1
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Vahabi A, Er E, Aydoğdu S, Biçer EK. Conducting osteochondral injury model in rabbit knee: Pearls and pitfalls. MethodsX 2023; 11:102323. [PMID: 37637289 PMCID: PMC10450515 DOI: 10.1016/j.mex.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Osteochondral damage is a commonly encountered issue in the daily orthopedic practice and has been extensively researched across various areas, including tissue transplantations, tissue engineering products, stem cell applications, and cell culture studies. The absence of a universally accepted treatment as the gold standard for osteochondral damage indicates the necessity for further studies in this field in the future. Although the biomechanical characteristics of the rabbit knee do not perfectly mimic those of the human knee, experimental studies conducted on rabbit knees are considered the most practical experimental model for testing a well-constructed experimental hypothesis. Our article endeavors to impart our practical insights and experiences to researchers without experience whom seeking to design studies utilizing this model. We aim to offer valuable guidance for preoperative, operative, and postoperative considerations. •Rabbits used in osteochondral healing models should be at least 4 months old or older. Inducing damage in the trochlea is a well-established technique and relatively easy to apply.•Do not use pointy ended drills as it might create uneven damage. Do not place applied treatment agent in inappropriate level in relation to the surrounding cartilage surface.
Collapse
Affiliation(s)
- Arman Vahabi
- Department of Orthopaedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| | - Erdem Er
- Department of Orthopaedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| | - Semih Aydoğdu
- Department of Orthopaedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| | - Elcil Kaya Biçer
- Department of Orthopaedics and Traumatology, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
3
|
Abe K, Tsumaki N. Regeneration of joint surface defects by transplantation of allogeneic cartilage: application of iPS cell-derived cartilage and immunogenicity. Inflamm Regen 2023; 43:56. [PMID: 37964383 PMCID: PMC10644611 DOI: 10.1186/s41232-023-00307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Because of its poor intrinsic repair capacity, articular cartilage seldom heals when damaged. MAIN BODY Regenerative treatment is expected for the treatment of articular cartilage damage, and allogeneic chondrocytes or cartilage have an advantage over autologous chondrocytes, which are limited in number. However, the presence or absence of an immune response has not been analyzed and remains controversial. Allogeneic-induced pluripotent stem cell (iPSC)-derived cartilage, a new resource for cartilage regeneration, reportedly survived and integrated with native cartilage after transplantation into chondral defects in knee joints without immune rejection in a recent primate model. Here, we review and discuss the immunogenicity of chondrocytes and the efficacy of allogeneic cartilage transplantation, including iPSC-derived cartilage. SHORT CONCLUSION Allogeneic iPSC-derived cartilage transplantation, a new therapeutic option, could be a good indication for chondral defects, and the development of translational medical technology for articular cartilage damage is expected.
Collapse
Affiliation(s)
- Kengo Abe
- Department of Tissue Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Tissue Biochemistry, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Fonseca Tavares WL, Diniz Viana AC, Lucas Ferreira MV, da Costa Ferreira G, da Costa Ferreira I, Alves de Mesquita R, Amaral RR. Guided tissue regeneration in class IV external cervical resorption: A case report. J Endod 2023:S0099-2399(23)00284-4. [PMID: 37245653 DOI: 10.1016/j.joen.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
External cervical resorption (ECR) is a type of dental resorption that originates from the loss of the cementum's protective layer. The direct exposure of dentin to the periodontal ligament may lead to the invasion of clastic cells through an entry point on the external root surface into the dentinal tissue, causing resorption. Depending on the extension of ECR, different treatments are proposed. Although the literature presents distinct materials and methods for restoring ECR areas, an existing gap is related to care in the treatment of the supporting periodontal tissue. Guided tissue regeneration/guided bone regeneration (GTR/GBR) includes the stimulation of bone formation in bone defects using different types of membranes (resorbable and non-resorbable), regardless of its association with bone substitutes or grafts. Despite the benefits of guided bone regeneration, the application of this method in cases of ECR is still under-explored in the literature. Thus, the present case report uses GTR with xenogenic material and polydioxanone (PDO) membrane in a case of class IV ECR. The success of the present case is related to the correct diagnosis and treatment plan. Complete debridement of resorption areas and restoration with biodentine were effective in tooth repair. GTR contributed to the stabilization of supporting periodontal tissues. The association of the xenogeneic bone graft with the PDO membrane proved to be a viable option for restoring the health of the periodontium.
Collapse
Affiliation(s)
- Warley Luciano Fonseca Tavares
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Ana Cecília Diniz Viana
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Gabriela da Costa Ferreira
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella da Costa Ferreira
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Alves de Mesquita
- Department of Clinic, Pathology and Surgery, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Rodrigues Amaral
- College of Medicine and Dentistry, Division of Tropical Health and Medicine, James Cook University, Australia
| |
Collapse
|
5
|
Saska S, Pilatti L, Silva ESDS, Nagasawa MA, Câmara D, Lizier N, Finger E, Dyszkiewicz Konwińska M, Kempisty B, Tunchel S, Blay A, Shibli JA. Polydioxanone-Based Membranes for Bone Regeneration. Polymers (Basel) 2021; 13:polym13111685. [PMID: 34064251 PMCID: PMC8196877 DOI: 10.3390/polym13111685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Resorbable synthetic and natural polymer-based membranes have been extensively studied for guided tissue regeneration. Alloplastic biomaterials are often used for tissue regeneration due to their lower immunoreactivity when compared with allogeneic and xenogeneic materials. Plenum® Guide is a synthetic membrane material based on polydioxanone (PDO), whose surface morphology closely mimics the extracellular matrix. In this study, Plenum® Guide was compared with collagen membranes as a barrier material for bone-tissue regeneration in terms of acute and subchronic systemic toxicity. Moreover, characterizations such as morphology, thermal analysis (Tm = 107.35 °C and crystallinity degree = 52.86 ± 2.97 %, final product), swelling (thickness: 0.25 mm ≅ 436% and 0.5 mm ≅ 425% within 24 h), and mechanical tests (E = 30.1 ± 6.25 MPa; σ = 3.92 ± 0.28 MPa; ε = 287.96 ± 34.68%, final product) were performed. The in vivo results revealed that the PDO membranes induced a slightly higher quantity of newly formed bone tissue than the control group (score: treated group = 15, control group = 13) without detectable systemic toxicity (clinical signs and evaluation of the membranes after necropsy did not result in differences between groups, i.e., non-reaction -> tissue-reaction index = 1.3), showing that these synthetic membranes have the essential characteristics for an effective tissue regeneration. Human adipose-derived stem cells (hASCs) were seeded on PDO membranes; results demonstrated efficient cell migration, adhesion, spread, and proliferation, such that there was a slightly better hASC osteogenic differentiation on PDO than on collagen membranes. Hence, Plenum® Guide membranes are a safe and efficient alternative for resorbable membranes for tissue regeneration.
Collapse
Affiliation(s)
- Sybele Saska
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| | - Livia Pilatti
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Edvaldo Santos de Sousa Silva
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Magda Aline Nagasawa
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
| | - Diana Câmara
- Nicell—Pesquisa e Desenvolvimento Ltd.a, 2721 Av. Indianápolis, São Paulo 04063-005, Brazil;
| | - Nelson Lizier
- CCB—Centro de Criogenia Brasil, 1861 Av. Indianápolis, São Paulo 04063-003, Brazil;
| | - Eduardo Finger
- Hospital Israelita Albert Einstein, 627 Av. Albert Einstein, São Paulo 05652-900, Brazil;
| | | | - Bartosz Kempisty
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 87-100 Torun, Poland
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695-7608, USA
| | - Samy Tunchel
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., 640 Ain Ata, Jundiaí 13212-213, Brazil; (L.P.); (E.S.d.S.S.); (M.A.N.); (S.T.); (A.B.)
