1
|
Meyer C, Grego E, S. Vasanthi S, Rao NS, Massey N, Holtkamp C, Huss J, Showman L, Narasimhan B, Thippeswamy T. The NADPH Oxidase Inhibitor, Mitoapocynin, Mitigates DFP-Induced Reactive Astrogliosis in a Rat Model of Organophosphate Neurotoxicity. Antioxidants (Basel) 2023; 12:2061. [PMID: 38136181 PMCID: PMC10740988 DOI: 10.3390/antiox12122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
NADPH oxidase (NOX) is a primary mediator of superoxides, which promote oxidative stress, neurodegeneration, and neuroinflammation after diisopropylfluorophosphate (DFP) intoxication. Although orally administered mitoapocynin (MPO, 10 mg/kg), a mitochondrial-targeted NOX inhibitor, reduced oxidative stress and proinflammatory cytokines in the periphery, its efficacy in the brain regions of DFP-exposed rats was limited. In this study, we encapsulated MPO in polyanhydride nanoparticles (NPs) based on 1,6-bis(p-carboxyphenoxy) hexane (CPH) and sebacic anhydride (SA) for enhanced drug delivery to the brain and compared with a high oral dose of MPO (30 mg/kg). NOX2 (GP91phox) regulation and microglial (IBA1) morphology were analyzed to determine the efficacy of MPO-NP vs. MPO-oral in an 8-day study in the rat DFP model. Compared to the control, DFP-exposed animals exhibited significant upregulation of NOX2 and a reduced length and number of microglial processes, indicative of reactive microglia. Neither MPO treatment attenuated the DFP effect. Neurodegeneration (FJB+NeuN) was significantly greater in DFP-exposed groups regardless of treatment. Interestingly, neuronal loss in DFP+MPO-treated animals was not significantly different from the control. MPO-oral rescued inhibitory neuronal loss in the CA1 region of the hippocampus. Notably, MPO-NP and MPO-oral significantly reduced astrogliosis (absolute GFAP counts) and reactive gliosis (C3+GFAP). An analysis of inwardly rectifying potassium channels (Kir4.1) in astroglia revealed a significant reduction in the brain regions of the DFP+VEH group, but MPO had no effect. Overall, both NP-encapsulated and orally administered MPO had similar effects. Our findings demonstrate that MPO effectively mitigates DFP-induced reactive astrogliosis in several key brain regions and protects neurons in CA1, which may have long-term beneficial effects on spontaneous seizures and behavioral comorbidities. Long-term telemetry and behavioral studies and a different dosing regimen of MPO are required to understand its therapeutic potential.
Collapse
Affiliation(s)
- Christina Meyer
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Elizabeth Grego
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; (E.G.); (B.N.)
| | - Suraj S. Vasanthi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Nikhil S. Rao
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Claire Holtkamp
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Joselyn Huss
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, IA 50011, USA;
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Nanovaccine Institute, Iowa State University, Ames, IA 50011, USA; (E.G.); (B.N.)
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA; (C.M.); (S.S.V.); (N.S.R.); (N.M.); (C.H.); (J.H.)
| |
Collapse
|
2
|
Schlichtmann BW, Palanisamy BN, Malovic E, Nethi SK, Padhi P, Hepker M, Wurtz J, John M, Ban B, Anantharam V, Kanthasamy AG, Narasimhan B, Mallapragada SK. Aggregation-Inhibiting scFv-Based Therapies Protect Mice against AAV1/2-Induced A53T-α-Synuclein Overexpression. Biomolecules 2023; 13:1203. [PMID: 37627268 PMCID: PMC10452369 DOI: 10.3390/biom13081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
To date, there is no cure for Parkinson's disease (PD). There is a pressing need for anti-neurodegenerative therapeutics that can slow or halt PD progression by targeting underlying disease mechanisms. Specifically, preventing the build-up of alpha-synuclein (αSyn) and its aggregated and mutated forms is a key therapeutic target. In this study, an adeno-associated viral vector loaded with the A53T gene mutation was used to induce rapid αSyn-associated PD pathogenesis in C57BL/6 mice. We tested the ability of a novel therapeutic, a single chain fragment variable (scFv) antibody with specificity only for pathologic forms of αSyn, to protect against αSyn-induced neurodegeneration, after unilateral viral vector injection in the substantia nigra. Additionally, polyanhydride nanoparticles, which provide sustained release of therapeutics with dose-sparing properties, were used as a delivery platform for the scFv. Through bi-weekly behavioral assessments and across multiple post-mortem immunochemical analyses, we found that the scFv-based therapies allowed the mice to recover motor activity and reduce overall αSyn expression in the substantia nigra. In summary, these novel scFv-based therapies, which are specific exclusively for pathological aggregates of αSyn, show early promise in blocking PD progression in a surrogate mouse PD model.
Collapse
Affiliation(s)
- Benjamin W. Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Bharathi N. Palanisamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Emir Malovic
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Susheel K. Nethi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Piyush Padhi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Monica Hepker
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Joseph Wurtz
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA; (B.N.P.); (E.M.); (P.P.); (M.H.); (J.W.)
| | - Manohar John
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PathoVacs, Incorporated, Ames, IA 50011, USA
| | - Bhupal Ban
- Indiana Biosciences Research Institute (IBRI), Indianapolis, IN 46202, USA;
| | - Vellareddy Anantharam
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PK Biosciences Corporation, Ames, IA 50011, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
- PK Biosciences Corporation, Ames, IA 50011, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.W.S.); (S.K.N.)
- Nanovaccine Institute, Ames, IA 50011, USA; (M.J.); (V.A.); (A.G.K.)
| |
Collapse
|
3
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Schlichtmann BW, Kalyanaraman B, Schlichtmann RL, Panthani MG, Anantharam V, Kanthasamy AG, Mallapragada SK, Narasimhan B. Functionalized polyanhydride nanoparticles for improved treatment of mitochondrial dysfunction. J Biomed Mater Res B Appl Biomater 2021; 110:450-459. [PMID: 34312984 DOI: 10.1002/jbm.b.34922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/18/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease affecting a large proportion of older adults. Exposure to pesticides like rotenone is a leading cause for PD. To reduce disease progression and prolong life expectancy, it is important to target disease mechanisms that contribute to dopaminergic neuronal atrophy, including mitochondrial dysfunction. Achieving targeted mitochondrial delivery is difficult for many therapeutics by themselves, necessitating higher therapeutic doses that could lead to toxicity. To minimize this adverse effect, targeted nano-carriers such as polyanhydride nanoparticles (NPs) can protect therapeutics from degradation and provide sustained release, enabling fewer administrations and lower therapeutic dose. This work expands upon the use of the polyanhydride NP platform for targeted drug delivery by functionalizing the polymer with a derivative of triphenylphosphonium called (3-carboxypropyl) triphenylphosphonium (CPTP) using a novel method that enables longer CPTP persistence on the NPs. The extent to which neurons internalized both nonfunctionalized and functionalized NPs was tested. Next, the efficacy of these nanoformulations in treating rotenone-induced mitochondrial dysfunction in the same cell line was evaluated using a novel neuroprotective drug, mito-metformin. CPTP functionalization significantly improved NP internalization by neuronal cells. This was correlated with significant protection by CPTP-functionalized, mito-metformin encapsulated NPs against rotenone-induced mitochondrial dysfunction. However, nonfunctionalized, mito-metformin encapsulated NPs and soluble mito-metformin administered at the same dose did not significantly protect cells from rotenone-induced toxicity. These results indicate that the targeted NP platform can provide enhanced dose-sparing and potentially reduce the occurrence of systemic side-effects for PD therapeutics.
