemistry
- University of Siegen
- Germany
| | - Isabel Höfer
- Macromolecular Chemistry
- University of Siegen
- Germany
- TU Hamburg-Harburg
- Umwelttechnik und Energiewirtschaft
| | - Petra Frank
- Macromolecular Chemistry
- University of Siegen
- Germany
| | - Sven Klees
- Macromolecular Chemistry
- University of Siegen
- Germany
| | | | | | | | - Alexander Hofmann
- University Medical Center of the Johannes Gutenberg University Mainz
- Department of Orthopaedics and Traumatology
- Biomatics Group Mainz
- Germany
| | - Pol Maria Rommens
- University Medical Center of the Johannes Gutenberg University Mainz
- Department of Orthopaedics and Traumatology
- Biomatics Group Mainz
- Germany
| | - Ulrich Jonas
- Macromolecular Chemistry
- University of Siegen
- Germany
| |
Collapse
|
4
|
Ali Akbari Ghavimi S, Ebrahimzadeh MH, Solati-Hashjin M, Abu Osman NA. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. J Biomed Mater Res A 2014; 103:2482-98. [DOI: 10.1002/jbm.a.35371] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/28/2014] [Accepted: 11/13/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Soheila Ali Akbari Ghavimi
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; 50603 Kuala Lumpur Malaysia
| | | | - Mehran Solati-Hashjin
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; 50603 Kuala Lumpur Malaysia
- Department of Biomedical Engineering; Amirkabir University of Technology; 15914 Tehran Iran
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
5
|
Ling MH, Chen MC. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats. Acta Biomater 2013; 9:8952-61. [PMID: 23816646 DOI: 10.1016/j.actbio.2013.06.029] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/04/2013] [Accepted: 06/19/2013] [Indexed: 01/23/2023]
Abstract
This study presents a dissolving microneedle patch, composed of starch and gelatin, for the rapid and efficient transdermal delivery of insulin. The microneedles completely dissolve after insertion into the skin for 5 min, quickly releasing their encapsulated payload into the skin. A histological examination shows that the microneedles have sufficient mechanical strength to be inserted in vitro into porcine skin to a depth of approximately 200 μm and in vivo into rat skin to 200-250 μm depth. This penetration depth does not induce notable skin irritation or pain sensation. To evaluate the feasibility of using these dissolving microneedles for diabetes treatment insulin-loaded microneedles were administered to diabetic rats using a homemade applicator. Pharmacodynamic and pharmacokinetic results show a similar hypoglycemic effect in rats receiving insulin-loaded microneedles and a subcutaneous injection of insulin. The relative pharmacological availability and relative bioavailability of insulin were both approximately 92%, demonstrating that insulin retains its pharmacological activity after encapsulation and release from the microneedles. Storage stability analysis confirms that more than 90% of the insulin remained in the microneedles even after storage at 25 or 37°C for 1 month. These results confirm that the proposed starch/gelatin microneedles enable stable encapsulation of bioactive molecules and have great potential for transdermal delivery of protein drugs in a relatively painless, rapid, and convenient manner.
