1
|
Awad K, Ahuja N, Yacoub AS, Brotto L, Young S, Mikos A, Aswath P, Varanasi V. Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects. FRONTIERS IN AGING 2023; 4:1217054. [PMID: 37520216 PMCID: PMC10376722 DOI: 10.3389/fragi.2023.1217054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
In this review, we explore the application of novel biomaterial-based therapies specifically targeted towards craniofacial bone defects. The repair and regeneration of critical sized bone defects in the craniofacial region requires the use of bioactive materials to stabilize and expedite the healing process. However, the existing clinical approaches face challenges in effectively treating complex craniofacial bone defects, including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a significant portion of individuals affected by traumatic bone defects in the craniofacial area belong to the aging population, there is an urgent need for innovative biomaterials to address the declining rate of new bone formation associated with age-related changes in the skeletal system. This article emphasizes the importance of semiconductor industry-derived materials as a potential solution to combat oxidative stress and address the challenges associated with aging bone. Furthermore, we discuss various material and autologous treatment approaches, as well as in vitro and in vivo models used to investigate new therapeutic strategies in the context of craniofacial bone repair. By focusing on these aspects, we aim to shed light on the potential of advanced biomaterials to overcome the limitations of current treatments and pave the way for more effective and efficient therapeutic interventions for craniofacial bone defects.
Collapse
Affiliation(s)
- Kamal Awad
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Neelam Ahuja
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Ahmed S. Yacoub
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Leticia Brotto
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonios Mikos
- Center for Engineering Complex Tissues, Center for Excellence in Tissue Engineering, J.W. Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, United States
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Venu Varanasi
- Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at Arlington, Arlington, TX, United States
- Department of Materials Science and Engineering, College of Engineering, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
2
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
3
|
Im C, Park JH, Jeon YM, Kim JG, Jang YS, Lee MH, Jeon WY, Kim JM, Bae TS. Improvement of osseointegration of Ti–6Al–4V ELI alloy orthodontic mini-screws through anodization, cyclic pre-calcification, and heat treatments. Prog Orthod 2022; 23:11. [PMID: 35368222 PMCID: PMC8977256 DOI: 10.1186/s40510-022-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Mini-screws are widely used as temporary anchorages in orthodontic treatment, but have the disadvantage of showing a high failure rate of about 10%. Therefore, orthodontic mini-screws should have high biocompatibility and retention. Previous studies have demonstrated that the retention of mini-screws can be improved by imparting bioactivity to the surface. The method for imparting bioactivity proposed in this paper is to sequentially perform anodization, periodic pre-calcification, and heat treatments with a Ti–6Al–4V ELI alloy mini-screw.
Materials and methods
A TiO2 nanotube-structured layer was formed on the surface of the Ti–6Al–4V ELI alloy mini-screw through anodization in which a voltage of 20 V was applied to a glycerol solution containing 20 wt% H2O and 1.4 wt% NH4F for 60 min. Fine granular calcium phosphate precipitates of HA and octacalcium phosphate were generated as clusters on the surface through the cyclic pre-calcification and heat treatments. The cyclic pre-calcification treatment is a process of immersion in a 0.05 M NaH2PO4 solution and a saturated Ca(OH)2 solution at 90 °C for 1 min each.
Results
It was confirmed that the densely structured protrusions were precipitated, and Ca and P concentrations, which bind and concentrate endogenous bone morphogenetic proteins, increased on the surface after simulated body fluid (SBF) immersion test. In addition, the removal torque of the mini-screw fixed into rabbit tibias for 4 weeks was measured to be 8.70 ± 2.60 N cm.
Conclusions
A noteworthy point in this paper is that the Ca and P concentrations, which provide a scaffold suitable for endogenous bone formation, further increased over time after SBF immersion of the APH group specimens. The other point is that our mini-screws have a significantly higher removal torque compared to untreated mini-screws. These results represent that the mini-screw proposed in this paper can be used as a mini-screw for orthodontics.
Collapse
|
4
|
Liu Z, Kataoka T, Samitsu S, Kawagoe D, Tagaya M. Nanostructural control of transparent hydroxyapatite nanoparticle films using a citric acid coordination technique. J Mater Chem B 2021; 10:396-405. [PMID: 34935845 DOI: 10.1039/d1tb02002a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA), as the main mineral component in hard tissues, has good biocompatibility. In particular, HA films are widely used as bioactive coatings for artificial bones and dental implants in biomedical fields. However, it is currently difficult to prepare a nanostructure-controlled HA film by a wet process for further applications. Herein, we report the synthesis of HA nanoparticles coordinated by citric acid (Cit/HA) based on the interactions between carboxylate and calcium ions to control the sizes and shapes of the hybrid nanoparticles, to improve their dispersibility in water and to eventually form uniform transparent films with nanospaces, and investigated the film formation mechanism. As compared with the well-known rod-like HA nanoparticles (size: 48 × 15 nm2), we successfully synthesized spherical and negatively charged Cit/HA nanoparticles (size: 25 × 23 nm2) to achieve highly transparent Cit/HA films using the spin-coating technique. The Cit/HA films had uniform and crack-free appearance. About the nanostructures, we found that the Cit/HA film surfaces had meso-scaled nanospaces with a diameter of 4.2 nm based on the regular arrangement of spherical nanoparticles, instead of the HA film with a nanospace diameter of 24.5 nm formed by non-uniform accumulation. Therefore, we successfully achieved the control of the nanospace sizes of the films with the nanoparticle arrangement and realized transparent nanoparticle film formation in a very simple way, which will provide more convenient bioceramic films for biomedical applications.
Collapse
Affiliation(s)
- Zizhen Liu
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Takuya Kataoka
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Sadaki Samitsu
- Data-driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Daisuke Kawagoe
- Department of Materials Chemistry and Bioengineering, Oyama National College of Technology, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
5
|
AbouAitah K, Bil M, Pietrzykowska E, Szałaj U, Fudala D, Woźniak B, Nasiłowska J, Swiderska-Sroda A, Lojkowski M, Sokołowska B, Swieszkowski W, Lojkowski W. Drug-Releasing Antibacterial Coating Made from Nano-Hydroxyapatite Using the Sonocoating Method. NANOMATERIALS 2021; 11:nano11071690. [PMID: 34203218 PMCID: PMC8307745 DOI: 10.3390/nano11071690] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Medical implant use is associated with a risk of infection caused by bacteria on their surface. Implants with a surface that has both bone growth-promoting properties and antibacterial properties are of interest in orthopedics. In the current study, we fabricated a bioactive coating of hydroxyapatite nanoparticles on polyether ether ketone (PEEK) using the sonocoating method. The sonocoating method creates a layer by immersing the object in a suspension of nanoparticles in water and applying a high-power ultrasound. We show that the simple layer fabrication method results in a well-adhering layer with a thickness of 219 nm to 764 nm. Dropping cefuroxime sodium salt (Cef) antibiotic on the coated substrate creates a layer with a drug release effect and antibacterial activity against Staphylococcus aureus. We achieved a concentration of up to 1 mg of drug per cm2 of the coated substrate. In drug release tests, an initial burst was observed within 24 h, accompanied by a linear stable release effect. The drug-loaded implants exhibited sufficient activity against S. aureus for 24 and 168 h. Thus, the simple method we present here produces a biocompatible coating that can be soaked with antibiotics for antibacterial properties and can be used for a range of medical implants.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| | - Monika Bil
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02822 Warsaw, Poland;
| | - Elzbieta Pietrzykowska
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Damian Fudala
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Bartosz Woźniak
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Justyna Nasiłowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
| | - Maciej Lojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology–State Research Institute, 36 Rakowiecka Street, 02532 Warsaw, Poland; (J.N.); (B.S.)