Collapse
Affiliation(s)
| | | | - Rainie L Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Matthew G Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA.,Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, USA.,Nanovaccine Institute, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
5
|
Jäger A, Donato RK, Perchacz M, Donato KZ, Starý Z, Konefał R, Serkis-Rodzeń M, Raucci MG, Fuentefria AM, Jäger E. Human metabolite-derived alkylsuccinate/dilinoleate copolymers: from synthesis to application. J Mater Chem B 2020; 8:9980-9996. [PMID: 33073835 DOI: 10.1039/d0tb02068k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The advances in polymer chemistry have allowed the preparation of biomedical polymers using human metabolites as monomers that can hold unique properties beyond the required biodegradability and biocompatibility. Herein, we demonstrate the use of endogenous human metabolites (succinic and dilinoleic acids) as monomeric building blocks to develop a new series of renewable resource-based biodegradable and biocompatible copolyesters. The novel copolyesters were characterized in detail employing several standard techniques, namely 1H NMR, 13C NMR, and FTIR spectroscopy and SEC, followed by an in-depth thermomechanical and surface characterization of their resulting thin films (DSC, TGA, DMTA, tensile tests, AFM, and contact angle measurements). Also, their anti-fungal biofilm properties were assessed via an anti-fungal biofilm assay and the biological properties were evaluated in vitro using relevant human-derived cells (human mesenchymal stem cells and normal human dermal fibroblasts). These novel highly biocompatible polymers are simple and cheap to prepare, and their synthesis can be easily scaled-up. They presented good mechanical, thermal and anti-fungal biofilm properties while also promoting cell attachment and proliferation, outperforming well-known polymers used for biomedical applications (e.g. PVC, PLGA, and PCL). Moreover, they induced morphological changes in the cells, which were dependent on the structural characteristics of the polymers. In addition, the obtained physicochemical and biological properties can be design-tuned by the synthesis of homo- and -copolymers through the selection of the diol moiety (ES, PS, or BS) and by the addition of a co-monomer, DLA. Consequently, the copolyesters presented herein have high application potential as renewable and cost-effective biopolymers for various biomedical applications.
Collapse
Affiliation(s)
- Alessandro Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Ricardo K Donato
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Magdalena Perchacz
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic. and Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Katarzyna Z Donato
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Zdeněk Starý
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Rafał Konefał
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Magdalena Serkis-Rodzeń
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | - Maria G Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council, Mostrad'Oltremare Pad.20, Viale Kennedy 54, 80125 Naples, Italy
| | - Alexandre M Fuentefria
- Laboratory of Applied Mycology, Department of Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry v.v.i., Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
6
|
Geraili A, Mequanint K. Systematic Studies on Surface Erosion of Photocrosslinked Polyanhydride Tablets and Data Correlation with Release Kinetic Models. Polymers (Basel) 2020; 12:E1105. [PMID: 32408683 PMCID: PMC7285269 DOI: 10.3390/polym12051105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/17/2022] Open
Abstract
Photocrosslinkable polyanhydrides that undergo surface erosion are suitable materials for controlled-release drug delivery systems. Investigating the impact of different parameters on their erosion behavior is essential before use in drug delivery systems. Although their synthesis is well-established, parameters that may substantially affect the erosion of thiol-ene polyanhydrides including temperature and pH of the media, the geometry of the polymers, and the media shaking rate (the convective force for the polymer erosion), have not yet been studied. This study explores the effects of different environmental and geometric parameters on mass loss (erosion) profiles of polyanhydrides synthesized by thiol-ene photopolymerization. A comparative study on several release kinetic models fitting is also described for a better understanding of the polymer erosion behavior. The results demonstrated that although the temperature was the only parameter that affected the induction period substantially, the mass-loss rate was influenced by the polymer composition, tablet geometry, temperature, pH, and mass transfer (shaking) rate. With regard to geometrical parameters, polymers with the same surface area to volume ratios showed similar mass loss trends despite their various volumes and surface areas. The mass loss of polyanhydride tablets with more complicated geometries than a simple slab was shown to be non-linear, and the kinetic model study indicated the dominant surface erosion mechanism. The results of this study allow for designing and manufacturing efficient delivery systems with a high-predictable drug release required in precision medicine using surface-erodible polyanhydrides.
Collapse
Affiliation(s)
- Armin Geraili
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada;
| | - Kibret Mequanint
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
7
|
Sachan R, Jaipan P, Zhang JY, Degan S, Erdmann D, Tedesco J, Vanderwal L, Stafslien SJ, Negut I, Visan A, Dorcioman G, Socol G, Cristescu R, Chrisey DB, Narayan RJ. Printing amphotericin B on microneedles using matrix-assisted pulsed laser evaporation. Int J Bioprint 2017; 3:004. [PMID: 33094188 PMCID: PMC7575625 DOI: 10.18063/ijb.2017.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 11/23/2022] Open
Abstract
Transdermal delivery of amphotericin B, a pharmacological agent with activity against fungi and parasitic protozoa, is a challenge since amphotericin B exhibits poor solubility in aqueous solutions at physiologic pH values. In this study, we have used a laser-based printing approach known as matrix-assisted pulsed laser evaporation to print amphotericin B on the surfaces of polyglycolic acid microneedles that were prepared using a combination of injection molding and drawing lithography. In a modified agar disk diffusion assay, the amphotericin B-loaded microneedles showed concentration-dependent activity against the yeast Candida albicans. The results of this study suggest that matrix-assisted pulsed laser evaporation may be used to print amphotericin B and other drugs that have complex solubility issues on the surfaces of microneedles.