Collapse
Affiliation(s)
- Ming-Hung Ling
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | | |
Collapse
|
6
|
|
7
|
Véchambre C, Buléon A, Chaunier L, Gauthier C, Lourdin D. Understanding the Mechanisms Involved in Shape Memory Starch: Macromolecular Orientation, Stress Recovery and Molecular Mobility. Macromolecules 2011. [DOI: 10.1021/ma202019v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Cyril Véchambre
- INRA, UR1268, Unité Biopolymères Interactions et Assemblages, 44300 Nantes, France
| | - Alain Buléon
- INRA, UR1268, Unité Biopolymères Interactions et Assemblages, 44300 Nantes, France
| | - Laurent Chaunier
- INRA, UR1268, Unité Biopolymères Interactions et Assemblages, 44300 Nantes, France
| | - Catherine Gauthier
- Insa-Lyon, MATEIS CNRS UMR 5510, Université de Lyon, 69621 Villeurbanne, France
| | - Denis Lourdin
- INRA, UR1268, Unité Biopolymères Interactions et Assemblages, 44300 Nantes, France
| |
Collapse
|
8
|
Rashid I, Al-Remawi M, Leharne SA, Chowdhry BZ, Badwan A. A novel multifunctional pharmaceutical excipient: Modification of the permeability of starch by processing with magnesium silicate. Int J Pharm 2011; 411:18-26. [DOI: 10.1016/j.ijpharm.2011.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
9
|
El-Husseiny M, Patel S, MacFarlane RJ, Haddad FS. Biodegradable antibiotic delivery systems. ACTA ACUST UNITED AC 2011; 93:151-7. [DOI: 10.1302/0301-620x.93b2.24933] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bacterial infection in orthopaedic surgery can be devastating, and is associated with significant morbidity and poor functional outcomes, which may be improved if high concentrations of antibiotics can be delivered locally over a prolonged period of time. The two most widely used methods of doing this involve antibiotic-loaded polymethylmethacrylate or collagen fleece. The former is not biodegradable and is a surface upon which secondary bacterial infection may occur. Consequently, it has to be removed once treatment has finished. The latter has been used successfully as an adjunct to systemic antibiotics, but cannot effect a sustained release that would allow it to be used on its own, thereby avoiding systemic toxicity. This review explores the newer biodegradable carrier systems which are currently in the experimental phase of development and which may prove to be more effective in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- M. El-Husseiny
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| | - S. Patel
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| | - R. J. MacFarlane
- Whiston Hospital, Warrington Road, Prescot, Merseyside L355DR, UK
| | - F. S. Haddad
- Department of Orthopaedics and Trauma, University College Hospital, 235 Euston Road, London NW12BU, UK
| |
Collapse
|
10
|
Onofre FO, Mendez-Montealvo G, Wang YJ. Sustained release properties of cross-linked corn starches with varying amylose contents in monolithic tablets. STARCH-STARKE 2010. [DOI: 10.1002/star.200900208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Onofre FO, Wang YJ. Sustained release properties of crosslinked and substituted starches. J Appl Polym Sci 2010. [DOI: 10.1002/app.32012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Onofre F, Wang YJ. Hydroxypropylated starches of varying amylose contents as sustained release matrices in tablets. Int J Pharm 2010; 385:104-12. [DOI: 10.1016/j.ijpharm.2009.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/15/2009] [Accepted: 10/21/2009] [Indexed: 10/20/2022]
|
13
|
Yu T, Ye J, Gao C, Yu L, Wang Y. Effect of biomedical organic compounds on the setting reaction of calcium phosphates. Colloids Surf B Biointerfaces 2010; 75:363-9. [DOI: 10.1016/j.colsurfb.2009.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
|
14
|
Lemieux M, Gosselin P, Mateescu MA. Carboxymethyl high amylose starch as excipient for controlled drug release: Mechanistic study and the influence of degree of substitution. Int J Pharm 2009; 382:172-82. [DOI: 10.1016/j.ijpharm.2009.08.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 11/28/2022]
|
15
|
Onofre F, Wang YJ, Mauromoustakos A. Effects of structure and modification on sustained release properties of starches. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wang X, Chen L, Xiang H, Ye J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B Appl Biomater 2007; 81:410-8. [PMID: 17022060 DOI: 10.1002/jbm.b.30678] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anti-washout-type calcium phosphate cement (aw-CPC) was prepared by introducing chitosan, sodium alginate, or modified starch into the powder phase of CPC, respectively. The results showed that these cements cannot be washed out and set within approximately 10-30 min even if the pastes were immersed in distilled water immediately and were shaken in a shaker after mixing and moulding. To our knowledge, it is the first report about the influence of the content of these anti-washout additives on the rheological properties and injectability of the cement. Moreover, novel approach of yield stress measurement was used to evaluate the injectability of the pastes. A modified starch was originally used as anti-washout agent for CPC. This study provided a convenient way to use the injectable CPC with good anti-washout performance when the paste was exposed to blood. The aw-CPC had potential prospects for the wider applications in surgery such as orthopaedics, oral, and maxillofacial surgery.
