1
|
Tang Y, Yin L, Gao S, Long X, Du Z, Zhou Y, Zhao S, Cao Y, Pan S. A small-diameter vascular graft immobilized peptides for capturing endothelial colony-forming cells. Front Bioeng Biotechnol 2023; 11:1154986. [PMID: 37101749 PMCID: PMC10123284 DOI: 10.3389/fbioe.2023.1154986] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Combining synthetic polymers and biomacromolecules prevents the occurrence of thrombogenicity and intimal hyperplasia in small-diameter vascular grafts (SDVGs). In the present study, an electrospinning poly (L)-lactic acid (PLLA) bilayered scaffold is developed to prevent thrombosis after implantation by promoting the capture and differentiation of endothelial colony-forming cells (ECFCs). The scaffold consists of an outer PLLA scaffold and an inner porous PLLA biomimetic membrane combined with heparin (Hep), peptide Gly-Gly-Gly-Arg-Glu-Asp-Val (GGG-REDV), and vascular endothelial growth factor (VEGF). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle goniometry were performed to determine successful synthesis. The tensile strength of the outer layer was obtained using the recorded stress/strain curves, and hemocompatibility was evaluated using the blood clotting test. The proliferation, function, and differentiation properties of ECFCs were measured on various surfaces. Scanning electronic microscopy (SEM) was used to observe the morphology of ECFCs on the surface. The outer layer of scaffolds exhibited a similar strain and stress performance as the human saphenous vein via the tensile experiment. The contact angle decreased continuously until it reached 56° after REDV/VEGF modification, and SEM images of platelet adhesion showed a better hemocompatibility surface after modification. The ECFCs were captured using the REDV + VEGF + surface successfully under flow conditions. The expression of mature ECs was constantly increased with the culture of ECFCs on REDV + VEGF + surfaces. SEM images showed that the ECFCs captured by the REDV + VEGF + surface formed capillary-like structures after 4 weeks of culture. The SDVGs modified by REDV combined with VEGF promoted ECFC capture and rapid differentiation into ECs, forming capillary-like structures in vitro. The bilayered SDVGs could be used as vascular devices that achieved a high patency rate and rapid re-endothelialization.
Collapse
Affiliation(s)
- Yaqi Tang
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Lu Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Shuai Gao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, China
| | - Zhanhui Du
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Yingchao Zhou
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Shuiyan Zhao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Yue Cao
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
| | - Silin Pan
- Heart Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, China
- *Correspondence: Silin Pan,
| |
Collapse
|
2
|
Spiegelburg DT, Mannes M, Schultze A, Scheibenberger F, Müller F, Klitzing A, Messerer DAC, Nilsson Ekdahl K, Nilsson B, Huber-Lang M, Braun CK. Impact of surface coating and systemic anticoagulants on hemostasis and inflammation in a human whole blood model. PLoS One 2023; 18:e0280069. [PMID: 36634087 PMCID: PMC9836312 DOI: 10.1371/journal.pone.0280069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Surface compatibility with blood is critical both for scientific investigations on hemostasis and clinical applications. Regarding in vitro and ex vivo investigations, minimal alteration in physiological hemostasis is of particular importance to draw reliable conclusions on the human coagulation system. At the same time, artificial coagulation activation must be avoided, which is relevant for the patient, for example to prevent stent graft occlusion. The aim was to evaluate the advantages and disadvantages of antithrombotic and antifouling surface coatings in the context of their suitability for ex vivo incubation and the study of coagulation properties. METHODS We investigated the impact of different protocols for surface coating of synthetic material and different anticoagulants on hemostasis and platelet activation in ex vivo human whole blood. Blood samples from healthy donors were incubated in coated microtubes on a rotating wheel at 37°C. Two protocols for surface coating were analyzed for hemostatic parameters and metabolic status, a heparin-based coating (CHC, Corline Heparin Conjugate) without further anticoagulation and a passivating coating (MPC, 2-methacryloyloxethyl phosphorylcholine) with added anticoagulants (enoxaparin, ENOX; or fondaparinux, FPX). Employing the MPC-based coating, the anticoagulants enoxaparin and fondaparinux were compared regarding their differential effects on plasmatic coagulation by thrombelastometry and on platelet activation by flowcytometry and platelet function assays. RESULTS Using the CHC coating, significant coagulation cascade activation was observed, whereas parameters remained mostly unchanged with MPC-based protocols. Extended incubation caused significantly elevated levels of the soluble membrane attack complex. Neither ENOX nor FPX caused a relevant impairment of platelet function or activation capacity and thrombelastometric parameters remained unchanged with both protocols. For translational purposes, we additionally modeled endotoxemia with the MPC-based protocols by incubating with lipopolysaccharide plus/minus thrombin. While coagulation parameters remained unchanged, elevated Interleukin 8 and Matrix Metalloproteinase 9 demonstrated preserved immune cell responsiveness. CONCLUSIONS The MPC-based protocols demonstrated better hemocompatibility compared to CHC, and ENOX and FPX proved useful for additional anticoagulation. Furthermore, this simple-to-use whole blood model may be useful for experimental analyses of the early coagulatory and immunological response without decalcification.