Collapse
Affiliation(s)
- Roger Sachan
- Wake Early College of Health and Sciences, Raleigh, North Carolina, USA
| | - Panupong Jaipan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Detlev Erdmann
- Department of Surgery, Division of Plastic, Reconstructive, Maxillofacial and Oral Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Lyndsi Vanderwal
- Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
| | - Shane J Stafslien
- Office of Research and Creativity Activity, North Dakota State University, 1715 Research Park Drive, Fargo ND, USA
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Anita Visan
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Gabriela Dorcioman
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Gabriel Socol
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Rodica Cristescu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele, Romania
| | - Douglas B Chrisey
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Brenza TM, Ghaisas S, Ramirez JEV, Harischandra D, Anantharam V, Kalyanaraman B, Kanthasamy AG, Narasimhan B. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:809-820. [PMID: 27771430 DOI: 10.1016/j.nano.2016.10.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/30/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022]
Abstract
A progressive loss of neuronal structure and function is a signature of many neurodegenerative conditions including chronic traumatic encephalopathy, Parkinson's, Huntington's and Alzheimer's diseases. Mitochondrial dysfunction and oxidative and nitrative stress have been implicated as key pathological mechanisms underlying the neurodegenerative processes. However, current therapeutic approaches targeting oxidative damage are ineffective in preventing the progression of neurodegeneration. Mitochondria-targeted antioxidants were recently shown to alleviate oxidative damage. In this work, we investigated the delivery of biodegradable polyanhydride nanoparticles containing the mitochondria-targeted antioxidant apocynin to neuronal cells and the ability of the nano-formulation to protect cells against oxidative stress. The nano-formulated mitochondria-targeted apocynin provided excellent protection against oxidative stress-induced mitochondrial dysfunction and neuronal damage in a dopaminergic neuronal cell line, mouse primary cortical neurons, and a human mesencephalic cell line. Collectively, our results demonstrate that nano-formulated mitochondria-targeted apocynin may offer improved efficacy of mitochondria-targeted antioxidants to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Timothy M Brenza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Julia E Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | | | | | | | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| |
Collapse
|
9
|
Hersh DS, Wadajkar AS, Roberts NB, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016; 22:1177-1193. [PMID: 26685681 PMCID: PMC4900538 DOI: 10.2174/1381612822666151221150733] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/18/2015] [Indexed: 01/10/2023]
Abstract
The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Graeme F. Woodworth
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| | - Anthony J. Kim
- Address correspondence to these authors at the Department of Neurosurgery, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201; E-mail: , Departments of Neurosurgery and Pharmaceutical Sciences, University of Maryland, Baltimore, 655 W. Baltimore Street, Baltimore, MD 21201;, E-mail:
| |
Collapse
|
10
|
Abstract
This review focusses on polyanhydrides, a fascinating class of degradable polymers that have been used in and investigated for many bio-related applications because of their degradability and capacity to undergo surface erosion. This latter phenomenon is driven by hydrolysis of the anhydride moieties at the surface and high hydrophobicity of the polymer such that degradation and mass loss (erosion) occur before water can penetrate deep within the bulk of the polymer. As such, when surface-eroding polymers are used as therapeutic delivery vehicles, the rate of delivery is often controlled by the rate of polymer erosion, providing predictable and controlled release rates that are often zero-order. These desirable attributes are heavily influenced by polymer composition and morphology, and therefore also monomer structure and polymerization method. This review examines approaches for polyanhydride synthesis, discusses their general thermomechanical properties, surveys their hydrolysis and degradation processes along with their biocompatibility, and looks at recent developments and uses of polyanhydrides in drug delivery, stimuli-responsive materials, and novel nanotechnologies.
Collapse
|
11
|
Ponnurangam S, O'Connell GD, Hung CT, Somasundaran P. Biocompatibility of polysebacic anhydride microparticles with chondrocytes in engineered cartilage. Colloids Surf B Biointerfaces 2015; 136:207-13. [PMID: 26398146 DOI: 10.1016/j.colsurfb.2015.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/30/2015] [Accepted: 08/24/2015] [Indexed: 12/24/2022]
Abstract
One of main challenges in developing clinically relevant engineered cartilage is overcoming limited nutrient diffusion due to progressive elaboration of extracellular matrix at the periphery of the construct. Macro-channels have been used to decrease the nutrient path-length; however, the channels become occluded with matrix within weeks in culture, reducing nutrient diffusion. Alternatively, microparticles can be imbedded throughout the scaffold to provide localized nutrient delivery. In this study, we evaluated biocompatibility of polysebacic anhydride (PSA) polymers and the effectiveness of PSA-based microparticles for short-term delivery of nutrients in engineered cartilage. PSA-based microparticles were biocompatible with juvenile bovine chondrocytes for concentrations up to 2mg/mL; however, cytotoxicity was observed at 20mg/mL. Cytotoxicity at high concentrations is likely due to intracellular accumulation of PSA degradation products and resulting lipotoxicity. Cytotoxicity of PSA was partially reversed in the presence of bovine serum albumin. In conclusion, the findings from this study demonstrate concentration-dependent biocompatibility of PSA-based microparticles and potential application as a nutrient delivery vehicle that can be imbedded in scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Sathish Ponnurangam
- Earth and Environmental Engineering, 500 W, 120th street, 918 Mudd Columbia University, New York, NY, 10027, United States.
| | - Grace D O'Connell
- Mechanical Engineering, 5122 Etcheverry Hall, University of California, Berkeley, CA 94720, United States
| | - Clark T Hung
- Biomedical engineering, 351 Engineering Terrace, 1210 Amsterdam Avenue, Columbia University, New York, NY 10027, United States
| | - Ponisseril Somasundaran
- Earth and Environmental Engineering, 500 W, 120th street, 918 Mudd Columbia University, New York, NY, 10027, United States
| |
Collapse
|
12
|
Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release 2015; 219:548-559. [PMID: 26315817 DOI: 10.1016/j.jconrel.2015.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
Abstract
Complex biological barriers are major obstacles for preventing and treating disease. Nanocarriers are designed to overcome such obstacles by enhancing drug delivery through physiochemical barriers and improving therapeutic indices. This review critically examines both biological barriers and nanocarrier payloads for a variety of drug delivery applications. A spectrum of nanocarriers is discussed that have been successfully developed for improving tissue penetration for preventing or treating a range of infectious, inflammatory, and degenerative diseases.
Collapse
Affiliation(s)
- Kathleen A Ross
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Timothy M Brenza
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Andrea M Binnebose
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Yashdeep Phanse
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | | | - Howard E Gendelman
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha 68198, USA
| | - Aliasger K Salem
- Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | - Lyric C Bartholomay
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | - Bryan H Bellaire
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Balaji Narasimhan
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA.
| |
Collapse
|
13
|
Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:715-29. [PMID: 25652894 DOI: 10.1016/j.nano.2014.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system.