Collapse
Affiliation(s)
- Xiupeng Wang
- Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology (South China University of Technology), Ministry of Education, Guangzhou 510641, China
| | | | | | | |
Collapse
|
17
|
Marques AP, Reis RL, Hunt JA. AnIn Vivo Study of the Host Response to Starch-Based Polymers and Composites Subcutaneously Implanted in Rats. Macromol Biosci 2005; 5:775-85. [PMID: 16080170 DOI: 10.1002/mabi.200500010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Implant failure is one of the major concerns in the biomaterials field. Several factors have been related to the fail but in general these biomaterials do not exhibit comparable physical, chemical or biological properties to natural tissues and ultimately, these devices can lead to chronic inflammation and foreign-body reactions. Starch-based biodegradable materials and composites have shown promising properties for a wide range of biomedical applications as well as a reduced capacity to elicit a strong reaction from immune system cells in vitro. In this work, blends of corn starch with ethylene vinyl alcohol (SEVA-C), cellulose acetate (SCA) and polycaprolactone (SPCL), as well as hydroxyapatite (HA) reinforced starch-based composites, were investigated in vivo. The aim of the work was to assess the host response evoked for starch-based biomaterials, identifying the presence of key cell types. The tissues surrounding the implant were harvested together with the material and processed histologically for evaluation using immunohistochemistry. At implant retrieval there was no cellular exudate around the implants and no macroscopic signs of an inflammatory reaction in any of the animals. The histological analysis of the sectioned interface tissue after immunohistochemical staining using ED1, ED2, CD54, MHC class II and alpha/beta antibodies showed positively stained cells for all antibodies, except for alpha/beta for all the implantation periods, where it was different for the various polymers and for the period of implantation. SPCL and SCA composites were the materials that stimulated the greatest cellular tissue responses, but generally biodegradable starch-based materials did not induce a severe reaction for the studied implantation times, which contrasts with other types of degradable polymeric biomaterials.
Collapse
Affiliation(s)
- Alexandra P Marques
- Department of Polymer Engineering, University of Minho, Campus de Azurém, 4810-058 Guimarães, Portugal.
| | | | | |
Collapse
|
18
|
Huneault LM, Lussier B, Dubreuil P, Chouinard L, Désévaux C. Prevention and treatment of experimental osteomyelitis in dogs with ciprofloxacin-loaded crosslinked high amylose starch implants. J Orthop Res 2004; 22:1351-7. [PMID: 15475220 DOI: 10.1016/j.orthres.2004.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 04/12/2004] [Indexed: 02/04/2023]
Abstract
Crosslinked high amylose starch (CLHAS) matrix was used as a biodegradable drug delivery implant for the prevention and treatment of osteomyelitis. Thirty-two dogs underwent the femoral insertion of a screw inoculated with Staphylococcus aureus and were then randomly assigned to four groups: (A) prevention with ciprofloxacin-CLHAS implants, (B) surgical debridement (positive control), (C) surgical debridement and oral ciprofloxacin treatment and (D) surgical debridement and treatment with ciprofloxacin-CLHAS implants. At week 4 the osteomyelitis was confirmed, the infected site debrided and respective treatments initiated for groups B, C and D. Radiographs, macroscopic evaluations, bacterial cultures and histopathological examinations were used to evaluate the femora at week 10. Femora from preventive group A were almost normal. Dogs of both ciprofloxacin treatment groups C and D showed better bone healing, less periosteal reaction and less screw mobility than dogs from group B. Eradication of infection was observed at proximal/distal sites in B: 25%/12%, C: 37%/62% and D: 62%/75%. Both ciprofloxacin treated groups improved radiographically from week 4 to week 10. Periosteal and marrow neutrophilic and lymphoplasmocytic infiltrations were less severe in groups C and D versus group B. These data suggest that biodegradable ciprofloxacin-CLHAS implants are a safe and efficient modality for the prevention and treatment of osteomyelitis.