- High Pressure Food and Soft Matter Processing Group, Institute of High-Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska Street, 01142 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02507 Warsaw, Poland; (M.L.); (W.S.)
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, 01142 Warsaw, Poland; (E.P.); (U.S.); (D.F.); (B.W.); (A.S.-S.)
- Correspondence: (K.A.); (W.L.); Tel.: +48-22-6325010 (W.L.); Fax: +48-22-632-4218 (W.L.)
| |
Collapse
|
6
|
Development of Robust Chitosan–Silica Class II Hybrid Coatings with Antimicrobial Properties for Titanium Implants. COATINGS 2020. [DOI: 10.3390/coatings10060534] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to develop robust class II organic–inorganic films as antibacterial coatings on titanium alloy (Ti6Al4V) implants. Coating materials were prepared from organic chitosan (20–80 wt.%) coupled by 3-glycydoxytrimethoxysilane (GPTMS) with inorganic tetraethoxysilane (TEOS). These hybrid networks were imbedded with antimicrobial silver nanoparticles (AgNPs) and coated onto polished and acid-etched Ti6Al4V substrates. Magic-angle spinning nuclear magnetic resonance (13CMAS-NMR), attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and the ninhydrin assay, confirmed the presence and degree of covalent crosslinking (91%) between chitosan and GPTMS. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) identified surface roughness and microtopography on thin films and confirmed homogeneous distribution of elements throughout the coating. Cross-hatch and tensile adhesion testing demonstrated the robustness and adherence (15–20 MPa) of hybrid coatings to acid-etched titanium substrates. Staphylococcus aureus and Escherichia coli cultures and their biofilm formation were inhibited by all hybrid coatings. Antibacterial effects increased markedly for coatings loaded with AgNPs and appeared to increase with chitosan content in biofilm assays. These results are promising in the development of class II hybrid materials as robust and highly adherent antibacterial films on Ti6Al4V implants.
Collapse
|
7
|
The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants. PLoS One 2020; 15:e0227232. [PMID: 31923253 PMCID: PMC6953817 DOI: 10.1371/journal.pone.0227232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Additive manufactured, porous bone implants have the potential to improve osseointegration and reduce failure rates of orthopaedic devices. Substantially porous implants are increasingly used in a number of orthopaedic applications. HA plasma spraying-a line of sight process-cannot coat the inner surfaces of substantially porous structures, whereas electrochemical deposition of calcium phosphate can fully coat the inner surfaces of porous implants for improved bioactivity, but the osseous response of different types of hydroxyapatite (HA) coatings with ionic substitutions has not been evaluated for implants in the same in vivo model. In this study, laser sintered Ti6Al4V implants with pore sizes of Ø 700 μm and Ø 1500 μm were electrochemically coated with HA, silicon-substituted HA (SiHA), and strontium-substituted HA (SrHA), and implanted in ovine femoral condylar defects. Implants were retrieved after 6 weeks and histological and histomorphometric evaluation were compared to electrochemically coated implants with uncoated and HA plasma sprayed controls. The HA, SiHA and SrHA coatings had Ca:P, Ca:(P+Si) and (Ca+Sr):P ratios of 1.53, 1.14 and 1.32 respectively. Electrochemically coated implants significantly promoted bone attachment to the implant surfaces of the inner pores and displayed improved osseointegration compared to uncoated scaffolds for both pore sizes (p<0.001), whereas bone ingrowth was restricted to the surface for HA plasma coated or uncoated implants. Electrochemically coated HA implants achieved the highest osseointegration, followed by SrHA coated implants, and both coatings exhibited significantly more bone growth than plasma sprayed groups (p≤0.01 for all 4 cases). SiHA had significantly more osseointegration when compared against the uncoated control, but no significant difference compared with other coatings. There was no significant difference in ingrowth or osseointegration between pore sizes, and the bone-implant-contact was significantly higher in the electrochemical HA than in SiHA or SrHA. These results suggest that osseointegration is insensitive to pore size, whereas surface modification through the presence of an osteoconductive coating plays an important role in improving osseointegration, which may be critically important for extensively porous implants.
Collapse
|
8
|
Sopcak T, Medvecky L, Zagyva T, Dzupon M, Balko J, Balázsi K, Balázsi C. Characterization and adhesion strength of porous electrosprayed polymer–hydroxyapatite composite coatings. RESOLUTION AND DISCOVERY 2018. [DOI: 10.1556/2051.2018.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T. Sopcak
- Institute of Technical Physics and Materials Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, 1121 Budapest, Hungary
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovak Republic
| | - L. Medvecky
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovak Republic
| | - T. Zagyva
- Institute of Technical Physics and Materials Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, 1121 Budapest, Hungary
| | - M. Dzupon
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovak Republic
| | - J. Balko
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovak Republic
| | - K. Balázsi
- Institute of Technical Physics and Materials Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, 1121 Budapest, Hungary
| | - C. Balázsi
- Institute of Technical Physics and Materials Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, 1121 Budapest, Hungary
| |
Collapse
|
9
|
Stuart BW, Grant CA, Stan GE, Popa AC, Titman JJ, Grant DM. Gallium incorporation into phosphate based glasses: Bulk and thin film properties. J Mech Behav Biomed Mater 2018; 82:371-382. [PMID: 29656232 DOI: 10.1016/j.jmbbm.2018.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022]
Abstract
The osteogenic ions Ca2+, P5+, Mg2+, and antimicrobial ion Ga3+ were homogenously dispersed into a 1.45 µm thick phosphate glass coating by plasma assisted sputtering onto commercially pure grade titanium. The objective was to deliver therapeutic ions in orthopaedic/dental implants such as cementeless endoprostheses or dental screws. The hardness 4.7 GPa and elastic modulus 69.7 GPa, of the coating were comparable to plasma sprayed hydroxyapatite/dental enamel, whilst superseding femoral cortical bone. To investigate the manufacturing challenge of translation from a target to vapour condensed coating, structural/compositional properties of the target (P51MQ) were compared to the coating (P40PVD) and a melt-quenched equivalent (P40MQ). Following condensation from P51MQ to P40PVD, P2O5 content reduced from 48.9 to 40.5 mol%. This depolymerisation and reduction in the P-O-P bridging oxygen content as determined by 31P NMR, FTIR and Raman spectroscopy techniques was attributed to a decrease in the P2O5 network former and increases in alkali/alkali-earth cations. P40PVD appeared denser (3.47 vs. 2.70 g cm-3) and more polymerised than it's compositionally equivalent P40MQ, showing that structure/ mechanical properties were affected by manufacturing route.