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07023-070, Brazil
- Correspondence: (S.S.); (J.A.S.); Tel.: +55-11-3109-9045 (J.A.S.)
| |
Collapse
|
6
|
|
7
|
Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, Lu T. Exquisite design of injectable Hydrogels in Cartilage Repair. Theranostics 2020; 10:9843-9864. [PMID: 32863963 PMCID: PMC7449920 DOI: 10.7150/thno.46450] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Cartilage damage is still a threat to human beings, yet there is currently no treatment available to fully restore the function of cartilage. Recently, due to their unique structures and properties, injectable hydrogels have been widely studied and have exhibited high potential for applications in therapeutic areas, especially in cartilage repair. In this review, we briefly introduce the properties of cartilage, some articular cartilage injuries, and now available treatment strategies. Afterwards, we propose the functional and fundamental requirements of injectable hydrogels in cartilage tissue engineering, as well as the main advantages of injectable hydrogels as a therapy for cartilage damage, including strong plasticity and excellent biocompatibility. Moreover, we comprehensively summarize the polymers, cells, and bioactive molecules regularly used in the fabrication of injectable hydrogels, with two kinds of gelation, i.e., physical and chemical crosslinking, which ensure the excellent design of injectable hydrogels for cartilage repair. We also include novel hybrid injectable hydrogels combined with nanoparticles. Finally, we conclude with the advances of this clinical application and the challenges of injectable hydrogels used in cartilage repair.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zeiyan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University School of Life Sciences
| |
Collapse
|
8
|
Mg-Based Metallic Glass-Polymer Composites: Investigation of Structure, Thermal Properties, and Biocompatibility. METALS 2020. [DOI: 10.3390/met10070867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, the biomedical applicability and physical properties of magnesium-based metallic glass/polycaprolactone (PCL) composites are explored. The composites were fabricated via mechanical alloying and subsequent coextrusion. The coextrusion process was carried out at a temperature near to the supercooled liquid region of the metallic glass and the viscous region of the polymer. The structures, as well as thermal and mechanical properties of the obtained samples were characterized, and in vivo investigations were undertaken. The composite samples possess acceptable thermal and mechanical properties. Tensile tests indicate the ability of the composites to withstand more than 100% deformation. In vivo studies reveal that the composites are biologically compatible and could be promising for biomedical applications.
Collapse
|
9
|
Miranda CS, Ribeiro ARM, Homem NC, Felgueiras HP. Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics (Basel) 2020; 9:E174. [PMID: 32290536 PMCID: PMC7235791 DOI: 10.3390/antibiotics9040174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 11/24/2022] Open
Abstract
Nowadays, tissue engineering is described as an interdisciplinary field that combines engineering principles and life sciences to generate implantable devices to repair, restore and/or improve functions of injured tissues. Such devices are designed to induce the interaction and integration of tissue and cells within the implantable matrices and are manufactured to meet the appropriate physical, mechanical and physiological local demands. Biodegradable constructs based on polymeric fibers are desirable for tissue engineering due to their large surface area, interconnectivity, open pore structure, and controlled mechanical strength. Additionally, biodegradable constructs are also very sought-out for biomolecule delivery systems with a target-directed action. In the present review, we explore the properties of some of the most common biodegradable polymers used in tissue engineering applications and biomolecule delivery systems and highlight their most important uses.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (C.S.M.); (A.R.M.R.); (N.C.H.)
| |
Collapse
|
10
|
Yang Y, Yang G, Song Y, Xu Y, Zhao S, Zhang W. 3D Bioprinted Integrated Osteochondral Scaffold-Mediated Repair of Articular Cartilage Defects in the Rabbit Knee. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00481-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Matsushita R, Nakasa T, Ishikawa M, Tsuyuguchi Y, Matsubara N, Miyaki S, Adachi N. Repair of an Osteochondral Defect With Minced Cartilage Embedded in Atelocollagen Gel: A Rabbit Model. Am J Sports Med 2019; 47:2216-2224. [PMID: 31206306 DOI: 10.1177/0363546519854372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is often performed for large cartilage defects. Because this technique has several disadvantages, including the need for second-stage surgery, cartilage repair using minced cartilage has been suggested. However, this technique could be improved using 3-dimensional scaffolds. PURPOSE To examine the ability of chondrocyte migration and proliferation from minced cartilage in atelocollagen gel in vitro and evaluate the repairable potential of minced cartilage embedded in atelocollagen gel covered with a periosteal flap in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS Minced cartilage or isolated chondrocytes from rabbits were embedded in atelocollagen gel and cultured for 3 weeks. Chondrocyte proliferation and matrix production were evaluated in vitro. An osteochondral defect at the trochlear groove was created in 56 rabbits, which were divided into 4 groups. The defect was left empty (defect group), filled with allogenic minced cartilage (minced cartilage group), filled with isolated allogenic chondrocytes embedded in atelocollagen gel (ACI group), or filled with atelocollagen gel (atelocollagen with periosteal flap group). At 4, 12, and 24 weeks after surgery, repair of the defect was evaluated in these 4 groups. RESULTS In vitro, the number of chondrocytes and abundant matrix on the surface of the gel significantly increased in the minced cartilage group compared with the ACI group (P < .05). In vivo, the minced cartilage and ACI groups showed good cartilage repair compared with the empty defect and atelocollagen/periosteal flap groups (P < .05); there was no significant difference in the Pineda score between the minced cartilage and ACI groups. CONCLUSION Minced cartilage in atelocollagen gel had good chondrocyte migration and proliferation abilities in vitro, and osteochondral defects were well repaired by implanting minced cartilage embedded in the atelocollagen gel in vivo. Implantation of minced cartilage embedded in atelocollagen gel showed good cartilage repair equivalent to ACI. CLINICAL RELEVANCE Implantation of minced cartilage embedded in atelocollagen gel as a 1-step procedure has outcomes similar to those of ACI but is cheaper and more convenient than ACI.
Collapse
Affiliation(s)
- Ryosuke Matsushita
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Yusuke Tsuyuguchi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Norimasa Matsubara
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hirosima-shi, Hiroshima, Japan
| |
Collapse
|
12
|
Perrier-Groult E, Pérès E, Pasdeloup M, Gazzolo L, Duc Dodon M, Mallein-Gerin F. Evaluation of the biocompatibility and stability of allogeneic tissue-engineered cartilage in humanized mice. PLoS One 2019; 14:e0217183. [PMID: 31107916 PMCID: PMC6527235 DOI: 10.1371/journal.pone.0217183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage (AC) has poor capacities of regeneration and lesions often lead to osteoarthritis. Current AC reconstruction implies autologous chondrocyte implantation which requires tissue sampling and grafting. An alternative approach would be to use scaffolds containing off-the-shelf allogeneic human articular chondrocytes (HACs). To investigate tolerance of allogeneic HACs by the human immune system, we developed a humanized mouse model implanted with allogeneic cartilage constructs generated in vitro. A prerequisite of the study was to identify a scaffold that would not provoke inflammatory reaction in host. Therefore, we first compared the response of hu-mice to two biomaterials used in regenerative medicine, collagen sponge and agarose hydrogel. Four weeks after implantation in hu-mice, acellular collagen sponges, but not acellular agarose hydrogels, showed positive staining for CD3 (T lymphocytes) and CD68 (macrophages), suggesting that collagen scaffold elicits weak inflammatory reaction. These data led us to deepen our evaluation of the biocompatibility of allogeneic tissue-engineered cartilage by using agarose as scaffold. Agarose hydrogels were combined with allogeneic HACs to reconstruct cartilage in vitro. Particular attention was paid to HLA-A2 compatibility between HACs to be grafted and immune human cells of hu-mice: HLA-A2+ or HLA-A2- HACs agarose hydrogels were cultured in the presence of a chondrogenic cocktail and implanted in HLA-A2+ hu-mice. After four weeks implantation and regardless of the HLA-A2 phenotype, chondrocytes were well-differentiated and produced cartilage matrix in agarose. In addition, no sign of T-cell or macrophage infiltration was seen in the cartilaginous constructs and no significant increase in subpopulations of T lymphocytes and monocytes was detected in peripheral blood and spleen. We show for the first time that humanized mouse represents a useful model to investigate human immune responsiveness to tissue-engineered cartilage and our data together indicate that allogeneic cartilage constructs can be suitable for cartilage engineering.