Collapse
|
14
|
Vaisman B, Ickowicz DE, Abtew E, Haim-Zada M, Shikanov A, Domb AJ. In Vivo Degradation and Elimination of Injectable Ricinoleic Acid-Based Poly(ester-anhydride). Biomacromolecules 2013; 14:1465-73. [DOI: 10.1021/bm4001475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boris Vaisman
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Diana E. Ickowicz
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Ester Abtew
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Moran Haim-Zada
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Ariella Shikanov
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Abraham J. Domb
- Institute
for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| |
Collapse
|
15
|
Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials 2013; 34:3902-11. [PMID: 23453059 DOI: 10.1016/j.biomaterials.2013.02.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/22/2022]
Abstract
The drug release and degradation behavior of two double-walled microsphere formulations consisting of a doxorubicin-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) core (∼46 kDa) surrounded by a poly(d,l-lactic acid) (PDLLA) shell layer (∼55 and 116 kDa) were examined. It was postulated that different molecular weights of the shell layer could modulate the erosion of the outer coating and limit the occurrence of water penetration into the inner drug-loaded core on various time scales, and therefore control the drug release from the microspheres. For both microsphere formulations, the drug release profiles were observed to be similar. The degradation of the microspheres was monitored for a period of about nine weeks and analyzed using scanning electron microscopy, laser scanning confocal microscopy, and gel permeation chromatography. Interestingly, both microsphere formulations exhibited occurrence of bulk erosion of PDLLA on a similar time scale despite different PDLLA molecular weights forming the shell layer. The shell layer of the double-walled microspheres served as an effective diffusion barrier during the initial lag phase period and controlled the release rate of the hydrophilic drug independent of the molecular weight of the shell layer.
Collapse
|
16
|
Saifullah B, Hussein MZB, Hussein Al Ali SH. Controlled-release approaches towards the chemotherapy of tuberculosis. Int J Nanomedicine 2012; 7:5451-63. [PMID: 23091386 PMCID: PMC3472697 DOI: 10.2147/ijn.s34996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is notorious for its lethality to humans. Despite technological advances, the tubercle bacillus continues to threaten humans. According to the World Health Organization’s 2011 global report on TB, 8.8 million cases of TB were reported in 2010, with a loss of 1.7 million human lives. As drug-susceptible TB requires long-term treatment of between 6 and 9 months, patient noncompliance remains the most important reason for treatment failure. For multidrug-resistant TB, patients must take second-line anti-TB drugs for 18–24 months and many adverse effects are associated with these drugs. Drug-delivery systems (DDSs) seem to be the most promising option for advancement in the treatment of TB. DDSs reduce the adverse effects of drugs and their dosing frequency as well as shorten the treatment period, and hence improve patient compliance. Further advantages of these systems are that they target the disease area, release the drugs in a sustained manner, and are biocompatible. In addition, targeted delivery systems may be useful in dealing with extensively drug-resistant TB because many side effects are associated with the drugs used to cure the disease. In this paper, we discuss the DDSs developed for the targeted and slow delivery of anti-TB drugs and their possible advantages and disadvantages.
Collapse
Affiliation(s)
- Bullo Saifullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
17
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The importance of non-enzymatic chemical erosion for the release of drugs from degradable polymers is discussed. In order to have purely erosion controlled systems, polymer erosion has to be faster than polymer swelling or drug diffusivity inside degradable polymers. Therefore, fast hydrolyzing polymers are especially suited for the manufacture of erosion controlled drug delivery systems. Poly(anhydrides) are one such polymer class and are presented in more detail. It is shown that it is possible to predict drug release from such systems using discrete Monte Carlo Models. Such models are useful for the design of new implant type drug delivery systems.
Collapse
|
19
|
Rutherglen BG, McBath RA, Huang YL, Shipp DA. Polyanhydride Networks from Thiol−Ene Polymerizations. Macromolecules 2010. [DOI: 10.1021/ma102287v] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Broden G. Rutherglen
- Department of Chemistry and Biomolecular Science and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Ryan A. McBath
- Department of Chemistry and Biomolecular Science and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Yu Ling Huang
- Department of Chemistry and Biomolecular Science and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Devon A. Shipp
- Department of Chemistry and Biomolecular Science and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
20
|
Bi Y, Yin Y, Huang R, Li Y. Synthesis, characterization, in vitro
degradation and cytotoxicity of polyphosphazenes containing N
-ethoxypyrrolidone side groups. POLYM INT 2009. [DOI: 10.1002/pi.2720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Tang BC, Fu J, Watkins DN, Hanes J. Enhanced efficacy of local etoposide delivery by poly(ether-anhydride) particles against small cell lung cancer in vivo. Biomaterials 2009; 31:339-44. [PMID: 19796810 DOI: 10.1016/j.biomaterials.2009.09.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/10/2009] [Indexed: 11/26/2022]
Abstract
Drug carrier particles composed of poly(ethylene glycol)-co-poly(sebacic acid) (PEG-PSA) have been shown capable of efficient aerosolization into model lungs and the ability to rapidly penetrate human mucus. Here, we develop PEG-PSA particles (Etop/PEG-PSA) that encapsulate up to 40% etoposide by weight in a one step process, release it continuously for 6 days in vitro, and maintain its cytotoxic activity against a human lung tumor cell line in vitro. We further show that Etop/PEG-PSA injected intratumorally effectively suppress human lung tumor growth in a xenograft mouse model, with 100% survival after 31 days. In contrast, 0% survival was observed by day 24 in animals that received free etoposide (either intratumoral or intraperitoneal administration) or placebo particles intratumorally. These findings support PEG-PSA as a drug delivery platform for improved local therapy of cancer.
Collapse
Affiliation(s)
- Benjamin C Tang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
22
|
Ulery BD, Phanse Y, Sinha A, Wannemuehler MJ, Narasimhan B, Bellaire BH. Polymer chemistry influences monocytic uptake of polyanhydride nanospheres. Pharm Res 2008; 26:683-90. [PMID: 18987960 DOI: 10.1007/s11095-008-9760-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 10/14/2008] [Indexed: 11/26/2022]
Abstract
PURPOSE To demonstrate that polyanhydride copolymer chemistry affects the uptake and intracellular compartmentalization of nanospheres by THP-1 human monocytic cells. METHODS Polyanhydride nanospheres were prepared by an anti-solvent nanoprecipitation technique. Morphology and particle diameter were confirmed via scanning election microscopy and quasi-elastic light scattering, respectively. The effects of varying polymer chemistry on nanosphere and fluorescently labeled protein uptake by THP-1 cells were monitored by laser scanning confocal microscopy. RESULTS Polyanhydride nanoparticles composed of poly(sebacic anhydride) (SA), and 20:80 and 50:50 copolymers of 1,6-bis-(p-carboxyphenoxy)hexane (CPH) anhydride and SA were fabricated with similar spherical morphology and particle diameter (200 to 800 nm). Exposure of the nanospheres to THP-1 monocytes showed that poly(SA) and 20:80 CPH:SA nanospheres were readily internalized whereas 50:50 CPH:SA nanospheres had limited uptake. The chemistries also differentially enhanced the uptake of a red fluorescent protein-labeled antigen. CONCLUSIONS Nanosphere and antigen uptake by monocytes can be directly correlated to the chemistry of the nanosphere. These results demonstrate the importance of choosing polyanhydride chemistries that facilitate enhanced interactions with antigen presenting cells that are necessary in the initiation of efficacious immune responses.