Collapse
Affiliation(s)
- Bryan W Stuart
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK.
| | - Colin A Grant
- School of Chemistry and Biosciences, University of Bradford, BD7 1DP, UK
| | - George E Stan
- National Institute of Materials Physics, Magurele, Ilfov, Romania
| | - Adrian C Popa
- National Institute of Materials Physics, Magurele, Ilfov, Romania; Army Centre for Medical Research, RO-010195 Bucharest, Romania
| | | | - David M Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, UK
| |
Collapse
|
10
|
Ito T, Ohtsu N, Tomozawa M, Hirano M, Takita H, Iizuka T, Yokoyama A. Promotion of bone regeneration on titanium implants through a chemical treatment process using calcium phosphate slurry: Microscopic analysis, cellular response, and animal experiment. J Biomed Mater Res B Appl Biomater 2018; 106:2716-2724. [PMID: 29451708 DOI: 10.1002/jbm.b.34089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/28/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
Abstract
The present study provides scientific evidence that a new chemical treatment process using calcium phosphate slurry promotes bone regeneration on titanium (Ti) implants. The material's surface modified by the treatment was analyzed using microscopic observation and the bone regeneration efficacy was evaluated both in vitro and in vivo. Formation of a thin hydroxyapatite layer with a thickness of about 50 nm and an increase of surface roughness were confirmed by microscopic observations. Histological evaluation of rat femora implanted with the specimens showed that the areas of the specimens directly attached to bone tissue were significantly more extensive than those implanted with control Ti at 2 and 8 weeks. Likewise, on the treated Ti, ALP activity, osteopontin, osteocalcin, and calcium contents of rat bone marrow stromal cells were significantly higher than on the control Ti. Furthermore, reverse transcription polymerase chain reaction showed greater expression of messenger ribonucleic acid encoding Cbfa1 and collagen type1 on the treated Ti at 2 weeks. Based on these results, we concluded that the new process was effective to enhance the osteoconductivity of Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2716-2724, 2018.
Collapse
Affiliation(s)
- Tatsuro Ito
- Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Naofumi Ohtsu
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Masanari Tomozawa
- Morphological Research Laboratory, Toray Research Center, Inc., Tokyo, Japan
| | - Mitsuhiro Hirano
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Hiroko Takita
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tadashi Iizuka
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuro Yokoyama
- Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Matinmanesh A, Li Y, Clarkin O, Zalzal P, Schemitsch EH, Towler MR, Papini M. Quantifying the mode II critical strain energy release rate of borate bioactive glass coatings on Ti6Al4V substrates. J Mech Behav Biomed Mater 2017; 75:212-221. [PMID: 28756281 DOI: 10.1016/j.jmbbm.2017.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/19/2022]
Abstract
Bioactive glasses have been used as coatings for biomedical implants because they can be formulated to promote osseointegration, antibacterial behavior, bone formation, and tissue healing through the incorporation and subsequent release of certain ions. However, shear loading on coated implants has been reported to cause the delamination and loosening of such coatings. This work uses a recently developed fracture mechanics testing methodology to quantify the critical strain energy release rate under nearly pure mode II conditions, GIIC, of a series of borate-based glass coating/Ti6Al4V alloy substrate systems. Incorporating increasing amounts of SrCO3 in the glass composition was found to increase the GIIC almost twofold, from 25.3 to 46.9J/m2. The magnitude and distribution of residual stresses in the coating were quantified, and it was found that the residual stresses in all cases distributed uniformly over the cross section of the coating. The crack was driven towards, but not into, the glass/Ti6Al4V substrate interface due to the shear loading. This implied that the interface had a higher fracture toughness than the coating itself.
Collapse
Affiliation(s)
- A Matinmanesh
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada M5B 2K3; St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Y Li
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada M5B 2K3; St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - O Clarkin
- Department of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - P Zalzal
- Oakville Trafalgar Memorial Hospital, Oakville, Ontario, Canada L6J 3L7
| | - E H Schemitsch
- St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - M R Towler
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada M5B 2K3; St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8; Department of Biomedical Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - M Papini
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada M5B 2K3.
| |
Collapse
|
12
|
Varanasi VG, Odatsu T, Bishop T, Chang J, Owyoung J, Loomer PM. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription. J Biomed Mater Res A 2016; 104:2604-15. [PMID: 27279631 DOI: 10.1002/jbm.a.35795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/07/2022]
Abstract
Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016.
Collapse
Affiliation(s)
- Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, 75246
| | - Tetsurou Odatsu
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Timothy Bishop
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Joyce Chang
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Jeremy Owyoung
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Peter M Loomer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, 10010
| |
Collapse
|
13
|
Liu B, Xiao GY, Jiang CC, Zheng YZ, Wang LL, Lu YP. Formation initiation and structural changes of phosphate conversion coating on titanium induced by galvanic coupling and Fe2+ ions. RSC Adv 2016. [DOI: 10.1039/c6ra16847g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A scholzite coating was precipitated on Ti by a galvanically coupled approach and addition of iron ions in the bath.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Gui-yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Cong-cong Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Yong-zhen Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Ling-ling Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| | - Yu-peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Ji'nan 250061
- China
| |
Collapse
|
14
|
Calcium orthophosphate deposits: Preparation, properties and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:272-326. [PMID: 26117762 DOI: 10.1016/j.msec.2015.05.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/21/2015] [Accepted: 05/08/2015] [Indexed: 01/12/2023]
Abstract
Since various interactions among cells, surrounding tissues and implanted biomaterials always occur at their interfaces, the surface properties of potential implants appear to be of paramount importance for the clinical success. In view of the fact that a limited amount of materials appear to be tolerated by living organisms, a special discipline called surface engineering was developed to initiate the desirable changes to the exterior properties of various materials but still maintaining their useful bulk performances. In 1975, this approach resulted in the introduction of a special class of artificial bone grafts, composed of various mechanically stable (consequently, suitable for load bearing applications) implantable biomaterials and/or bio-devices covered by calcium orthophosphates (CaPO4) to both improve biocompatibility and provide an adequate bonding to the adjacent bones. Over 5000 publications on this topic were published since then. Therefore, a thorough analysis of the available literature has been performed and about 50 (this number is doubled, if all possible modifications are counted) deposition techniques of CaPO4 have been revealed, systematized and described. These CaPO4 deposits (coatings, films and layers) used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
15
|
Nishikawa H, Yoshikawa R. Controlling the Chemical Composition of Hydroxyapatite Thin Films using Pulsed Laser Deposition. ACTA ACUST UNITED AC 2015. [DOI: 10.14723/tmrsj.40.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroaki Nishikawa
- Faculty of Biology-Oriented Science and Technology, Kinki University
| | - Ryota Yoshikawa
- Faculty of Biology-Oriented Science and Technology, Kinki University
| |
Collapse
|
16
|
Elia R, Michelson CD, Perera AL, Brunner TF, Harsono M, Leisk GG, Kugel G, Kaplan DL. Electrodeposited silk coatings for bone implants. J Biomed Mater Res B Appl Biomater 2014; 103:1602-9. [PMID: 25545462 DOI: 10.1002/jbm.b.33351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/29/2014] [Accepted: 11/18/2014] [Indexed: 11/07/2022]
Abstract
The aim of this study was to characterize the mechanical properties and drug elution features of silk protein-based electrodeposited dental implant coatings. Silk processing conditions were modified to obtain coatings with a range of mechanical properties on titanium studs. These coatings were assessed for adhesive strength and dissolution, with properties tuned using water vapor annealing or glycerol incorporation to modulate crystalline content. Coating reproducibility was demonstrated over a range of silk concentrations from 1% to 10%. Surface roughness of titanium substrates was altered using industry relevant acid etching and grit blasting, and the effect of surface topography on silk coating adhesion was assessed. Florescent compounds were incorporated into the silk coatings, which were modulated for crystalline content, to achieve four days of sustained release of the compounds. This silk electrogelation technique offers a safe and relatively simple approach to generate mechanically robust, biocompatible, and degradable implant coatings that can also be functionalized with bioactive compounds to modulate the local regenerative tissue environment.