Collapse
Affiliation(s)
- Emeline Perrier-Groult
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
- * E-mail:
| | - Eléonore Pérès
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| | - Louis Gazzolo
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Madeleine Duc Dodon
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure (ENS) de Lyon, INSERM U1210, CNRS UMR5239, Lyon, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI), CNRS-UMR5305, Lyon, France
| |
Collapse
|
13
|
Yodmuang S, Guo H, Brial C, Warren RF, Torzilli PA, Chen T, Maher SA. Effect of interface mechanical discontinuities on scaffold-cartilage integration. J Orthop Res 2019; 37:845-854. [PMID: 30690798 PMCID: PMC6957060 DOI: 10.1002/jor.24238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
A consistent lack of lateral integration between scaffolds and adjacent articular cartilage has been exhibited in vitro and in vivo. Given the mismatch in mechanical properties between scaffolds and articular cartilage, the mechanical discontinuity that occurs at the interface has been implicated as a key factor, but remains inadequately studied. Our objective was to investigate how the mechanical environment within a mechanically loaded scaffold-cartilage construct might affect integration. We hypothesized that the magnitude of the mechanical discontinuity at the scaffold-cartilage interface would be related to decreased integration. To test this hypothesis, chondrocyte seeded scaffolds were embedded into cartilage explants, pre-cultured for 14 days, and then mechanically loaded for 28 days at either 1N or 6N of applied load. Constructs were kept either peripherally confined or unconfined throughout the duration of the experiment. Stress, strain, fluid flow, and relative displacements at the cartilage-scaffold interface and within the scaffold were quantified using biphasic, inhomogeneous finite element models (bFEMs). The bFEMs indicated compressive and shear stress discontinuities occurred at the scaffold-cartilage interface for the confined and unconfined groups. The mechanical strength of the scaffold-cartilage interface and scaffold GAG content were higher in the radially confined 1N loaded groups. Multivariate regression analyses identified the strength of the interface prior to the commencement of loading and fluid flow within the scaffold as the main factors associated with scaffold-cartilage integration. Our study suggests a minimum level of scaffold-cartilage integration is needed prior to the commencement of loading, although the exact threshold has yet to be identified. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Supansa Yodmuang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Hongqiang Guo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York 10021 New York
| | - Russell F. Warren
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York
| | - Peter A. Torzilli
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Tony Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Suzanne A. Maher
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York,,Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York 10021 New York
| |
Collapse
|
14
|
Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 2018; 82:1-11. [PMID: 30321630 DOI: 10.1016/j.actbio.2018.10.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
Abstract
In the U.S., 30% of adults suffer joint pain, most commonly in the knee, which severely limits mobility and is often attributed to injury of cartilage and underlying bone in the joint. Current treatment methods such as microfracture result in less resilient fibrocartilage with eventual failure; autografting can cause donor site morbidity and poor integration. To overcome drawbacks in treatment, tissue engineers can design cell-instructive biomimetic scaffolds using biocompatible materials as alternate therapies for osteochondral defects. Nanofibrous poly (l-lactic acid) (PLLA) scaffolds of uniform, spherical, interconnected and well-defined pore sizes that are fabricated using a thermally-induced phase separation and sugar porogen template method create an extracellular matrix-like environment which facilitates cell adhesion and proliferation. Herein we report that chondrogenesis and endochondral ossification of rabbit and human bone marrow stromal cells (BMSCs) can be controlled by scaffold pore architecture, particularly pore size. Small-pore scaffolds support enhanced chondrogenic differentiation in vitro and cartilage formation in vivo compared to large-pore scaffolds. Endochondral ossification is prevented in scaffolds with very small pore sizes; pore interconnectivity is critical to promote capillary ingrowth for mature bone formation. These results provide a novel strategy to control tissue regenerative processes by tunable architecture of macroporous nanofibrous scaffolds. STATEMENT OF SIGNIFICANCE: Progress in understanding the relationship between cell fate and architectural features of tissue engineering scaffolds is critical for engineering physiologically functional tissues. Sugar porogen template scaffolds have uniform, spherical, highly interconnected macropores. Tunable pore-size guides the fate of bone marrow stromal cells (BMSCs) towards chondrogenesis and endochondral ossification, and is a critical design parameter to mediate neotissue vascularization. Preventing vascularization favors a chondrogenic cell fate while allowing vascularization results in endochondral ossification and mineralized bone formation. These results provide a novel strategy to control tissue regenerative processes by tunable architecture of macroporous nanofibrous scaffolds.
Collapse
|
15
|
Ni Y, Jiang Y, Wang K, Shao Z, Chen X, Sun S, Yu H, Li W. Chondrocytes cultured in silk-based biomaterials maintain function and cell morphology. Int J Artif Organs 2018; 42:31-41. [PMID: 30376753 DOI: 10.1177/0391398818806156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE: To characterize the morphology of chondrocytes and the expression and secretion of active collagen II by these cells cultured within a regenerated silk fibroin film. Silk fibroin film cytocompatibility and the effect of silk fibroin on chondrocytes in vitro were also evaluated. METHODS: Chondrocytes were transfected with a lentivirus containing a green fluorescent protein marker and cultured within a regenerated silk fibroin film. Effects on chondrocyte adhesion, growth, and expression of functional collagen II were assessed in vitro by analysis with immunofluorescent histochemistry and laser scanning confocal microscopy. RESULTS: The results of this study showed that the regenerated silk fibroin film had no cytotoxic effect on chondrocytes. The regenerated silk fibroin film facilitated the adhesion of chondrocytes with typical morphology. Chondrocytes cultured within silk fibroin films exhibited the expression of collagen II in vitro. CONCLUSION: Regenerated silk fibroin film was found to be an excellent biomaterial with good cytocompatibility for chondrocytes, because these cells remained functional and maintained normal cell morphology when cultured in silk-based biomaterials. These results suggest that silk-based chondrocyte biomaterial complexes may provide a feasible and functional biomaterial for repairing clinical cartilage defects.
Collapse
Affiliation(s)
- Yusu Ni
- 1 Otology and Skull Base Surgery Department, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China.,2 Department of ENT, Kashgar Prefecture Second People's Hospital of Xinjiang Uygur Autonomous Region, Kashgar, China
| | - Yi Jiang
- 3 Department of ophthalmology, Shanghai Xin Shi Jie Eye Hospital, Shanghai, China
| | - Kaishi Wang
- 1 Otology and Skull Base Surgery Department, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhengzhong Shao
- 4 Department of Macromolecular Science and The Key Laboratory of Molecular Engineering of Polymer of MOE, Fudan University, Shanghai, China
| | - Xin Chen
- 4 Department of Macromolecular Science and The Key Laboratory of Molecular Engineering of Polymer of MOE, Fudan University, Shanghai, China
| | - Shan Sun
- 5 NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huiqian Yu
- 1 Otology and Skull Base Surgery Department, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, China
| | - Wen Li
- 5 NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Park IS, Jin RL, Oh HJ, Truong MD, Choi BH, Park SH, Park DY, Min BH. Sizable Scaffold-Free Tissue-Engineered Articular Cartilage Construct for Cartilage Defect Repair. Artif Organs 2018; 43:278-287. [PMID: 30374978 DOI: 10.1111/aor.13329] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
This study introduces an implantable scaffold-free cartilage tissue construct (SF) that is composed of chondrocytes and their self-produced extracellular matrix (ECM). Chondrocytes were grown in vitro for up to 5 weeks and subjected to various assays at different time points (1, 7, 21, and 35 days). For in vivo implantation, full-thickness defects (n = 5) were manually created on the trochlear groove of the both knees of rabbits (16-week old) and 3 week-cultured SF construct was implanted as an allograft for a month. The left knee defects were implanted with 1, 7, and 21 days in vitro cultured scaffold-free engineered cartilages. (group 2, 3, and 4, respectively). The maturity of the engineered cartilages was evaluated by histological, chemical and mechanical assays. The repair of damaged cartilages was also evaluated by gross images and histological observations at 4, 8, and 12 weeks postsurgery. Although defect of groups 1, 2, and 3 were repaired with fibrocartilage tissues, group 4 (21 days) showed hyaline cartilage in the histological observation. In particular, mature matrix and columnar organization of chondrocytes and highly expressed type II collagen were observed only in 21 days in vitro cultured SF cartilage (group 4) at 12 weeks. As a conclusion, cartilage repair with maturation was recapitulated when implanted the 21 day in vitro cultured scaffold-free engineered cartilage. When implanting tissue-engineered cartilage, the maturity of the cartilage tissue along with the cultivation period can affect the cartilage repair.