Collapse
Affiliation(s)
- Bret D Ulery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IOWA, 50011, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jain JP, Chitkara D, Kumar N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin Drug Deliv 2008; 5:889-907. [DOI: 10.1517/17425247.5.8.889] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Degradable Polymer Microspheres for Controlled Drug Delivery. ADVANCES IN POLYMER SCIENCE 2007. [DOI: 10.1007/3-540-45734-8_3] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Krogman NR, Singh A, Nair LS, Laurencin CT, Allcock HR. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends. Biomacromolecules 2007; 8:1306-12. [PMID: 17338563 DOI: 10.1021/bm061064q] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated the feasibility of blending bioerodible polyphosphazenes with poly(lactide-co-glycolide) (PLGA) to form versatile polymeric materials with altered bioerosion properties. These studies demonstrated the effective neutralization of the acidic degradation products of PLGA by the polyphosphazene hydrolysis products. In the present study, five new polymers of dipeptide polyphosphazenes poly[(ethyl glycinato)x(glycyl-ethyl glycinato)yphosphazene] and novel blends of these polyphosphazenes with poly(lactide-co-glycolide) (PLGA) were synthesized and fabricated. The miscibility was analyzed using differential scanning calorimetry and scanning electron microscopy. Hydrogen bonding within the blends was assessed by attenuated total reflectance infrared spectroscopy. The phosphazene component of the blend contained varying ratios of the glycyl-glycine ethyl ester to the glycine ethyl ester. Poly[(ethyl glycinato)0.5(glycine ethyl glycinato)1.5phosphazene formed completely miscible blends with PLGA (50:50) and PLGA (85:15). This is ascribed to the multiple hydrogen-bonding sites within the side groups of the polyphosphazene. The components of the blend act as plasticizers for each other because a glass transition temperature for each blend was detected at a lower temperature than for each individual polymer. A hydrolysis study showed that unblended solid poly[(ethyl glycinato)0.5(glycyl ethyl glycinato)1.5phosphazene] hydrolyzed in less than 1 week. However, the blends degraded at a slower rate than both parent polymers. This is attributed to the buffering capacity of the polyphosphazene hydrolysis products, which increases the pH of the degradation media from 2.5 to 4, thereby slowing the degradation rate of PLGA.
Collapse
Affiliation(s)
- Nicholas R Krogman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
26
|
Chen L, Wang H, Wang J, Chen M, Shang L. Ofloxacin-delivery system of a polyanhydride and polylactide blend used in the treatment of bone infection. J Biomed Mater Res B Appl Biomater 2007; 83:589-95. [PMID: 17410574 DOI: 10.1002/jbm.b.30832] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We developed a local drug-release system consisting of two biodegradable polymers, poly(sebacic anhydride) (PSA) and poly-D,L-lactide (PLA), for the treatment of chronic osteomyelitis. PSA and PLA were dissolved and blended at different ratios in tetrahydrofuran. Ofloxacin was loaded with an 8:1 weight ratio of the blend to the drug. The ofloxacin-containing beads of the PSA/PLA blend were made by preheating and compressing them in a mold. The in vitro drug release showed that changing the ratio between the two polymers caused the effective ofloxacin-release duration to vary from 6 to 68 days. The ofloxacin-containing beads with 10% PSA and 90% PLA produced an inhibition zone for the bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa within 89 days of the experiment. The in vivo drug release of the beads in rabbits demonstrated that the average ofloxacin concentration in the local bone was 20.1 +/- 10.3 microg/g, while that in the plasma was 35.6 +/- 18.8 ng/mL, within 8 weeks. Roentgenography, bacterial cultures, and histological examinations showed that the local release of ofloxacin by the beads could cure osteomyelitis in rabbits. Our findings suggested that using PSA/PLA blends with different ratios as carriers for antibiotics might be useful in the treatment of chronic osteomyelitis and in the prophylaxis of bone infection.
Collapse
Affiliation(s)
- Liaobin Chen
- Department of Orthopaedic Surgery, Zhong Nan Hospital, Wuhan University, Wuhan 430071, People's Republic of China.
| | | | | | | | | |
Collapse
|
27
|
Pollauf EJ, Berkland C, Kim KK, Pack DW. In vitro degradation of polyanhydride/polyester core-shell double-wall microspheres. Int J Pharm 2006; 301:294-303. [PMID: 16051452 DOI: 10.1016/j.ijpharm.2005.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Double-wall microspheres (DWMS), comprising distinct polymer core and shell phases, are useful and interesting for controlled-release drug delivery. In particular, the presence of a surface-eroding polymer core may be expected to limit water penetration and, therefore, delay degradation of the core phase and drug release. In this study, solid microspheres and DWMS were fabricated using a surface-eroding polymer (poly[1,6-bis(p-carboxyphenoxy)hexane]; PCPH) and a bulk-eroding polymer (poly(D,L-lactide-co-glycolide); PLG). Erosion of the particles was observed by optical and electron microscopy, while polymer degradation was followed by gel permeation chromatography, during incubation in buffer at 37 degrees C. Degradation and erosion were very different depending on which polymer formed the particle shell. Nevertheless, the relatively thin (approximately 5 microm) PCPH shells could not prevent water penetration, and the PLG cores completely eroded by 6 weeks of incubation.
Collapse
Affiliation(s)
- Emily J Pollauf
- Department of Chemical and Biomolecular Engineering, University of Illinois, Box C-3, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
28
|
Ben-Shabat S, Elmalak O, Nyska A, Domb AJ. Synthesis and characterization of biodegradable copolyesters and copolyanhydrides prepared from fumaric and succinic acid trimers and oligomers. Isr J Chem 2005. [DOI: 10.1560/edr4-8fc1-cq8m-j6rl] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Raza SM, Pradilla G, Legnani FG, Thai QA, Olivi A, Weingart JD, Brem H. Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 2005; 5:477-94. [PMID: 15934827 DOI: 10.1517/14712598.5.4.477] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent advances in the treatment of malignant brain tumours have focused on the development of targeted local delivery of therapeutic agents, which combine various antineoplastic strategies that include cytotoxic, anti-angiogenic and immunomodulatory mechanisms, among others. The introduction of local delivery devices for sustained administration of antineoplastic agents represents a new opportunity to effectively treat these malignancies by facilitating the intracranial administration of safe and clinically efficacious doses for prolonged periods of time in a controlled fashion. This technology circumvents the need for high systemic doses with potentially harmful toxicities, bypasses the blood-brain barrier and can be tailored to deliver new agents with complex pharmacological properties. Based on local delivery strategies, new delivery systems, including convection-enhanced delivery and microchips, have been developed. As a result, recent advances in tumour biology have been adopted as potentially translatable treatments and are undergoing preclinical and clinical evaluation at present. These novel approaches could improve the prognosis of patients with these tumours.