Collapse
Affiliation(s)
- Roberto Elia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | | | - Austin L Perera
- School of Dental Medicine, Tufts University, Boston, Massachusetts, 02111
| | - Teresa F Brunner
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
- Department of Maxilo-Facial Surgery University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany, 81675
| | - Masly Harsono
- School of Dental Medicine, Tufts University, Boston, Massachusetts, 02111
| | - Gray G Leisk
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Gerard Kugel
- School of Dental Medicine, Tufts University, Boston, Massachusetts, 02111
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| |
Collapse
|
17
|
Elia R, Michelson CD, Perera AL, Harsono M, Leisk GG, Kugel G, Kaplan DL. Silk electrogel coatings for titanium dental implants. J Biomater Appl 2014; 29:1247-55. [PMID: 25425563 DOI: 10.1177/0885328214561536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to develop biocompatible, biodegradable dental implant coatings capable of withstanding the mechanical stresses imparted during implant placement. Two techniques were developed to deposit uniform silk fibroin protein coatings onto dental implants. Two novel coating techniques were implemented to coat titanium shims, studs, and implants. One technique involved electrodeposition of the silk directly onto the titanium substrates. The second technique consisted of melting electrogels and dispensing the melted gels onto the titanium to form the coatings. Both techniques were tested for coating reproducibility using a stylus profilometer and a dial thickness gauge. The mechanical strength of adhered titanium studs was assessed using a universal mechanical testing machine. Uniform, controllable coatings were obtained from both the electrodeposition and melted electrogel coating techniques, tunable from 35 to 1654 µm thick under the conditions studied, and able to withstand delamination during implantation into implant socket mimics. Mechanical testing revealed that the adhesive strength of electrogel coatings, 0.369 ± 0.09 MPa, rivaled other biologically derived coating systems such as collagen, hydroxyapatite, and chitosan (0.07-4.83 MPa). These novel silk-based techniques offer a unique approach to the deposition of safe, simple, mechanically robust, biocompatible, and degradable implant coatings.
Collapse
Affiliation(s)
- Roberto Elia
- Department of Biomedical Engineering, Tufts University Medford, Massachusetts, USA
| | | | - Austin L Perera
- School of Dental Medicine, Tufts University Boston, Massachusetts, USA
| | - Masly Harsono
- School of Dental Medicine, Tufts University Boston, Massachusetts, USA
| | - Gray G Leisk
- Department of Mechanical Engineering, Tufts University Medford, Massachusetts, USA
| | - Gerard Kugel
- School of Dental Medicine, Tufts University Boston, Massachusetts, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University Medford, Massachusetts, USA
| |
Collapse
|
18
|
Electrophoretic Deposition of Carbon Nanotubes over TiO2 Nanotubes: Evaluation of Surface Properties and Biocompatibility. Bioinorg Chem Appl 2014; 2014:236521. [PMID: 25093017 PMCID: PMC4100351 DOI: 10.1155/2014/236521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/31/2014] [Indexed: 11/17/2022] Open
Abstract
Titanium (Ti) is often used as an orthopedic and dental implant material due to its better mechanical properties, corrosion resistance, and excellent biocompatibility. Formation of TiO2 nanotubes (TiO2 NTs) on titanium is an interesting surface modification to achieve controlled drug delivery and to promote cell growth. Carbon nanotubes (CNTs) possess excellent chemical durability and mechanical strength. The use of CNTs in biomedical applications such as scaffolds has received considerable attention in recent years. The present study aims to modify the surface of titanium by anodizing to form TiO2 NTs and subsequently deposit CNTs over it by electrophoretic deposition (EPD). Characteristic, biocompatibility, and apatite forming ability of the surface modified samples were evaluated. The results of the study reveal that CNTs coating on TiO2 nanotubes help improve the biological activity and this type of surface modification is highly suitable for biomedical applications.
Collapse
|
19
|
de Souza ID, Cruz MA, de Faria AN, Zancanela DC, Simão AM, Ciancaglini P, Ramos AP. Formation of carbonated hydroxyapatite films on metallic surfaces using dihexadecyl phosphate–LB film as template. Colloids Surf B Biointerfaces 2014; 118:31-40. [DOI: 10.1016/j.colsurfb.2014.03.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 11/29/2022]
|
20
|
Affiliation(s)
- Ole Reigstad
- Hand- and Microsurgery section Orthopaedic department OUS-Rikshospitalet Postboks 4950 Nydalen 0424 Oslo Norway
| |
Collapse
|
21
|
Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis--a review. Acta Biomater 2014; 10:557-79. [PMID: 24211734 DOI: 10.1016/j.actbio.2013.10.036] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022]
Abstract
A systematic analysis of results available from in vitro, in vivo and clinical trials on the effects of biocompatible calcium phosphate (CaP) coatings is presented. An overview of the most frequently used methods to prepare CaP-based coatings was conducted. Dense, homogeneous, highly adherent and biocompatible CaP or hybrid organic/inorganic CaP coatings with tailored properties can be deposited. It has been demonstrated that CaP coatings have a significant effect on the bone regeneration process. In vitro experiments using different cells (e.g. SaOS-2, human mesenchymal stem cells and osteoblast-like cells) have revealed that CaP coatings enhance cellular adhesion, proliferation and differentiation to promote bone regeneration. However, in vivo, the exact mechanism of osteogenesis in response to CaP coatings is unclear; indeed, there are conflicting reports of the effectiveness of CaP coatings, with results ranging from highly effective to no significant or even negative effects. This review therefore highlights progress in CaP coatings for orthopaedic implants and discusses the future research and use of these devices. Currently, an exciting area of research is in bioactive hybrid composite CaP-based coatings containing both inorganic (CaP coating) and organic (collagen, bone morphogenetic proteins, arginylglycylaspartic acid etc.) components with the aim of promoting tissue ingrowth and vascularization. Further investigations are necessary to reveal the relative influences of implant design, surgical procedure, and coating characteristics (thickness, structure, topography, porosity, wettability etc.) on the long-term clinical effects of hybrid CaP coatings. In addition to commercially available plasma spraying, other effective routes for the fabrication of hybrid CaP coatings for clinical use still need to be determined and current progress is discussed.