Collapse
Affiliation(s)
- In-Su Park
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea
| | - Ri Long Jin
- Department of Orthopaedic Surgery, Ajou University, Suwon, Korea
| | - Hyun Ju Oh
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical Sciences, Inha University, Incheon, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea.,Department of Orthopaedic Surgery, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical center, Suwon, Korea.,Department of Orthopaedic Surgery, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
17
|
Choi S, Kim GM, Maeng YH, Kang H, Teong CT, Lee EE, Yoo SJ, Dlima DD, Kim MK. Autologous Bone Marrow Cell Stimulation and Allogenic Chondrocyte Implantation for the Repair of Full-Thickness Articular Cartilage Defects in a Rabbit Model. Cartilage 2018; 9:402-409. [PMID: 28393539 PMCID: PMC6139584 DOI: 10.1177/1947603517701228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the results of autologous bone marrow cell stimulation and allogenic chondrocyte implantation using 3-dimensional gel-type fibrin matrix in an animal model. DESIGN Eighteen rabbits were divided into 2 treatment groups. One group was treated with a microfracture and covering of it with gel-type fibrin (AutoBMS; n = 9), and the other group was treated with allogenic chondrocytes mixed gel-type fibrin at the cartilage defect (AlloCI; n = 9). The control group was untreated cartilage defect at the other side knee of each object. Twelve weeks after treatment, the cartilage was evaluated using the International Cartilage Repair Society (ICRS) scoring system, immunohistochemical staining, and modified O'Driscoll grading system. RESULTS The ICRS scores were similar in the AutoBMS (9.44 ± 2.44) and the AlloCI (9.33 ± 1.67) groups ( P < 0.05). Immunohistochemical staining confirmed higher expression of cartilaginous collagen for both groups. The average difference (AutoBMS, 31.89 ± 6.54; AlloCI, 32.89 ± 5.25) in the modified O'Driscoll scores appeared to be nonsignificant ( P > 0.05); however, both treatment groups showed significantly higher scores with respect to their control group (18.45 ± 1.65; 18.97 ± 1.58) ( P < 0.05). CONCLUSION This experimental study suggests autologous bone marrow cells stimulation and implantation of allogenic chondrocytes are both useful methodologies for regenerating hyaline-like cartilage in full-thickness cartilage defects in animal model.
Collapse
Affiliation(s)
- Sungwook Choi
- Department of Orthopedic Surgery, Jeju National University, Jeju, Republic of Korea,Sungwook Choi, Department of Orthopedic Surgery, Jeju National University, Jeju 690-756, Republic of Korea.
| | - Gyeong Min Kim
- Department of Orthopedic Surgery, Jeju National University, Jeju, Republic of Korea
| | - Young Hee Maeng
- Department of Pathology, Jeju National University, Jeju, Republic of Korea
| | - Hyunseong Kang
- Department of Orthopedic Surgery, Jeju National University, Jeju, Republic of Korea
| | - Chen Tai Teong
- Department of Orthopedic Surgery, Jeju National University, Jeju, Republic of Korea
| | - Emily E. Lee
- Shiley Center for Orthopaedic Research & Education at Scripps Clinic, La Jolla, CA, USA
| | - Seung Jin Yoo
- Department of Orthopedic Surgery, Jeju National University, Jeju, Republic of Korea
| | - Darryl D. Dlima
- Shiley Center for Orthopaedic Research & Education at Scripps Clinic, La Jolla, CA, USA
| | - Myung Ku Kim
- Department of Orthopedic Surgery, Inha University Hospital, Incheon, Republic of Korea
| |
Collapse
|
18
|
Wang KH, Wan R, Chiu LH, Tsai YH, Fang CL, Bowley JF, Chen KC, Shih HN, Lai WFT. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model. PLoS One 2018; 13:e0196779. [PMID: 29746554 PMCID: PMC5945026 DOI: 10.1371/journal.pone.0196779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D)-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage) and neoRAT (neo-rat cartilage) constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.
Collapse
Affiliation(s)
- Kuo-Hwa Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, ROC
- Department of Obstetrics and Gynecology, Chung Kang branch, Cheng Ching Hospital, Taichung, Taiwan, ROC
| | - Richard Wan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, ROC
| | - Li-Hsuan Chiu
- Department of Research, Taipei Medical University-Shaung-Ho Hospital, Taipei, Taiwan, ROC
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States of America
| | - Yu-Hui Tsai
- Department of Research, Taipei Medical University-Shaung-Ho Hospital, Taipei, Taiwan, ROC
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - John F. Bowley
- Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, United States of America
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, ROC
| | - Hsin-Nung Shih
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou Taoyuan, Taiwan, ROC
- * E-mail: (HNS); (WFTL)
| | - Wen-Fu Thomas Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, ROC
- Department of Research, Taipei Medical University-Shaung-Ho Hospital, Taipei, Taiwan, ROC
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States of America
- * E-mail: (HNS); (WFTL)
| |
Collapse
|
19
|
Pulkkinen H, Tiitu V, Valonen P, Hämäläinen ER, Lammi M, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs 2018; 31:960-9. [DOI: 10.1177/039139880803101106] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
Collapse
Affiliation(s)
- H.J. Pulkkinen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - V. Tiitu
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - P. Valonen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - E.-R. Hämäläinen
- Bioprocess Engineering Laboratory, University of Oulu, Oulu - Finland
| | - M.J. Lammi
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio - Finland
| | - I. Kiviranta
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki - Finland
| |
Collapse
|
20
|
Kudva AK, Luyten FP, Patterson J. Initiating human articular chondrocyte re-differentiation in a 3D system after 2D expansion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:156. [PMID: 28875425 PMCID: PMC5585276 DOI: 10.1007/s10856-017-5968-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Cartilage damage affects a large population via acute and chronic injury and disease. Since native cartilage does not self-renew, cartilage tissue engineering has gained traction as a potential treatment. However, a limiting factor is that the primary cell type in cartilage, the articular chondrocyte, tends to de-differentiate when grown on 2D surfaces for in vitro expansion. Thus, 3D systems are being developed and used to counter this loss of chondrogenic capabilities. We hypothesize that a 3D matrix that can be remodeled may be more supportive of the chondrogenic phenotype of encapsulated articular chondrocytes than a 2D surface and may allow for the re-differentiation of chondrocytes after 2D expansion. Hence, in this study, enzymatically degradable polyethylene glycol (PEG) hydrogels containing two different protease degradable peptide segments, with different degradation rates, were tested in combination with chondrogenic medium as a 3D in vitro culture system to better recapitulate the native environment of human articular chondrocytes (hACs). In addition, the effect of incorporation of the integrin binding ligand Arg-Gly-Asp (RGD) in the hydrogels was explored. Hydrogels crosslinked with a slower degrading crosslinker and not functionalized with RGD maintained hAC viability and led to increased GAG production and chondrogenic gene expression over time, suggesting that this system can initiate hAC re-differentiation after 2D expansion.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P.O. box 2450, Leuven, 3001, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P.O. box 2450, Leuven, 3001, Belgium.
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, P.O. box 813, Leuven, 3000, Belgium.
| |
Collapse
|
21
|
Zapata-Cornelio FY, Day GA, Coe RH, Sikora SNF, Wijayathunga VN, Tarsuslugil SM, Mengoni M, Wilcox RK. Methodology to Produce Specimen-Specific Models of Vertebrae: Application to Different Species. Ann Biomed Eng 2017; 45:2451-2460. [PMID: 28744839 PMCID: PMC5622177 DOI: 10.1007/s10439-017-1883-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022]
Abstract
Image-based continuum-level finite element models have been used for bones to evaluate fracture risk and the biomechanical effects of diseases and therapies, capturing both the geometry and tissue mechanical properties. Although models of vertebrae of various species have been developed, an inter-species comparison has not yet been investigated. The purpose of this study was to derive species-specific modelling methods and compare the accuracy of image-based finite element models of vertebrae across species. Vertebral specimens were harvested from porcine (N = 12), ovine (N = 13) and bovine (N = 14) spines. The specimens were experimentally loaded to failure and apparent stiffness values were derived. Image-based finite element models were generated reproducing the experimental protocol. A linear relationship between the element grayscale and elastic modulus was calibrated for each species matching in vitro and in silico stiffness values, and validated on independent sets of models. The accuracy of these relationships were compared across species. Experimental stiffness values were significantly different across species and specimen-specific models required species-specific linear relationship between image grayscale and elastic modulus. A good agreement between in vitro and in silico values was achieved for all species, reinforcing the generality of the developed methodology.