Collapse
Affiliation(s)
- Shaan M Raza
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 7-113, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jain JP, Modi S, Domb AJ, Kumar N. Role of polyanhydrides as localized drug carriers. J Control Release 2005; 103:541-63. [PMID: 15820403 DOI: 10.1016/j.jconrel.2004.12.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Many drugs that are administered in an unmodified form by conventional systemic routes fail to reach target organs in an effective concentration, or are not effective over a length of time due to a facile metabolism. Various types of targeting delivery systems and devices have been tried over a long period of time to overcome these problems. Targeted delivery or localized drug delivery offers an advantage of reduced body burden and systemic toxicity of the drugs, especially useful for highly toxic drugs like anticancer agents. Local drug delivery via polymer is a simple approach and hypothesized to avoid the above stated problems. Polyanhydrides are a unique class of polymer for drug delivery because some of them demonstrate a near zero order drug release and relatively rapid biodegradation in vivo. Further, the release rate of polyanhydride fabricated device can be altered over a thousand fold by simple changes in the polymer backbone. Hence, these are one of the best-suited polymers for drug delivery, with biodegradability and biocompatibility. The review focuses on the advantages of polyanhydride carriers in localized drug delivery along with their degradability behavior, toxicological profile and role in various disease conditions.
Collapse
Affiliation(s)
- Jay Prakash Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sec. 67, SAS Nagar (Mohalali) Punjab-160062, India
| | | | | | | |
Collapse
|
31
|
Deng J, Li L, Stephens D, Tian Y, Robinson D. Effect of Postmolding Heat Treatment on In Vitro Properties of a Polyanhydride Implant Containing Gentamicin Sulfate. Drug Dev Ind Pharm 2004; 30:341-6. [PMID: 15132176 DOI: 10.1081/ddc-120030928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A polyanhydride implant containing gentamicin sulfate was fabricated using a laboratory-scale injection-molding machine. After injection molding, the implants were subject to heat treatment at 60 degrees C for various time periods with or without nitrogen protection. The impact of this heat treatment on the in vitro properties of the implants including copolymer molecular weights, mechanical properties, and in vitro drug-release profiles was investigated. This heat treatment caused a drastic drop in the molecular weight of the copolymer. Heating without nitrogen protection resulted in the hardening of the implant, but heating in the presence of nitrogen rendered the implant less rigid. It was also found that a faster in vitro drug release profile was shown by implants heated without nitrogen protection and a pronounced slowing down in drug release was exhibited by implants heated with nitrogen protection.
Collapse
Affiliation(s)
- J Deng
- Advanced Drug Delivery, Hospital Products Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | |
Collapse
|
32
|
Whitaker-Brothers K, Uhrich K. Poly(anhydride-ester) fibers: Role of copolymer composition on hydrolytic degradation and mechanical properties. ACTA ACUST UNITED AC 2004; 70:309-18. [PMID: 15227676 DOI: 10.1002/jbm.a.30083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poly(anhydride-esters), based on carboxyphenoxydecanoate (CPD), are biocompatible polymers that hydrolytically degrade. The mechanical properties of the poly(anhydride-esters) can be altered by copolymerization with para-carboxyphenoxyhexane (pCPH). Mechanical properties of three CPD:pCPH compositions (30:70, 40:60, and 50:50) are reported as a function of hydrolytic degradation. The mechanical characteristics evaluated were tensile modulus at 1% strain (E(1%)), tensile strength (sigma(B)), ultimate elongation (epsilon(B)), and toughness (E(r)). The 30:70 CPD:pCPH fibers maintained higher values for tensile modulus at all time points than the two other fiber compositions. In addition, the 30:70 CPD:pCPH fibers maintained lower values for both tensile strength and toughness than the two other fiber compositions. These phenomena resulted from the brittle nature of pCPH, the major component of the 30:70 CPD:pCPH fibers; increasing the pCPH concentration in the polymer lowers both tensile strength and toughness of the polymer by decreasing ductility. With increasing amounts of pCPH, the hydrolytic degradation occurred more slowly, as reflected in the copolymers' improved ability to retain their mechanical properties. Therefore, copolymerization is useful for controlling the mechanical properties of the fibers as well as the polymer degradation rate, which ultimately determines the rate at which physically or chemically encapsulated drugs can be released.
Collapse
Affiliation(s)
- Kenya Whitaker-Brothers
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA.
| | | |
Collapse
|
33
|
Ben-Shabat S, Abuganima E, Raziel A, Domb AJ. Biodegradable polycaprolactone-polyanhydrides blends. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/pola.10958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Anastasiou TJ, Uhrich KE. Aminosalicylate-based biodegradable polymers: Syntheses andin vitro characterization of poly(anhydride-ester)s and poly(anhydride-amide)s. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/pola.10973] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Chan CK, Chu IM. Stability and depolymerization of poly(sebacic anhydride) under high moisture environment. J Appl Polym Sci 2003. [DOI: 10.1002/app.12192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Fu J, Fiegel J, Krauland E, Hanes J. New polymeric carriers for controlled drug delivery following inhalation or injection. Biomaterials 2002; 23:4425-33. [PMID: 12219833 DOI: 10.1016/s0142-9612(02)00182-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhalation is gaining increasing acceptance as a convenient, reproducible, and non-invasive method of drug delivery to the lung tissue and/or the systemic circulation. However, sustained drug release following inhalation remains elusive, due in part to the lack of appropriate materials designed specifically for use in the lungs to control the release of bioactive compounds. To address this problem, we have synthesized a new family of ether-anhydride copolymers composed entirely of FDA-approved monomers, including polyethylene glycol (PEG). Sebacic acid, a hydrophobic monomer, was copolymerized with PEG in order to produce water-insoluble polymers capable of providing continuous drug release kinetics following immersion in an aqueous environment. Various amounts of PEG (5-50% by mass) were incorporated into the backbone of the new polymers to allow tuning of particle surface properties for potentially enhanced aerosolization efficiency and to decrease particle clearance rates by phagocytosis in the deep lung. The preparation of large porous particles with these new polymers was systematically approached, utilizing central composite design, to develop improved particle physical properties for deep lung delivery. Microparticles containing model drugs were made with sizes suitable for deposition in various regions of the lung following inhalation as a dry powder. Due to such properties as surface erosion (leading to continuous drug release profiles), erosion times ranging from hours to days (allowing control over drug delivery duration), and ability to incorporate up to 50% PEG in their backbone, these new systems may also find application as "stealth" carriers for therapeutic compounds following intravenous injection.
Collapse
Affiliation(s)
- Jie Fu
- Department of Chemical Engineering. The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
37
|
Abstract
It was the intention of this paper to give a survey on the degradation and erosion of polyanhydrides. Due to the multitude of polymers that have been synthesized in this class of material in recent years, it was not possible to discuss all polyanhydrides that have gained in significance based on their application. It was rather the intention to provide a broad picture on polyanhydride degradation and erosion based on the knowledge that we have from those polymers that have been intensively investigated. To reach this goal this review contains several sections. First, the foundation for an understanding of the nomenclature are laid by defining degradation and erosion which was deemed necessary because many different definitions exist in the current literature. Next, the properties of major classes of anhydrides are reviewed and the impact of geometry on degradation and erosion is discussed. A complicated issue is the control of drug release from degradable polymers. Therefore, the aspect of erosion-controlled release and drug stability inside polyanhydrides are discussed. Towards the end of the paper models are briefly reviewed that describe the erosion of polyanhydrides. Empirical models as well as Monte-Carlo-based approaches are described. Finally it is outlined how theoretical models can help to answer the question why polyanhydrides are surface eroding. A look at the microstructure and the results from these models lead to the conclusion that polyanhydrides are surface eroding due to their fast degradation. However they switch to bulk erosion once the device dimensions drop below a critical limit.