Collapse
Affiliation(s)
- Roman A Surmenev
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Maria A Surmeneva
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anna A Ivanova
- Department of Theoretical and Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
22
|
A Review of Hydroxyapatite Coatings Manufactured by Thermal Spray. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Tredwin CJ, Georgiou G, Kim HW, Knowles JC. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy. Dent Mater 2013; 29:521-9. [PMID: 23518245 DOI: 10.1016/j.dental.2013.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 11/16/2012] [Accepted: 02/12/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. METHODS HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. RESULTS (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. SIGNIFICANCE FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials.
Collapse
Affiliation(s)
- Christopher J Tredwin
- Peninsula Dental School, Plymouth University Peninsula Schools of Medicine and Dentistry, The John Bull Building, Tamar Science Park, Research Way, Plymouth, PL6 8BU, United Kingdom
| | | | | | | |
Collapse
|
24
|
Nag S, Paital SR, Nandawana P, Mahdak K, Ho YH, Vora HD, Banerjee R, Dahotre NB. Laser deposited biocompatible Ca–P coatings on Ti–6Al–4V: Microstructural evolution and thermal modeling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:165-73. [DOI: 10.1016/j.msec.2012.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/17/2012] [Accepted: 08/11/2012] [Indexed: 02/02/2023]
|
25
|
Nakahara I, Takao M, Goto T, Ohtsuki C, Hibino S, Sugano N. Interfacial shear strength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation. J Orthop Res 2012; 30:1618-25. [PMID: 22467537 DOI: 10.1002/jor.22115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/13/2012] [Indexed: 02/04/2023]
Abstract
Despite the excellent osseointegration of carbon-fiber-reinforced polyetheretherketone (CFR/PEEK) with a surface hydroxyapatite (HA) coating, the bone-implant interfacial shear strength of HA-coated CFR/PEEK after osseointegration is unclear. We examined the interfacial shear strength of HA-coated CFR/PEEK implants after in vivo implantation in a rabbit femur-implant pull-out test model. HA coating was performed by a newly developed method. Uncoated CFR/PEEK, HA-coated blasted titanium alloy, and uncoated blasted titanium alloy were used as control implants. The implants were inserted into drilled femoral cortex, and pull-out tests were conducted after 6 and 12 weeks of implantation to determine maximum interfacial shear strength. The HA-coated CFR/PEEK (15.7 ± 4.5 MPa) and HA-coated titanium alloy (14.1 ± 6.0 MPa) exhibited significantly larger interfacial shear strengths than the uncoated CFR/PEEK (7.7 ± 1.8 MPa) and the uncoated titanium alloy (7.8 ± 2.1 MPa) at 6 weeks. At 12 weeks, only the uncoated CFR/PEEK (8.3 ± 3.0 MPa) exhibited a significantly smaller interfacial shear strength, as compared to the HA-coated CFR/PEEK (17.4 ± 3.6 MPa), HA-coated titanium alloy (14.2 ± 4.8 MPa), and uncoated titanium alloy (15.0 ± 2.6 MPa). Surface analysis of the removed implants revealed detachment of the HA layer in both the HA-coated CFR/PEEK and titanium alloy implants. The proposed novel HA coating method of CFR/PEEK significantly increased interfacial shear strength between bone and CFR/PEEK. The achieved interfacial shear strength of the HA-coated CFR/PEEK implant is of the same level as that of grit-blasted titanium alloy with HA.
Collapse
Affiliation(s)
- Ichiro Nakahara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Dorozhkin SV. Calcium orthophosphate coatings, films and layers. Prog Biomater 2012; 1:1. [PMID: 29470670 PMCID: PMC5120666 DOI: 10.1186/2194-0517-1-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022] Open
Abstract
In surgical disciplines, where bones have to be repaired, augmented or improved, bone substitutes are essential. Therefore, an interest has dramatically increased in application of synthetic bone grafts. As various interactions among cells, surrounding tissues and implanted biomaterials always occur at the interfaces, the surface properties of the implants are of the paramount importance in determining both the biological response to implants and the material response to the physiological conditions. Hence, a surface engineering is aimed to modify both the biomaterials, themselves, and biological responses through introducing desirable changes to the surface properties of the implants but still maintaining their bulk mechanical properties. To fulfill these requirements, a special class of artificial bone grafts has been introduced in 1976. It is composed of various mechanically stable (therefore, suitable for load bearing applications) biomaterials and/or bio-devices with calcium orthophosphate coatings, films and layers on their surfaces to both improve interactions with the surrounding tissues and provide an adequate bonding to bones. Many production techniques of calcium orthophosphate coatings, films and layers have been already invented and new promising techniques are continuously investigated. These specialized coatings, films and layers used to improve the surface properties of various types of artificial implants are the topic of this review.
Collapse
|
27
|
WILLIAMS KR, DRAUGHN RA. A FINITE ELEMENT STRESS ANALYSIS OF THE INTERFACE STRESS GENERATED DURING THE PUSH-OUT TEST. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519402000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Within the dental sphere it is advantageous to be able to bond the restoration to dentine in order to avoid clinical problems such as marginal leakage with subsequent caries. Dentine bonding agents are normally employed to create an effective interface between the restoration and hard tissue with the formation of chemical links. The measurement of the bond strength between dental restorations or implants and surrounding hard tissue is generally achieved through the use of an experimental push-out test. However, these bond strengths have been found to be quite variable between laboratories even when similar chemical bonding agents have been used. This variability may be due to a number of factors including experimental differences such as, material moduli effects, specimen loading and changes in the thickness and properties of the interdiffusional zone (IDZ) that forms following polymerization of the bonding agent. In this work, these variables have been explored using the finite element method initially through a 2-D description of the geometrical set up and subsequently a 3-D discretization. The results indicate that the loading and specimen support during testing have a significant effect on the measured push-out values. Furthermore the effects of a gradually changing modulus in the uppermost rings of the IDZ can have a significant influence on the support bearing property of the bonding agent. These changes in modulus of the IDZ may be the result of fluoride leaching to bring about increases in properties and modulus. A mixed moduli IDZ where the uppermost layer is approximately double the value of the remaining material can lead to increases in push-out values of 10% or more.