Collapse
Affiliation(s)
- Fernando Y Zapata-Cornelio
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Gavin A Day
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth H Coe
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Sebastien N F Sikora
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Vithanage N Wijayathunga
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Sami M Tarsuslugil
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Marlène Mengoni
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth K Wilcox
- School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
22
|
Tallheden T, van der Lee J, Brantsing C, Månsson JE, Sjögren-Jansson E, Lindahl A. Human Serum for Culture of Articular Chondrocytes. Cell Transplant 2017; 14:469-79. [PMID: 16285255 DOI: 10.3727/000000005783982909] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the field of cell and tissue engineering, culture expansion of human cells in monolayer plays an important part. Traditionally, cell cultures have been supplemented with serum to support attachment and proliferation, but serum is a potential source of foreign protein contamination and viral protein transmission. In this study, we evaluated the use of human serum for experimental human articular chondrocyte expansion and to develop a method for preparation of large volumes of high-quality human serum from healthy blood donors. Human autologous serum contained high levels of epidermal-derived growth factor and platelet-derived growth factor-AB and supported proliferation up to 7 times higher than FCS in primary chondrocyte cultures. By letting the coagulation take place in a commercially available transfusion bag overnight, up to 250 ml of growth factor-rich human serum could be obtained from one donor. The allogenic human serum supported high proliferation rate without loosing expression of cartilage-specific genes. The expanded chondrocytes were able to redifferentiate and form cartilage matrix in comparable amounts to autologous serums. In conclusion, the transfusion bags allow preparation of large volumes of growth factor-rich human serum with the capacity to support in vitro cell expansion. The data further indicate that by controlling the coagulation process there are possibilities of optimizing the release of growth factors for other emerging cell therapies.
Collapse
Affiliation(s)
- Tommi Tallheden
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.
| | | | | | | | | | | |
Collapse
|
23
|
Moskalewski S, Osiecka-Iwan A, Hyc A. Cartilage Produced after Transplantation of Syngeneic Chondrocytes is Rejected in Rats Presensitized with Allogeneic Chondrocytes. Cell Transplant 2017. [DOI: 10.3727/000000001783986350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Stanislaw Moskalewski
- Department of Histology and Embryology, Medical University of Warsaw, Pl-02004 Warsaw, Poland
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Pl-02004 Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Pl-02004 Warsaw, Poland
| |
Collapse
|
24
|
Prolonged release of TGF-β from polyelectrolyte nanoparticle loaded macroporous chitin-poly(caprolactone) scaffold for chondrogenesis. Int J Biol Macromol 2016; 93:1402-1409. [DOI: 10.1016/j.ijbiomac.2016.03.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/14/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
|
25
|
Abstract
There is substantial need for the replacement of tissues in the craniofacial complex due to congenital defects, disease, and injury. The field of tissue engineering, through the application of engineering and biological principles, has the potential to create functional replacements for damaged or pathologic tissues. Three main approaches to tissue engineering have been pursued: conduction, induction by bioactive factors, and cell transplantation. These approaches will be reviewed as they have been applied to key tissues in the craniofacial region. While many obstacles must still be overcome prior to the successful clinical restoration of tissues such as skeletal muscle and the salivary glands, significant progress has been achieved in the development of several tissue equivalents, including skin, bone, and cartilage. The combined technologies of gene therapy and drug delivery with cell transplantation will continue to increase treatment options for craniofacial cosmetic and functional restoration.
Collapse
Affiliation(s)
- E Alsberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109-2136, USA
| | | | | |
Collapse
|
26
|
Zhao X, Papadopoulos A, Ibusuki S, Bichara DA, Saris DB, Malda J, Anseth KS, Gill TJ, Randolph MA. Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels. BMC Musculoskelet Disord 2016; 17:245. [PMID: 27255078 PMCID: PMC4891826 DOI: 10.1186/s12891-016-1100-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/26/2016] [Indexed: 12/04/2022] Open
Abstract
Background Injuries to the human native cartilage tissue are particularly problematic because cartilage has little to no ability to heal or regenerate itself. Employing a tissue engineering strategy that combines suitable cell sources and biomimetic hydrogels could be a promising alternative to achieve cartilage regeneration. However, the weak mechanical properties may be the major drawback to use fully degradable hydrogels. Besides, most of the fully degradable hydrogels degrade too fast to permit enough extracellular matrix (ECM) production for neocartilage formation. In this study, we demonstrated the feasibility of neocartilage regeneration using swine articular chondrocytes photoencapsualted into poly (ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels composed of different degradation profiles: degradable (PEG-LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 50/50, 60/40, 70/30, 80/20, and 90/10. Methods Articular chondrocytes were isolated enzymatically from juvenile Yorkshire swine cartilage. 6 × 107 cells cells were added to each milliliter of macromer/photoinitiator (I2959) solution. Nonpolymerized gel containing the cells (100 μL) was placed in cylindrical molds (4.5 mm diameter × 6.5 mm in height). The macromer/photoinitiator/chondrocyte solutions were polymerized using ultraviolet (365 nm) light at 10 mW/cm2 for 10 mins. Also, an articular cartilaginous ring model was used to examine the capacity of the engineered cartilage to integrate with native cartilage. Samples in the pilot study were collected at 6 weeks. Samples in the long-term experimental groups (60/40 and 70/30) were implanted into nude mice subcutaneously and harvested at 6, 12 and 18 weeks. Additionally, cylindrical constructs that were not implanted used as time zero controls. All of the harvested specimens were examined grossly and analyzed histologically and biochemically. Results Histologically, the neocartilage formed in the photochemically crosslinked gels resembled native articular cartilage with chondrocytes in lacunae and surrounded by new ECM. Increases in total DNA, glycosaminoglycan, and hydroxyproline were observed over the time periods studied. The neocartilage integrated with existing native cartilage. Conclusions Articular cartilage generation was achieved using swine articular chondrocytes photoencapsulated in copolymer PEGDM hydrogels, and the neocartilage tissue had the ability to integrate with existing adjacent native cartilage.
Collapse
Affiliation(s)
- Xing Zhao
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 435, 15 Parkman Street, Boston, MA, 02114, USA.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anestis Papadopoulos
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinichi Ibusuki
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Bichara
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 435, 15 Parkman Street, Boston, MA, 02114, USA
| | - Daniel B Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.,MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Equine Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - Thomas J Gill
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Randolph
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 435, 15 Parkman Street, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
Im GI. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:136-48. [DOI: 10.1089/ten.teb.2015.0347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
28
|
Lee S, Nemeño JGE, Lee JI. Repositioning Bevacizumab: A Promising Therapeutic Strategy for Cartilage Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:341-357. [PMID: 26905221 DOI: 10.1089/ten.teb.2015.0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug discovery and development has been garnering an increasing trend of research due to the growing incidence of the diverse types of diseases. Recently, drug repositioning, also known as drug repurposing, has been emerging parallel to cancer and tissue engineering studies. Drug repositioning involves the application of currently approved or even abandoned drugs as alternative treatments to other diseases or as biomaterials in other fields including cell therapy and tissue engineering. In this review, the advancement of the antiangiogenesis drugs that were used as treatment for cancer and other diseases, with particular focus on bevacizumab, will be described. This will include an overview of the nature and progression of osteoarthritis (OA), one of the leading global degenerative diseases that cause morbidity, and the development of its therapeutic strategies. In addition, this will also feature the nonsteroidal anti-inflammatory drugs that are commonly prescribed for OA and the benefits of repositioning bevacizumab as alternative treatments for other diseases and as biomaterials for cartilage regeneration. To date, a few number of studies, employing different modes of administration and varying dosages in diverse animal models, have shown that bevacizumab can be used as a signal and can promote both in vitro and in vivo cartilage regeneration. However, other antiangiogenesis drugs and their effects in chondrogenesis and cartilage regeneration are also worth investigating.
Collapse
Affiliation(s)
- Soojung Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Judee Grace E Nemeño
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea
| | - Jeong Ik Lee
- 1 Regenerative Medicine Laboratory, Department of Biomedical Science and Technology, Center for Stem Cell Research, Institute of Biomedical Science & Technology, Konkuk University , Seoul, Republic of Korea.,2 Deparment of Veterinary Medicine, College of Veterinary Medicine, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
29
|
Arzi B, DuRaine G, Lee C, Huey D, Borjesson D, Murphy B, Hu J, Baumgarth N, Athanasiou K. Cartilage immunoprivilege depends on donor source and lesion location. Acta Biomater 2015; 23:72-81. [PMID: 26028293 DOI: 10.1016/j.actbio.2015.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 01/25/2023]
Abstract
The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. STATEMENT OF SIGNIFICANCE Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the resultant immune response. This is one of the first investigations to show that (1) immune tolerance to allogeneic tissue engineered cartilage and (2) subsequent implant survival are dependent on the implant location and proximity to the synovium.