Collapse
Affiliation(s)
- A Göpferich
- Faculty of Pharmacy and Chemistry, Pharmaceutical Technology Unit, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany.
| | | |
Collapse
|
38
|
Katti DS, Lakshmi S, Langer R, Laurencin CT. Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 2002; 54:933-61. [PMID: 12384316 DOI: 10.1016/s0169-409x(02)00052-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although originally developed for the textile industry, polyanhydrides have found extensive use in biomedical applications due to their biodegradability and excellent biocompatibility. Polyanhydrides are most commonly synthesized from diacid monomers by polycondensation. Efficient control over various physicochemical properties, such as biodegradability and biocompatibility, can be achieved for this class of polymers, due to the availability of a wide variety of diacid monomers as well as by copolymerization of these monomers. Biodegradation of these polymers takes place by the hydrolysis of the anhydride bonds and the polymer undergoes predominantly surface erosion, a desired property to attain near zero-order drug release profile. This review examines the mode of degradation and elimination of these polyanhydrides in vivo as well as the biocompatibility and toxicological aspects of various polyanhydrides.
Collapse
Affiliation(s)
- D S Katti
- Department of Chemical Engineering, Room # 383, CAT Building, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
39
|
Abstract
The controlled local delivery of antineoplastic agents by biodegradable polymers is a technique that allows for exposure of tumor cells to therapeutic doses of an active agent for prolonged periods of time while avoiding high systemic doses associated with debilitating toxicities. The use of polymers for chemotherapy delivery expands the spectrum of available treatment of neoplasms in the central nervous system, and facilitates new approaches for the treatment of malignant gliomas. In this article, we discuss the rationale and history of the development and use of these polymers, and review the various agents that have used this technology to treat malignant brain tumors.
Collapse
Affiliation(s)
- Paul P Wang
- Department of Neurological Surgery, The Johns Hopkins Hospital, Hunterian 817, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
40
|
Zhang T, Xu M, Chen H, Yu X. Synthesis, degradation, and drug delivery of cycloaliphatic poly(ester anhydride)s. J Appl Polym Sci 2002. [DOI: 10.1002/app.11056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Tian Y, Li L, Gao X, Deng J, Stephens D, Robinson D, Chang H. The effect of storage temperatures on the in vitro properties of a polyanhydride implant containing gentamicin. Drug Dev Ind Pharm 2002; 28:897-903. [PMID: 12378959 DOI: 10.1081/ddc-120006422] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Septacin is a biodegradable sustained-release implant containing 20% (w/w) gentamicin sulfate. The matrix of the implant is a polyanhydride copolymer composed of erucic acid dimer (EAD) and sebacic acid (SA) in a one-to-one weight ratio. The effect of storage temperatures (-15 degrees C and 25 degrees C) on the stability of Septacin was evaluated with respect to gentamicin potency, copolymer molecular weight, and in vitro drug release. The drug in polymer matrix was stable for at least 12 months when stored at 25 degrees C, but the molecular weight of the copolymer declined rapidly at this temperature. At -15 degrees C, there was no change in the molecular weight of the copolymer. However, the placebo (copolymer without gentamicin) exhibited a significant drop in copolymer molecular weight at both temperatures. The drug release profiles showed no change for samples stored at -15 degrees C for the duration of this study, while the release of drug slowed down significantly for samples stored at 25 degrees C for longer than one month. A pronounced difference in the morphology of the -15 degrees C samples and the 25 degrees C samples was observed during the in vitro dissolution test; cracking of the -15 degrees C samples was evident, but the 25 degrees C samples remained intact.
Collapse
Affiliation(s)
- Y Tian
- Alcon Laboratories, R2-45, 6201 South Freeway, Fort Worth, Texas 76134-2099, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Prowans P, El Fray M, Slonecki J. Biocompatibility studies of new multiblock poly(ester-ester)s composed of poly(butylene terephthalate) and dimerized fatty acid. Biomaterials 2002; 23:2973-8. [PMID: 12069339 DOI: 10.1016/s0142-9612(02)00026-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was undertaken to evaluate the biocompatibility of new multiblock poly(ester-ester)s proposed as an alternative to Hunter silastic prosthesis used in a two-stage tendon reconstruction. Methanol-extracted polymeric material retained its weight, demonstrating the absence of leachable particles (e.g. low-molecular weight oligomers). Implantation tests indicated that the observed tissue changes were similar to those obtained with silicone, no evidence of contact necrosis being observed. The unchanged morphology of rat liver hepatocytes and the lack of parenchymal necrosis also indicated that exposure to the investigated polymers did not cause any cytotoxic reactions.
Collapse
Affiliation(s)
- Piotr Prowans
- Pomeranian Medical Academy in Szczecin, Clinic of General and Hand Surgery, Poland
| | | | | |
Collapse
|
43
|
Zhang T, Gu M, Yu X. Degradation and drug delivery properties of poly(1,4-cyclohexanedicarboxylic anhydride). JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2002; 12:491-501. [PMID: 11469780 DOI: 10.1163/156856201300194234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyanhydrides for drug-controlled release systems from cis- and trans-1,4-cyclohexanedicarboxylic acid (1,4-CHDA) were synthesized by melt polycondensation. The degradation of polymers was estimated by weight loss in 0.1 mol l(-1), pH 7.4 phosphate buffer at 37 degrees C. The drug delivery was conducted in the same buffer. The results show that the different polymers lost weight over 150-360 h, and fine surface erosion was investigated. The different conformation of CHDA has an obvious influence on the degradation of polyanhydrides due to their different crystallinity, with higher crystallinity samples degrading much more slowly. The incorporation of adipic acids into the poly(CHDA) can obviously accelerate the degradation and the introduction of -CH2- segments increased the flexibility of polyanhydride backbone and accelerated the degradation rate. In vitro delivery experiments show that Bruffen was completely released in about 10 days from a melting mold disk with a fine linear delivery curve.