Collapse
Affiliation(s)
- K. R. WILLIAMS
- Dental Shool, University of Wales College of Medicine, Heath Park, Cardiff, Wales, UK
| | - R. A. DRAUGHN
- College of Dental Medicine, Department of Materials Science, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina, USA
| |
Collapse
|
28
|
Paital SR, Bunce N, Nandwana P, Honrao C, Nag S, He W, Banerjee R, Dahotre NB. Laser surface modification for synthesis of textured bioactive and biocompatible Ca-P coatings on Ti-6Al-4V. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1393-1406. [PMID: 21526409 DOI: 10.1007/s10856-011-4321-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
A textured calcium phosphate based bio-ceramic coating was synthesized by continuous wave Nd:YAG laser induced direct melting of hydroxyapatite precursor on Ti-6Al-4V substrate. Two different micro-textured patterns (100 μm and 200 μm line spacing) of Ca-P based phases were fabricated by this technique to understand the alignment and focal adhesion of the bone forming cells on these surfaces. X-ray diffraction studies of the coated samples indicated the presence of CaTiO₃, α-Ca₃(PO₄)₂, Ca(OH)₂, TiO₂ (anatase) and TiO₂ (rutile) phases as a result of the intermixing between the precursor and substrate material during laser processing. A two dimensional elemental mapping of the cross-section of the coated samples exhibited the presence of higher phosphorous concentration within the coating and a thin layer of calcium concentration only at the top of the coating. Improved in vitro bioactivity and in vitro biocompatibility was observed for the laser processed samples as compared to the control.
Collapse
Affiliation(s)
- Sameer R Paital
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cho SK, Park IS, Lee SJ, Kim KA, Park JM, Ahn SG, Song KY, Yoon DJ, Lee MH. Surface characteristics of Ti-10Ta-10Nb alloy modified by hydrogen peroxide treatment for dental implants. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Hägi TT, Enggist L, Michel D, Ferguson SJ, Liu Y, Hunziker EB. Mechanical insertion properties of calcium-phosphate implant coatings. Clin Oral Implants Res 2011; 21:1214-22. [PMID: 20546252 DOI: 10.1111/j.1600-0501.2010.01916.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the influence of protein incorporation on the resistance of biomimetic calcium-phosphate coatings to the shear forces that are generated during implant insertion. MATERIALS AND METHODS Thirty-eight standard (5 × 13 mm) Osseotite® implants were coated biomimetically with a layer of calcium phosphate, which either lacked or bore a co-precipitated (incorporated) depot of the model protein bovine serum albumin (BSA). The coated implants were inserted into either artificial bone (n=18) or the explanted mandibles of adult pigs (n=12). The former set-up was established for the measurement of torque and of coating losses during the insertion process. The latter set-up was established for the histological and histomorphometric analysis of the fate of the coatings after implantation. RESULTS BSA-bearing coatings had higher mean torque values than did those that bore no protein depot. During the insertion process, less material was lost from the former than from the latter type of coating. The histological and histomorphometric analysis revealed fragments of material to be sheared off from both types of coating at vulnerable points, namely, at the tips of the threads. The sheared-off fragments were retained within the peri-implant space. CONCLUSION The incorporation of a protein into a biomimetically prepared calcium-phosphate coating increases its resistance to the shear forces that are generated during implant insertion. In a clinical setting, the incorporated protein would be an osteogenic agent, whose osteoinductive potential would not be compromised by the shearing off of coating material, and the osteoconductivity of an exposed implant surface would not be less than that of a coated one.
Collapse
Affiliation(s)
- Tobias T Hägi
- Center of Regenerative Medicine for Skeletal Tissues, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants. Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/000164702760300297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Pezeshki P, Lugowski S, Davies JE. Dissolution behavior of calcium phosphate nanocrystals deposited on titanium alloy surfaces. J Biomed Mater Res A 2010; 94:660-6. [PMID: 20564359 DOI: 10.1002/jbm.a.32666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently shown that a new implant surface design, achieved by the deposition of discrete nanocrystals of calcium phosphate on microtopographically complex titanium-based substrates, accelerates osteoconduction and also renders the implant surface bone bonding. Thus, we wished to examine the elution behavior of these calcium phosphate nanocrystals and their modulation in vivo. We first compared the total amount of calcium phosphate on these implants with that of plasma-sprayed implants, by measuring the eluted calcium using atomic absorption spectrophotometry. We then plotted their dissolution behavior in vitro as a function of pH relevant to physiological conditions. To assess their structural stability in vivo for periods of up to 1 month, we placed samples in diffusion chambers, implanted them in the abdominal cavity of rats, and examined their surfaces by scanning electron microscopy following retrieval. Our results show that these nanocrystals are stable at normal pH but, as expected, dissolve at acidic pH, and that they remain unchanged when exposed to body fluid in vivo for up to 1 month.
Collapse
Affiliation(s)
- Padina Pezeshki
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Sugiyama T, Miake Y, Yajima Y, Yamamoto K, Sakurai K. Surface observation of thin hydroxyapatite-coated implants at 80 months after insertion. J ORAL IMPLANTOL 2010; 37:273-8. [PMID: 20594064 DOI: 10.1563/aaid-joi-d-09-00113.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We observed surfaces and cross sections of thin hydroxyapatite (HA)-coated implants produced by the thermal decomposition method in a patient attending our clinic who underwent implant removal at 80 months due to fracture of the implants. On the implant surfaces of the removed sample, most of the HA had dissolved, and extensive osseointegration was observed where Ti had closely bonded to bone. This indicated that the HA coated on the implant surfaces had disappeared and osseointegration had been established where Ti directly bonded to the bone. In addition, calcium titanate (CaTiO(3)) and HA layers formed by the thermal decomposition method showed no desorption. The results clearly indicate the positive clinical potential of thin HA-coating by the thermal decomposition method.
Collapse
Affiliation(s)
- Tetsuya Sugiyama
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | |
Collapse
|
34
|
Ün S, Durucan C. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy. J Biomed Mater Res B Appl Biomater 2009; 90:574-83. [DOI: 10.1002/jbm.b.31319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
|
36
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants: Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/000164700753759574] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Abstract
At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.
Collapse
Affiliation(s)
- M Navarro
- Biomaterials, Implants and Tissue Engineering, Institute for Bioengineering of Catalonia (IBEC), CIBER-BBN, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
38
|
Cehreli M, Akkocaoglu M, Akca K. Numerical simulation of in vivo intraosseous torsional failure of a hollow-screw oral implant. Head Face Med 2006; 2:36. [PMID: 17083739 PMCID: PMC1636028 DOI: 10.1186/1746-160x-2-36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 11/04/2006] [Indexed: 11/12/2022] Open
Abstract
Background Owing to the complexity and magnitude of functional forces transferred to the bone-implant interface, the mechanical strength of the interface is of great importance. The purpose of this study was to determine the intraosseous torsional shear strength of an osseointegrated oral implant using 3-D finite element (FE) stress analysis implemented by in vivo failure torque data of an implant. Methods A Ø 3.5 mm × 12 mm ITI® hollow screw dental implant in a patient was subjected to torque failure test using a custom-made strain-gauged manual torque wrench connected to a data acquisition system. The 3-D FE model of the implant and peri-implant circumstances was constructed. The in vivo strain data was converted to torque units (N.cm) to involve in loading definition of FE analysis. Upon processing of the FE analysis, the shear stress of peri-implant bone was evaluated to assume torsional shear stress strength of the bone-implant interface. Results The in vivo torque failure test yielded 5952 μstrains at custom-made manual torque wrench level and conversion of the strain data resulted in 750 N.cm. FE revealed that highest shear stress value in the trabecular bone, 121 MPa, was located at the first intimate contact with implant. Trabecular bone in contact with external surface of hollow implant body participated shear stress distribution, but not the bone resting inside of the hollow. Conclusion The torsional strength of hollow-screw implants is basically provided by the marginal bone and the hollow part has negligible effect on interfacial shear strength.