Collapse
|
30
|
Pan Z, Duan P, Liu X, Wang H, Cao L, He Y, Dong J, Ding J. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater 2015; 2:9-19. [PMID: 26813511 PMCID: PMC4669027 DOI: 10.1093/rb/rbv001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
Poly(lactide-co-glycolide)-bilayered scaffolds with the same porosity or different ones on the two layers were fabricated, and the porosity effect on in vivo repairing of the osteochondral defect was examined in a comparative way for the first time. The constructs of scaffolds and bone marrow-derived mesenchymal stem cells were implanted into pre-created osteochondral defects in the femoral condyle of New Zealand white rabbits. After 12 weeks, all experimental groups exhibited good cartilage repairing according to macroscopic appearance, cross-section view, haematoxylin and eosin staining, toluidine blue staining, immunohistochemical staining and real-time polymerase chain reaction of characteristic genes. The group of 92% porosity in the cartilage layer and 77% porosity in the bone layer resulted in the best efficacy, which was understood by more biomechanical mimicking of the natural cartilage and subchondral bone. This study illustrates unambiguously that cartilage tissue engineering allows for a wide range of scaffold porosity, yet some porosity group is optimal. It is also revealed that the biomechanical matching with the natural composite tissue should be taken into consideration in the design of practical biomaterials, which is especially important for porosities of a multi-compartment scaffold concerning connected tissues.
Collapse
Affiliation(s)
- Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Pingguo Duan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Huiren Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Lu Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jian Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20110-21. [PMID: 25361212 DOI: 10.1021/am505723k] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.
Collapse
Affiliation(s)
- Bogyu Choi
- Division of Advanced Prosthodontics, ‡Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|
32
|
Nagai T, Sato M, Kobayashi M, Yokoyama M, Tani Y, Mochida J. Bevacizumab, an anti-vascular endothelial growth factor antibody, inhibits osteoarthritis. Arthritis Res Ther 2014; 16:427. [PMID: 25230745 PMCID: PMC4189677 DOI: 10.1186/s13075-014-0427-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 08/13/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction Angiogenesis is an important factor in the development of osteoarthritis (OA). We investigated the efficacy of bevacizumab, an antibody against vascular endothelial growth factor and an inhibitor of angiogenesis, in the treatment of OA using a rabbit model of anterior cruciate ligament transection. Methods First, we evaluated the response of gene expression and histology of the normal joint to bevacizumab treatment. Next, in a rabbit model of OA induced by anterior cruciate ligament transection, we used macroscopic and histological evaluations and real-time polymerase chain reaction (PCR) to examine the responses to intravenous (systemic) administration of bevacizumab (OAB IV group). We also investigated the efficacy of intra-articular (local) administration of bevacizumab in OA-induced rabbits (OAB IA group). Results Histologically, bevacizumab had no negative effect in normal joints. Bevacizumab did not increase the expression of genes for catabolic factors in the synovium, subchondral bone, or articular cartilage, but it increased the expression of collagen type 2 in the articular cartilage. Macroscopically and histologically, the OAB IV group exhibited a reduction in articular cartilage degeneration and less osteophyte formation and synovitis compared with the control group (no bevacizumab; OA group). Real-time PCR showed significantly lower expression of catabolic factors in the synovium in the OAB IV group compared with the OA group. In articular cartilage, expression levels of aggrecan, collagen type 2, and chondromodulin-1 were higher in the OAB IV group than in the OA group. Histological evaluation and assessment of pain behaviour showed a superior effect in the OAB IA group compared with the OAB IV group 12 weeks after administration of bevacizumab, even though the total dosage given to the OAB IA group was half that received by the OAB IV group. Conclusions Considering the dosage and potential adverse effects of bevacizumab, the local administration of bevacizumab is a more advantageous approach than systemic administration. Our results suggest that intra-articular bevacizumab may offer a new therapeutic approach for patients with post-traumatic OA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0427-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Modulevsky DJ, Lefebvre C, Haase K, Al-Rekabi Z, Pelling AE. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS One 2014; 9:e97835. [PMID: 24842603 PMCID: PMC4026483 DOI: 10.1371/journal.pone.0097835] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/24/2014] [Indexed: 01/10/2023] Open
Abstract
There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.
Collapse
Affiliation(s)
- Daniel J. Modulevsky
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cory Lefebvre
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristina Haase
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Zeinab Al-Rekabi
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew E. Pelling
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Institute for Science, Society and Policy, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
The morphology and functions of articular chondrocytes on a honeycomb-patterned surface. BIOMED RESEARCH INTERNATIONAL 2014; 2014:710354. [PMID: 24804237 PMCID: PMC3997153 DOI: 10.1155/2014/710354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/07/2014] [Indexed: 01/07/2023]
Abstract
The present study investigated the potential of a novel micropatterned substrate for neocartilage formation. Articular chondrocytes were cultured on poly(ɛ-caprolactone) materials whose surfaces were either flat or honeycomb-patterned. The latter was prepared using a novel self-organization technique, while the former, was prepared by spin-coating. The chondrocytes attached and proliferated on both surfaces. On the honeycomb films, chondrocytes were found at the top surface and encased within the 10 μm pores. Meanwhile, chondrocytes on the spin-coated surface flattened out. Accumulation of DNA and keratin sulphate was comparatively higher on the honeycomb films within the first 7 days. At their respective peaks, DNA concentration increased on the honeycomb and flat surfaces by approximately 210% and 400% of their day 1 values, respectively. However, cultures on the flat surface took longer to peak. Extracellular Matrix (ECM) concentrations peaked at 900% and 320% increases for the honeycomb and flat cultures. Type II collagen was upregulated on the honeycomb and flat surfaces by as much as 28% and 25% of their day 1 values, while aggrecan was downregulated with time, by 3.4% and 7.4%. These initial results demonstrate the potential usefulness of honeycomb-based scaffolds during early cultures neocartilage and soft tissue engineering.
Collapse
|
35
|
Ju SP, Huang WC, Chen CC. The hydrolysis mechanism of polyglycolic acid under tensile mechanical loading: a density functional theory study. RSC Adv 2014. [DOI: 10.1039/c4ra04473h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The hydrolysis mechanisms of polyglycolic acid (PGA) under tensile mechanical loading were studied by the density functional theory (DFT) calculations for illustrating the enhancement of PGA hydrolysis by external mechanical loading found in previous experimental studies (Iran. Polym. J., 2008, 17(9), 691–701).
Collapse
Affiliation(s)
- Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-Sen University
- Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
| | - Wei-Chun Huang
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-Sen University
- Kaohsiung 804, Taiwan
| | - Chien-Chia Chen
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-Sen University
- Kaohsiung 804, Taiwan
| |
Collapse
|
36
|
Ju SP, Huang WC, Lin KH, Chen HL, Lin JS, Hsieh JY. Mechanical properties of PGA at different water fractions – a molecular dynamics study. RSC Adv 2014. [DOI: 10.1039/c4ra00484a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanical properties of polyglycolic acid (PGA) of different water weight fractions (1.7%, 2.9%, and 5%) were investigated by molecular dynamics (MD) simulation through a tensile test.
Collapse
Affiliation(s)
- Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung 804, Taiwan
| | - Wei-Chun Huang
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung 804, Taiwan
| | - Ken-Huang Lin
- Department of Mechanical and Electro-Mechanical Engineering
- National Sun Yat-sen University
- Kaohsiung 804, Taiwan
| | - Hui-Lung Chen
- Department of Chemistry and Institute of Applied Chemistry
- Chinese Culture University
- Taipei 111, Taiwan
| | - Jenn-Sen Lin
- Department of Mechanical Engineering
- National United University
- Miao-Li 360, Taiwan
| | - Jin-Yuan Hsieh
- Department of Mechanical Engineering
- Minghsin Institute of Technology
- Hsin-Chu 304, Taiwan
| |
Collapse
|
37
|
Sato M, Yamato M, Hamahashi K, Okano T, Mochida J. Articular cartilage regeneration using cell sheet technology. Anat Rec (Hoboken) 2013; 297:36-43. [PMID: 24293096 DOI: 10.1002/ar.22829] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
Cartilage damage is typically treated by chondrocyte transplantation, mosaicplasty, or microfracture. Recent advances in tissue engineering have prompted research on techniques to repair articular cartilage damage using a variety of transplanted cells. We studied the repair and regeneration of cartilage damage using layered chondrocyte sheets prepared in a temperature-responsive culture dish. We previously reported achieving robust tissue repair when covering only the surface layer of partial-thickness defects with layered chondrocyte sheets in domestic rabbits. We also reported good Safranin O staining and integration with surrounding tissue in a minipig model of full-thickness cartilaginous defects in the knee joint. We have continued our studies using human chondrocytes obtained from patients under IRB approval, and have confirmed the safety and efficacy of chondrocyte sheets, and have submitted a report to the Ministry of Health, Labour, and Welfare in Japan. In 2011, the Ministry gave us approval to perform a clinical study of joint repair using cell sheets. We have just started implanting cell sheets in patients at Tokai University Hospital.