Collapse
Affiliation(s)
- Louis M Huneault
- Faculty of Veterinary Medicine, University of Montreal, 3200 rue Sicotte, CP 5000, St-Hyacinthe, QC, Canada J2S 7C6.
| | | | | | | | | |
Collapse
|
19
|
Désévaux C, Lenaerts V, Girard C, Dubreuil P. Characterization of crosslinked high amylose starch matrix implants. 2. In vivo release of ciprofloxacin. J Control Release 2002; 82:95-103. [PMID: 12106980 DOI: 10.1016/s0168-3659(02)00132-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to develop a crosslinked high amylose starch (CLHAS) matrix implant as a sustained antimicrobial delivery system for local prevention and/or treatment of osteomyelitis. Implants (200 mg) of CLHAS containing 2.5% (5 mg), 7.5% (15 mg), 15.0% (30 mg) and 20.0% (40 mg) of ciprofloxacin (CFX), were prepared by direct compression of dry blends. Rabbits were administered six 2.5, two 7.5, one 15.0 or one 20.0%-CFX implants along the femur between the quadriceps and biceps femoris muscles to determine systemic (serum) versus local (muscle and bone) CFX concentrations over 1 month. Blood samples were taken throughout the study for CFX assay. Muscle and femur were collected at 3, 7, 14, 21 and 28 days after implantation for host response evaluation and CFX assay. Residual polymer was explanted to determine the remaining dose of CFX. All animals remained healthy during the study. Local tissue reaction was mild and limited to the implantation site. Serum CFX concentrations remained low regardless of implant loading. Increased drug loading resulted in a higher and longer release of CFX in muscle and in bone. Local CFX concentrations were detected largely in excess of the MIC over 28 days with 20.0%-CFX implants. More residual CFX in polymer was detected over a longer period of time at high loading. These results strongly support the development of CLHAS implants for local antibacterial therapy.
Collapse
Affiliation(s)
- Cyril Désévaux
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal (QC), H3C 3J7, Canada.
| | | | | | | |
Collapse
|
20
|
Désévaux C, Dubreuil P, Lenaerts V. Characterization of crosslinked high amylose starch matrix implants. 1. In vitro release of ciprofloxacin. J Control Release 2002; 82:83-93. [PMID: 12106979 DOI: 10.1016/s0168-3659(02)00133-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to characterize in vitro the potential of crosslinked high amylose starch (CLHAS) as an implant matrix for the delivery of ciprofloxacin (CFX). Direct compression of dry blends of four different matrices: control CLHAS; CLHAS with 1% hydrogenated vegetable oil (HVO); and CLHAS with 10 or 20% hydroxypropylmethylcellulose (HPMC), each of them with three CFX loadings (2.5, 5.0 and 7.5%) was performed to prepare twelve implant formulations. All CLHAS implants were used for 24-h dissolution tests to evaluate swelling, erosion, water uptake and CFX release. Additionally, 1%-HVO- CLHAS implants were used for an extended dissolution test. The presence of HPMC in the matrix increased CFX release rate, swelling, erosion and water uptake in a concentration-dependent manner whereas HVO had no effect. With increasing drug loading, a decrease of cumulative CFX percent release was observed in both 24-h and extended dissolution tests. Of the different formulations tested, CLHAS implants with 1% HVO and 7.5% CFX provided the longest period of drug delivery without any initial burst effect.
Collapse
Affiliation(s)
- Cyril Désévaux
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succ. Centre-ville, Montreal (QC), H3C 3J7, Canada.
| | | | | |
Collapse
|