Collapse
Affiliation(s)
- Murat Cehreli
- Associate Professor of Prosthodontics, CosmORAL Oral and Dental Health Polyclinics, Cinnah 7/5 Kavaklıdere, Ankara, Turkey
| | - Murat Akkocaoglu
- Associate Professor, Department of Oral Surgery, Faculty of Dentistry, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Kivanc Akca
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Hacettepe University, 06100 Sıhhiye, Ankara, Turkey
| |
Collapse
|
39
|
Chang JK, Chen CH, Huang KY, Wang GJ. Eight-year results of hydroxyapatite-coated hip arthroplasty. J Arthroplasty 2006; 21:541-6. [PMID: 16781407 DOI: 10.1016/j.arth.2005.04.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 04/03/2005] [Indexed: 02/01/2023] Open
Abstract
Ninety hips in 82 patients using Omnifit hydroxyapatite (HA)-coated prosthesis were followed for at least 7 years. All stems were stable at the final follow-up. However, aseptic loosening was found in 8 cups and 6 of them were revised. Two polyethylene wear were treated with inserts exchanged. The mechanical failure rate was 11.4% and the combined failure rate was 14.3% for HA-coated cup. Four other cups with wear and osteolysis without loosening or pain and 2 cups with polyethylene wear without osteolysis were still under observation. Our findings suggest that hip arthroplasties with HA coating on the smooth surface of a titanium cup is not reliable. The mid-term result of HA-coated stem is as good as that of porous-coated stem.
Collapse
Affiliation(s)
- Je-Ken Chang
- Department of Orthopedics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
40
|
Peraire C, Arias JL, Bernal D, Pou J, León B, Arañó A, Roth W. Biological stability and osteoconductivity in rabbit tibia of pulsed laser deposited hydroxylapatite coatings. J Biomed Mater Res A 2006; 77:370-9. [PMID: 16425242 DOI: 10.1002/jbm.a.30556] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A comparative study of the biological stability and the osteoconductivity of hydroxylapatite (HA) coatings produced by pulsed laser deposition (PLD) and plasma spraying (PS) was conducted. Three different implant groups were used: grit-blasted titanium rods coated with HA-PLD (2-microm-thick), grit-blasted titanium rods coated with HA-PS (50-microm-thick), and uncoated. Implantation took place into the proximal tibia of 12 mature New Zealand White rabbits for 24 weeks. Samples were evaluated using descriptive histology and histomorphometry. While HA-PS implants showed considerable instability and reduction in thickness after 24 weeks, but no statistical difference to the titanium group, the HA-PLD group showed a significant higher amount of bone apposition (Scheffé test, p<0.05) than the other two groups, without signs of degradation or dissolution. Remarkably, after 6 months, the almost intact thin pulsed laser deposited coating could be observed by electron microscopy in extended areas.
Collapse
Affiliation(s)
- C Peraire
- Centro de Investigación y Desarrollo Aplicado (CIDAsal), Polígono Industrial Santiga, Argenters, 6, E-08130 Sta. Perpetua de Mogoda, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Spoerke ED, Stupp SI. Synthesis of a poly(L-lysine)-calcium phosphate hybrid on titanium surfaces for enhanced bioactivity. Biomaterials 2005; 26:5120-9. [PMID: 15792538 DOI: 10.1016/j.biomaterials.2005.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 01/04/2005] [Indexed: 11/29/2022]
Abstract
Titanium has been a successful implant material owing to its excellent strength to weight ratio, toughness, and bioinert oxide surface. Significant progress has been made on the improvement of titanium's bioactivity by coating its oxide surface with calcium phosphates and bioactive molecules. Here, we report on the coating of titanium with a poly(L-lysine)-calcium phosphate hybrid material with a nanoscale texture. This hybrid coating was grown by first nucleating seed crystals of calcium phosphate, directly on the Ti surface and then exposing this surface to solutions containing Ca(2+), PO(4)(3-), and poly(L-lysine). The resultant hybrid coating was characterized by electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and elemental analysis. This material contained 14% by weight poly(L-lysine), and this organic component decreased greatly the dimensions of the surface features, thus enhancing surface area relative to the inorganic control. The highly textured hybrid material was more susceptible than the control to acidic and enzymatic degradation. The amino acid cysteine was covalently linked to the hybrid material, demonstrating the potential of this coating for further functionalization. These hybrid coatings may prove useful in enhancing the bioactivity of titanium.
Collapse
Affiliation(s)
- Erik D Spoerke
- Department of Materials Science and Engineering, Northwestern University, Evanston, 2220 Campus Dr., Illinois 60208, USA.
| | | |
Collapse
|
42
|
Spoerke ED, Murray NG, Li H, Brinson LC, Dunand DC, Stupp SI. A bioactive titanium foam scaffold for bone repair. Acta Biomater 2005; 1:523-33. [PMID: 16701832 DOI: 10.1016/j.actbio.2005.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022]
Abstract
While titanium has been clinically successful as an orthopedic or dental implant material, performance problems still persist related to implant-bone interfacial strength and mechanical modulus mismatch between titanium and tissue. We describe here the preparation of a titanium foam as a better mechanical match to tissue with surfaces attractive to bone cells through deposition of an organically-modified apatite layer (organoapatite). In a rotating bioreactor, these organoapatite-coated foams are successfully colonized by preosteoblastic cells. Finite element analyses suggest that ingrown tissue in these systems may improve both implant performance and tissue formation through load-sharing and stress distribution. The novel metal-ceramic-polymer hybrid materials described here hold great promise for bone tissue engineering.
Collapse
Affiliation(s)
- Erik D Spoerke
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
43
|
Cimerman M, Cör A, Ceh M, Kristan A, Pizem J, Tonin M. Microstructural analysis of implant-bone interface of hydroxyapatite-coated and uncoated Schanz screws. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:627-34. [PMID: 15965594 DOI: 10.1007/s10856-005-2533-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 11/18/2004] [Indexed: 05/03/2023]
Abstract
The aim of the study was to compare the pin-bone interface microstructural characteristics of hydroxyapatite-coated (HAC) and stainless steel Schanz screws after 2, 4 and 6 months of implantation in a sheep model. The microstructure and composition of the hydroxyapatite coating were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Twelve coated and 12 uncoated screws were implanted into both femora of three sheep, each sheep receiving eight screws. Specimens of polished bone with screws were examined with SEM and light microscope for morphometric analyses. The HAC was approx. 40 microm thick, the grain size ranged from 5 to 40 microm, with pores less than 20 microm. The atomic ratio of Ca/P was 1.62. SEM showed that the bone-implant contact was better with HAC than with uncoated implants. The ingrowth of the bone in the HAC was clearly seen. Morphometric analysis showed good bone-implant contact in 65.1 (+/-24.6)% in the HAC and 32.0 (+/-23.3)% in the uncoated group (p<0.001). Although the percentage of good contact increased with time for both groups, it was significantly higher for HAC screws. Our investigation demonstrated a time dependent improvement of implant-bone contact of the HAC compared to standard stainless steel implants in the chosen experimental conditions.