Collapse
Affiliation(s)
- Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | |
Collapse
|
38
|
Yoshioka T, Mishima H, Sakai S, Uemura T. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees. Cartilage 2013; 4:339-44. [PMID: 26069678 PMCID: PMC4297161 DOI: 10.1177/1947603513494003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. METHODS Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). RESULTS The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. CONCLUSIONS This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.
Collapse
Affiliation(s)
- Tomokazu Yoshioka
- Department of Rehabilitation, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan,Department of Orthopaedics Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hajime Mishima
- Department of Orthopaedics Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinsuke Sakai
- Department of Orthopaedics Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan,Department of Orthopaedics Surgery, Ibaraki Medical Center, Tokyo Medical University, Inashiki, Ibaraki, Japan
| | - Toshimasa Uemura
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Schnettler R. Allogenous bone with collagen for repair of deep osteochondral defects. J Surg Res 2013; 185:667-75. [PMID: 24095021 DOI: 10.1016/j.jss.2013.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND A scaffold for treatment of deep osteochondral defects should be stable, integrate well, and provide a surface for chondrocytes. To meet these demands, a biphasic scaffold of allogenous sterilized bone with a collagen surface was developed. Integration was tested in the sheep model. MATERIAL AND METHODS Cartilage chips were taken from the nonweight-bearing area of the left knee of 12 sheep and cultured. After 4 wk a second procedure followed and defects of 9.4-mm diameter at the weight-bearing area of the medial femoral condyle of the right knee were created. The sterilized scaffold was inserted and the cultured autologous chondrocytes were dripped onto the surface. After 6 wk, 3 mo, and 6 mo the animals were sacrificed; the explanted femoral condyles were evaluated macroscopically and using histologic, immunohistochemical, and electronmicroscopic methods. RESULTS After 6 wk the level of the surface was well preserved, after 3 mo parts of the scaffold were sintered but after 6 mo the surface was continuous. Full integration of the allogenous bone could be observed after 6 mo. The surface of the scaffold after 6 wk consisted of bone, but after 3 mo some chondrocytes and after 6 mo a continuous chondral layer could be detected. CONCLUSIONS The biphasic scaffold of allogenous bone and collagen proved to be stable and sufficiently integrated in the short- and midterm interval. Whether the chondrocytes on the surface had been derived from implanted chondrocytes or the scaffold with its surface was sufficiently chondroconductive must be answered in further investigations.
Collapse
Affiliation(s)
- Iris Schleicher
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater 2013; 25:229-47. [PMID: 23588785 PMCID: PMC4476264 DOI: 10.22203/ecm.v025a17] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.
Collapse
Affiliation(s)
- Henning Madry
- Centre of Experimental Orthopaedics, Saarland University, Homburg, Germany,Department of Orthopaedic Surgery, Saarland University, Homburg, Germany,Address for correspondence: Henning Madry Centre of Experimental Orthopaedics Medical Faculty Building 37 Saarland University D-66421 Homburg, Germany Telephone Number: +49-6841-1624515 FAX Number: +49-6841-1624988
| | - Gunter Kaul
- Centre of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - David Zurakowski
- Departments of Anaesthesia and Surgery, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Magali Cucchiarini
- Centre of Experimental Orthopaedics, Saarland University, Homburg, Germany
| |
Collapse
|
41
|
Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Hartmann S, Schnettler R. Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 2012; 183:184-92. [PMID: 23260231 DOI: 10.1016/j.jss.2012.11.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/05/2012] [Accepted: 11/16/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND To oppose the disadvantages of autologous osteochondral transplantation in the treatment of deep osteochondral defects such as donor site morbidity, size limitation, and insufficient chondral integration, we developed two biphasic scaffolds of either hydroxylapatite/collagen (scaffold A) or allogenous sterilized bone/collagen (scaffold B) and tested their integration in a sheep model. METHODS We collected chondral biopsies from 12 sheep for the isolation of chondroblasts and cultured them for 4 wk. We created defects at the femoral condyle and implanted either scaffold A or B with chondrocytes or cell free. After 6 wk, animals were euthanized, we explanted the condyles, and evaluated them using histological, immunohistochemical, molecular biological, and histomorphometrical methods. RESULTS Specimens with scaffold A showed severe lowering of the surface, and the defect size was larger than for scaffold B. We found more immune-competent cells around scaffold A. Chondrocytes were scarcely detected on the surface of both scaffolds. Histomorphometry of the interface between scaffold and recipient showed no significant difference regarding tissue of chondral, osseous, fibrous or implant origin or tartrate-resistant acid phosphatase-positive cells. Real-time reverse transcriptase-polymerase chain reaction analysis revealed significant up-regulation for collagen II and SOX-9 messenger ribonucleic acid expression on the surface of scaffold B compared with scaffold A. CONCLUSIONS Scaffold B proved to be stable and sufficiently integrated in the short term compared with scaffold A. More extensive evaluations with scaffold B appear to be expedient.
Collapse
Affiliation(s)
- Iris Schleicher
- Department of Trauma Surgery Giessen, University Hospital of Giessen-Marburg, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials 2012; 33:5278-86. [PMID: 22551484 DOI: 10.1016/j.biomaterials.2012.03.073] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/25/2012] [Indexed: 12/31/2022]
Abstract
In this study, we investigate the effects of treatment with layered chondrocyte sheets and synovial cell transplantation. An osteochondral defect was created of 48 Japanese white rabbits. In order to determine the effects of treatment, the following 6 groups were produced: (A) synovial cells (1.8 × 10(6) cells), (B)layered chondrocyte sheets (1.7 × 10(6) cells), (C) synovial cells (3.0 × 10(5) cells) + layered chondrocyte sheets, (D)synovial cells (6.0 × 10(5) cells) + layered chondrocyte sheets, (E)synovial cells (1.2 × 10(6) cells) + layered chondrocyte sheets, (F) osteochondral defect. Layered chondrocyte sheets and synovial cells were transplanted, sacrificed four and 12 weeks postoperatively. An incapacitance tester (Linton) was used to find trends in the weight distribution ratio of the damaged limbs after surgery. Sections were stained with Safranin-O. Repair sites were evaluated using ICRS grading system. In groups (A) to (E), the damaged limb weight distribution ratio had improved. The repair tissue stained positively with Safranin-O. Four and 12 weeks after surgery, groups (A) to (E) exhibited significantly higher scores than group (F), and groups (D) and (E) exhibited significantly higher scores than groups (A) and (B). This suggests the efficacy of combining layered chondrocyte sheets with synovial cells.
Collapse
|
43
|
CHANG CHIHHUNG, LIN FENGHUEI, KUO TZONGFU, LIU HWACHANG. CARTILAGE TISSUE ENGINEERING. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623720500010x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tissue engineering is a new approach for articular cartilage repair. The aim of the present article was to review the current status of cartilage tissue engineering researches. The scaffold materials used for cartilage tissue engineering, the in vitro, in vivo studies and the clinical trials were all reviewed. Our researches about in vitro cartilage tissue engineering with new type bioactive scaffold and preliminary animal studies results will also be described. The scaffold was tricopolymer made from gelatin, hyaluronan and chondroitin. Chondrocytes seeded in tricopolymer showed in vitro engineered cartilage formation. The engineered cartilage constructs were implanted into knee joints of miniature pigs for animal study.
Collapse
Affiliation(s)
- CHIH-HUNG CHANG
- Division of Orthopedics, Department of Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - FENG-HUEI LIN
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - TZONG-FU KUO
- National Taiwan University Veterinary Hospital & Department of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - HWA-CHANG LIU
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Madry H, Cucchiarini M. Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J 2012; 52:245-61. [PMID: 21674822 PMCID: PMC3131141 DOI: 10.3325/cmj.2011.52.245] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Articular cartilage defects do not regenerate. Transplantation of autologous articular chondrocytes, which is clinically being performed since several decades, laid the foundation for the transplantation of genetically modified cells, which may serve the dual role of providing a cell population capable of chondrogenesis and an additional stimulus for targeted articular cartilage repair. Experimental data generated so far have shown that genetically modified articular chondrocytes and mesenchymal stem cells (MSC) allow for sustained transgene expression when transplanted into articular cartilage defects in vivo. Overexpression of therapeutic factors enhances the structural features of the cartilaginous repair tissue. Combined overexpression of genes with complementary mechanisms of action is also feasible, holding promises for further enhancement of articular cartilage repair. Significant benefits have been also observed in preclinical animal models that are, in principle, more appropriate to the clinical situation. Finally, there is convincing proof of concept based on a phase I clinical gene therapy study in which transduced fibroblasts were injected into the metacarpophalangeal joints of patients without adverse events. To realize the full clinical potential of this approach, issues that need to be addressed include its safety, the choice of the ideal gene vector system allowing for a long-term transgene expression, the identification of the optimal therapeutic gene(s), the transplantation without or with supportive biomaterials, and the establishment of the optimal dose of modified cells. As safe techniques for generating genetically engineered articular chondrocytes and MSCs are available, they may eventually represent new avenues for improved cell-based therapies for articular cartilage repair. This, in turn, may provide an important step toward the unanswered question of articular cartilage regeneration.