Collapse
Affiliation(s)
- T Zhang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, People's Republic of China
| | | | | |
Collapse
|
44
|
Deng JS, Li L, Stephens D, Tian Y, Harris FW, Cheng SZD. Effect of gamma-radiation on a polyanhydride implant containing gentamicin sulfate. Int J Pharm 2002; 232:1-10. [PMID: 11790485 DOI: 10.1016/s0378-5173(01)00885-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Septacin, a polyanhydride implant containing gentamicin sulfate, was sterilized by gamma-radiation. Its copolymer molecular weight (M(w) by GPC) was increased after this radiation. No cross-linking was shown in the radiated samples as no gel content was found by the filtration method. The chemical structure as detected by 1H NMR for non-radiated and radiated samples was comparable. For samples radiated at higher dose levels (70-100 kGy), the IR spectra showed that the intensity of absorbance attributable to the C-H stretching vibration (at 2852 and 2927 cm(-1)) was attenuated, indicating free-radical formation or loss of hydrogen atoms from C-H bonds. However, the mass spectra for the gamma-radiated and the non-radiated controls after they were completely depolymerized in methylene chloride were virtually identical. Therefore, it could be concluded that the increase in copolymer molecular weight for radiated Septacin was a result of chain extension in the copolymer backbone during radiation. In addition, wide-angle X-ray diffraction and polarizing light microscopy (PLM) revealed a change in the physical structure of the radiated copolymer. There was an increase in crystallinity of the copolymer with increasing radiation doses; the greatest increase in crystallinity occurred at the dose range of 70-80 kGy, which was also shown to result in the greatest molecular-weight increase. The crystalline morphology of the samples as detected by PLM was not altered by gamma-radiation, regardless of the dose levels.
Collapse
Affiliation(s)
- Jone-Shin Deng
- Advanced Drug Delivery, Hospital Products Division, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | | | | | | | | | |
Collapse
|
45
|
Deng JS, Li L, Tian Y, Meisters M, Chang HC, Stephens D, Chen S, Robinson D. The relationship between structures and in vitro properties of a polyanhydride implant containing gentamicin sulfate. Pharm Dev Technol 2001; 6:541-9. [PMID: 11775955 DOI: 10.1081/pdt-120000292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Laboratory scale injection-molding equipment was utilized to fabricate an implant consisting of poly(FAD:SA 1:1) and 20% (w/w) gentamicin sulfate. Characterizations were performed to determine the molecular weight and glass transition temperature of poly(FAD:SA 1:1). A study was carried out to investigate the relationships between the in vitro performance, morphology, and micro-structures of the molded implants. It was found that implants produced with different structures exhibited different physical integrities in water, i.e., cracking or non-cracking. For the non-cracking implants, a skin-core structure formed by an oriented skin layer was observed under a polarized light microscope. The same morphology was not seen in the cracking implants. The crystal orientation in the skin layer of the non-cracking implants was further identified using a wide-angle x-ray diffraction method (WAXD). No crystal orientation could be found in the cracking implants by WAXD. Furthermore, studies were carried out to evaluate the in vitro drug release for implants showing different degrees of integrity in water. The in vitro drug release of the cracking implants was markedly faster than that of the non-cracking implants due to the pronounced initial drug-burst effect as a result of crack formation in the implants.
Collapse
Affiliation(s)
- J S Deng
- Advanced Drug Delivery, Hospital Products Division, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Anastasiou TJ, Uhrich KE. Novel Polyanhydrides with Enhanced Thermal and Solubility Properties. Macromolecules 2000. [DOI: 10.1021/ma000291w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Kathryn E. Uhrich
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854-8087
| |
Collapse
|
47
|
Domb AJ, Israel ZH, Elmalak O, Teomim D, Bentolila A. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res 1999; 16:762-5. [PMID: 10350022 DOI: 10.1023/a:1011995728760] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A J Domb
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
48
|
Akbari H, D'Emanuele A, Attwood D. Effect of geometry on the erosion characteristics of polyanhydride matrices. Int J Pharm 1998. [DOI: 10.1016/s0378-5173(97)00298-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Mäder K, Crémmilleux Y, Domb AJ, Dunn JF, Swartz HM. In vitro/in vivo comparison of drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides--a noninvasive approach by the combined use of electron paramagnetic resonance spectroscopy and nuclear magnetic resonance imaging. Pharm Res 1997; 14:820-6. [PMID: 9210204 DOI: 10.1023/a:1012123127330] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to compare drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides in vitro and in vivo in real time and with minimal disturbance of the investigated system. METHODS P(FAD-SA) 20:80 and P(FAD-SA) 50:50 polymer tablets were loaded with the spin probe 3-carboxy-2,2,5,5-tetramethyl-pyrrollidine-1-oxyl (PCA) and implanted subcutaneously in the neck of rats or placed in 0.1 M phosphate buffer. 1.1 GHz EPR spectroscopy experiments and 7T MRI studies (T1 and T2 weighted) were performed. RESULTS A front of water penetration was visible by MRI in vitro in the case of P(FAD-SA) 20:80, but not for P(FAD-SA) 50:50. For both polymers, the thickness of the tablets decreased with time and a insoluble, easy deformable residue remained. Important processes such as edema, deformation of the implant, encapsulation and bioresorption were observable by MRI in vivo. P(FAD-SA) 50:50 was almost entirely absorbed by day 44, whereas an encapsulated residue was found for P(FAD-SA) 20:80 after 65 days. The EPR studies gave direct evidence of a water penetration induced changes of the microenvironment inside the tablet. EPR signals were still detectable in P(FAD-SA) 20:80 implants after 65 days, while the nitroxide was released in vitro within 16 days. CONCLUSIONS Important parameters and processes such as edema, deformation of the tablet, microviscosity inside the tablet and encapsulation can be monitored in real time by the combined use of the noninvasive techniques MRI and EPR leading to better understanding of the differences between the in vitro and in vivo situation.
Collapse
Affiliation(s)
- K Mäder
- Institute of Pharmacy Humboldt-University Berlin, Germany. Karsten =
| | | | | | | | | |
Collapse
|
50
|
Abstract
The erosion of composite polymer matrices made of slow and fast eroding polymers was investigated. These matrices can be used as implants that release drugs in a preprogrammed way. To understand the mechanism of drug release, the erosion of cylindrical polymer matrices made of several layers of different polymers was investigated. A layer of poly(D,L-lactic acid) was used to separate a core and a mantle consisting of poly(1,3-bis[p-carboxyphenoxy]propane-co-sebacic acid) 20:80. The investigation of the erosion mechanism revealed that erosion is a two-phase process. Wide angle X-ray diffraction and differential scanning calorimetry proved that the crystalline polymer parts of the polyanhydride layers above and below the polylactide erode one after the other. Concomitantly, sebacic acid accumulates periodically inside the matrix and leaves it in two phases. This agrees well with the release of brilliant blue and carboxyfluorescein, two model compounds, from such implants when incorporated into the polyanhydride layers. It can be concluded that the core of the composite implant erodes with a delay of 10-14 days because the polylactide protects it against premature erosion. Theoretical erosion models that were developed to simulate erosion support the proposed mechanism.
Collapse
Affiliation(s)
- A Göpferich
- Department of Pharmaceutical Technology, University of Erlangen-Nürnberg, Germany
| |
Collapse
|