Collapse
Affiliation(s)
- M Cimerman
- Department of Traumatology, University Medical Centre, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
44
|
Fogarassy P, Cofino B, Millet P, Lodini A. Residual Stress in Hydroxyapatite Coating: Nonlinear Analysis and High-Energy Synchrotron Measurements. IEEE Trans Biomed Eng 2005; 52:1161-6. [PMID: 16041979 DOI: 10.1109/tbme.2005.847526] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The thermal deposition of hydroxyapatite (HA) on titanium alloy substrate (Ti-6A1-4V) leads to a structure that has very good osseointegration properties. However, clinical failures have been occasionally reported at the interface between substrate and coating. Lifetime is the main parameter in such prostheses; therefore, in order to improve their quality, it is necessary to evaluate the level of stresses near the interface. The high-energy synchrotron radiation combines the advantages of a bulk analysis and reduced volume of the gauge. The objective of our study was to calculate the residual stress using a nonlinear finite-element model and to measure residual stress level near the interface, in the hydroxyapatite coating and in titanium alloy substrate with a nondestructive and high-resolution experiment. The high-energy synchrotron radiation of the BM16 beam-line at ESRF (Grenoble-France) was used with a resolution of down to 10 micrometers. The experimental measurements validate the results found by means of nonlinear finite-element analysis of the plasma spraying induced stress.
Collapse
Affiliation(s)
- Paul Fogarassy
- LACM, Université de Reims Champagne-Ardenne, Reims 51687, France.
| | | | | | | |
Collapse
|
45
|
Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2005. [DOI: 10.1016/j.msec.2005.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Peter B, Pioletti DP, Laïb S, Bujoli B, Pilet P, Janvier P, Guicheux J, Zambelli PY, Bouler JM, Gauthier O. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone 2005; 36:52-60. [PMID: 15664002 DOI: 10.1016/j.bone.2004.10.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/23/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Despite total hip replacement (THR) gives generally satisfactory results, the quality of outcome in young patients is markedly decreased compared to the average THR outcome. For this population, pharmacological treatment with bisphosphonate would be beneficial to decrease the peri-implant osteolysis. However, as this population does not necessarily suffer from osteoporosis, a nonsystemic treatment would be preferable. Zoledronate was then grafted to hydroxyapatite (HA) coating of titanium implants. The implants were inserted in rat condyles with various zoledronate concentrations. A positive concentration-dependent effect was observed on the peri-implant bone density and on different histomorphometric parameters. Importantly for the outcome of the implants, the mechanical fixation was increased by the local presence of zoledronate. The obtained results open the way of an easy transformation of currently existing HA-coated implants by grafting bisphosphonate onto the coating in order to increase their service life in the patients.
Collapse
Affiliation(s)
- B Peter
- Bone Bioengineering Group, Laboratory of Orthopedic Research, Swiss Federal Institute of Technology Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Bashir A Zikria
- Department of Orthopaedic Surgery, Lenox Hill Hospital, 100 East 77th Street, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
48
|
Khor KA, Gu YW, Pan D, Cheang P. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings. Biomaterials 2004; 25:4009-17. [PMID: 15046891 DOI: 10.1016/j.biomaterials.2003.10.089] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA, Ti alloy and YSZ components.
Collapse
Affiliation(s)
- K A Khor
- School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Ave, Singapore 639798, Singapore.
| | | | | | | |
Collapse
|
49
|
Lee TM, Yang CY, Chang E, Tsai RS. Comparison of plasma-sprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings:In vivo study. ACTA ACUST UNITED AC 2004; 71:652-60. [PMID: 15505828 DOI: 10.1002/jbm.a.30190] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clinical use of plasma-sprayed hydroxyapatite (HA) coatings on metal implants has been widely adopted because the HA coating can achieve the firmly and directly biological fixation with the surrounding bone tissue. However, the long-term mechanical properties of HA coatings has been concern for the long-term clinical application. Previous research showed that the concept of adding ZrO2 as second phase to HA significantly increased the bonding strength of plasma-sprayed composite material. The present work aimed to explore the biological properties, including the histological responses and shear strength, between the plasma-sprayed HA and HA/ZrO2 coating, using the transcortical implant model in the femora of canines. After 6 and 12 weeks of implantation, the HA coating revealed the direct bone-to-coating contact by the backscattered electron images (BEIs) of scanning electron microscope (SEM), but the osseointegration was not observed at the surface of HA/ZrO2 coating. For new bone healing index (NBHI) and apposition index (AI), the values for HA implants were significantly higher than that for HA/ZrO2 coatings throughout all implant periods. After push-out test, the shear strength of HA-coated implants were statistically higher than HA/ZrO2 coated implants at 6- and 12-week implantation, and the failure mode of HA/ZrO2 coating was observed at the coating-bone interface by SEM. The results indicate that the firm fixation between bone and HA/ZrO2 has not been achieved even after 12-week implantation. Consequently, the addition of ZrO2 could improve the mechanical properties of coatings, while the biocompatibility was influenced by the different material characteristics of HA/ZrO2 coating compared to HA coatings.
Collapse
Affiliation(s)
- T M Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| | | | | | | |
Collapse
|
50
|
Cheng K, Weng W, Qu H, Du P, Shen G, Han G, Yang J, Ferreira JMF. Sol-gel preparation andin vitro test of fluorapatite/hydroxyapatite films. ACTA ACUST UNITED AC 2004; 69:33-7. [PMID: 15015207 DOI: 10.1002/jbm.b.20027] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fluorapatite/hydroxyapatite (FA/HA) films have been demonstrated to be a good alternative to pure hydroxyapatite (HA) ones in medical applications because of their bioactivity and relatively low solubility. In this study, Ca(NO(3))(2), P(2)O(5), and HPF(6) were used to prepare FA/HA films on Ti6Al4V substrate with the use of a sol-gel method. The F contents in the films could be tailored by adjusting the amount of HPF(6) added. The in vitro evaluation of the films was carried out in both SBF9# solution and TRIS buffer solution. The films with appropriate F contents showed a better ability to induce calcium phosphate deposition on their surfaces than either pure HA film and FA/HA films with even higher F content, as well as smaller dissolution amounts than HA film in TRIS buffer solution. Hence, the FA/HA films obtained in this work integrate both good bioactivity and stability, and could be a better choice for bioactive film on titanium alloys to produce high-quality implants.
Collapse
Affiliation(s)
- Kui Cheng
- Department of Material Science and Engineering, Zhejiang University Hangzhou, 310027, China
| | | | | | | | | | | | | | | |
Collapse
|