Collapse
Affiliation(s)
- Henning Madry
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University Medical Center, Homburg/Saar, Germany.
| | | |
Collapse
|
45
|
Grässel S, Stöckl S, Jenei-Lanzl Z. Isolation, culture, and osteogenic/chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Methods Mol Biol 2012; 879:203-67. [PMID: 22610563 DOI: 10.1007/978-1-61779-815-3_14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Musculoskeletal disorders, as non-healing fractures and large bone defects, articular cartilage and subchondral bone injuries, often result in lifelong chronic pain and compromised quality of life. Although generally a natural process, failure of large bone defects to heal such as after complex fractures, resection of tumours, infections, or revisions of joint replacements remains a critical challenge that requires more appropriate solutions as those currently available. In addition, regeneration of chondral and osteochondral defects continues to be a challenge until to date. A profound understanding of the underlying mechanisms of endogenous regeneration is a prerequisite for successful bone and cartilage regeneration. Presently, one of the most promising therapeutic approaches is cell-based tissue engineering which provides a healthy population of cells to the injured site. Use of differentiated cells has severe limitations; an excellent alternative would be the application of adult marrow stromal cells/mesenchymal stem cells (MSC) which possess extensive proliferation potential and proven capability to differentiate along the osteochondral pathway. The process of osteo-/chondrogenesis can be mimicked in vitro by inducing osteo-chondroprogenitor stem cells to undergo osteogenesis and chondrogenesis through exposure of osteo-/chondrogenic favourable microenvironmental, mechanical, and nutritional conditions. This chapter provides comprehensive protocols for the isolation, expansion, and osteo-/chondrogenic differentiation of adult bone marrow-derived MSC.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopaedics, University of Regensburg and Centre for Biomedical Technology, BioPark, Regensburg, Germany.
| | | | | |
Collapse
|
46
|
Chang G, Sherman O, Madelin G, Recht M, Regatte R. MR imaging assessment of articular cartilage repair procedures. Magn Reson Imaging Clin N Am 2011; 19:323-37. [PMID: 21665093 DOI: 10.1016/j.mric.2011.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Because articular cartilage is avascular and has no intrinsic capacity to heal itself, physical damage to cartilage poses a serious clinical problem for orthopedic surgeons and rheumatologists. No medication exists to treat or reconstitute physical defects in articular cartilage, and pharmacotherapy is limited to pain control. Developments in the field of articular cartilage repair include microfracture, osteochondral autografting, osteochondral allografting, repair with synthetic resorbable plugs, and autologous chondrocyte implantation. MR imaging techniques have the potential to allow in vivo monitoring of the collagen and proteoglycan content of cartilage repair tissue and may provide useful additional metrics of cartilage repair tissue quality.
Collapse
Affiliation(s)
- Gregory Chang
- Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, 660 First Avenue, Room 231, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists.
Collapse
Affiliation(s)
- Henning Madry
- Saarland University, Homburg, Germany,Henning Madry, Saarland University, Kirrbergerstrasse 1, Homburg, 66424 Germany
| | | | | |
Collapse
|
48
|
Wei JD, Tseng H, Chen ETH, Hung CH, Liang YC, Sheu MT, Chen CH. Characterizations of chondrocyte attachment and proliferation on electrospun biodegradable scaffolds of PLLA and PBSA for use in cartilage tissue engineering. J Biomater Appl 2011; 26:963-85. [PMID: 21273264 DOI: 10.1177/0885328210390401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of physical characteristics of electrospun three-dimensional (3D) fibrous scaffolds based on polybutylene succinate-co-adipate (PBSA) and poly l-lactic acid (PLLA) on the culture of primary human chondrocytes (PHCs) in terms of cell attachment, proliferation, and re-differentiation was investigated. Physical characteristics assessed for two polymers electrospun at two different delivery rates (PBSA-3, PBSA-16, PLLA-3, and PLLA-16) including average fiber diameter, average pore diameter, porosity, and contact angle. Results demonstrated that 3D fibrous scaffolds are better for PHCs' attachment than two-dimensional (2D) casting films made of the same polymeric materials. It was also found that 3D fibrous scaffolds are appropriate architecture for the proliferation of PHCs than 2D casting films and dependent upon the polymer used. Histological analysis revealed that a significant amount of PHC was found to be growing only within layers of PLLA fibrous scaffolds. The mitochondrial ribonucleic acid (mRNA) expression of both aggrecan and type II collagen by PHCs cultured in tissue culture polystyrene for 28 days decreased significantly. The mRNA expression of both aggrecan and type II collagen by PHCs cultured in PBSA scaffolds increased from 14 to 28 days, whereas only mRNA expression of aggrecan cultured in both PLLA scaffolds increased from 14 to 28 days.
Collapse
Affiliation(s)
- Jyh-Ding Wei
- Department of Orthopedics, ShinKung Memorial Hospital, Taipei Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
49
|
Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol 2011; 698:253-78. [PMID: 21431525 PMCID: PMC3106977 DOI: 10.1007/978-1-60761-999-4_20] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation.
Collapse
Affiliation(s)
- Luis A Solchaga
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | | | | |
Collapse
|
50
|
Nehrer S, Domayer S, Hirschfeld C, Stelzeneder D, Trattnig S, Dorotka R. Matrix-Associated and Autologous Chondrocyte Transplantation in the Ankle: Clinical and MRI Follow-up after 2 to 11 Years. Cartilage 2011; 2:81-91. [PMID: 26069572 PMCID: PMC4300785 DOI: 10.1177/1947603510381095] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND New matrix-associated autologous chondrocyte transplantation (MACT) techniques may facilitate the treatment of chondral defects in talar cartilage and provide good clinical outcome in the long term. The aim of this prospective case series was to monitor the clinical outcome after autologous chondrocyte transplantation (ACT) and MACT in the ankle to gain data on the mid-term efficacy of the procedure. METHODS Seventeen cases of talar cartilage defects were assessed with the American Orthopaedic Foot and Ankle Score (AOFAS), a modified Cincinnati score, and a subjective ankle-hindfoot score (AHS) at a mean of 61 (24-135) months after surgery. Nine patients consented to an additional magnetic resonance imaging (MRI) exam, including T2 mapping at 3T. ACT was carried out with a periosteal flap (4 cases) or with a matrix-assisted ACT technique (Hyalograft C; 13 cases). RESULTS Significant improvement was found in all cases. The AOFAS improved from 50.0 to 87.3, the AHS from 43.8 to 84.1, and the modified Cincinnati score from 2.9 to 6.9. MRI data demonstrated good defect filling, and T2 mapping results indicated that the collagen and water content of the repair tissue was comparable to adjacent cartilage. DISCUSSION MACT and ACT in the ankle can provide good and excellent long-term outcome and resulted in repair tissue with T2 properties similar to native cartilage in the majority of cases. Matrix-assisted implantation with the hyaluronan matrix allows for a less invasive surgical procedure. LEVEL OF EVIDENCE 4; prospective case series study.
Collapse
Affiliation(s)
- Stefan Nehrer
- Centre of Regenerative Medicine, Danube University of Krems, Austria
| | - S.E. Domayer
- Department of Orthopedics, Medical University of Vienna, Austria,MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Austria
| | | | - David Stelzeneder
- Department of Orthopedics, Medical University of Vienna, Austria,MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- MR Centre of Excellence, Department of Radiodiagnostics, Medical University of Vienna, Austria
| | - Ronald Dorotka
- Department of Orthopedics, Medical University of Vienna, Austria,Orthopedic City Center Vienna, Vienna, Austria,Ronald Dorotka, Orthopedic City Center Vienna, Dominikanerbastei 3, Vienna 1010, Austria
| |
Collapse
|