Collapse
Affiliation(s)
- Doreen Tabea Spiegelburg
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Marco Mannes
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anke Schultze
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frieder Scheibenberger
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Frederik Müller
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Amadeo Klitzing
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kristina Nilsson Ekdahl
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
3
|
Immunospecific analysis of in vitro and ex vivo surface-immobilized protein complex. Biointerphases 2022; 17:021005. [PMID: 35477241 DOI: 10.1116/6.0001783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomaterials used for blood contacting devices are inherently thrombogenic. Antithrombotic agents can be used as surface modifiers on biomaterials to reduce thrombus formation on the surface and to maintain device efficacy. For quality control and to assess the effectiveness of immobilization strategies, it is necessary to quantify the surface-immobilized antithrombotic agent directly. There are limited methods that allow direct quantification on device surfaces such as catheters. In this study, an enzyme immunoassay (EIA) has been developed to measure the density of a synthetic antithrombin-heparin (ATH) covalent complex immobilized on a catheter surface. The distribution of the immobilized ATH was further characterized by an immunohistochemical assay. This analyte-specific EIA is relatively simple and has high throughput, thus providing a tool for quantitative analysis of biomaterial surface modifications. These methods may be further modified to evaluate plasma proteins adsorbed and immobilized on various biomaterial surfaces of complex shapes, with a range of bioactive functionalities, as well as to assess conformational changes of proteins using specific antibodies.
Collapse
|
4
|
Brash JL, Horbett TA, Latour RA, Tengvall P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater 2019; 94:11-24. [PMID: 31226477 PMCID: PMC6642842 DOI: 10.1016/j.actbio.2019.06.022] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
The adsorption of proteins is the initiating event in the processes occurring when blood contacts a "foreign" surface in a medical device, leading inevitably to thrombus formation. Knowledge of protein adsorption in this context has accumulated over many years but remains fragmentary and incomplete. Moreover, the significance and relevance of the information for blood compatibility are not entirely agreed upon in the biomaterials research community. In this review, protein adsorption from blood is discussed under the headings "agreed upon" and "not agreed upon or not known" with respect to: protein layer composition, effects on coagulation and complement activation, effects on platelet adhesion and activation, protein conformational change and denaturation, prevention of nonspecific protein adsorption, and controlling/tailoring the protein layer composition. STATEMENT OF SIGNIFICANCE: This paper is part 2 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
|
5
|
Heparin coatings for improving blood compatibility of medical devices. Adv Drug Deliv Rev 2017; 112:12-23. [PMID: 28042080 DOI: 10.1016/j.addr.2016.12.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/29/2016] [Accepted: 12/25/2016] [Indexed: 12/15/2022]
Abstract
Blood contact with biomaterials triggers activation of multiple reactive mechanisms that can impair the performance of implantable medical devices and potentially cause serious adverse clinical events. This includes thrombosis and thromboembolic complications due to activation of platelets and the coagulation cascade, activation of the complement system, and inflammation. Numerous surface coatings have been developed to improve blood compatibility of biomaterials. For more than thirty years, the anticoagulant drug heparin has been employed as a covalently immobilized surface coating on a variety of medical devices. This review describes the fundamental principles of non-eluting heparin coatings, mechanisms of action, and clinical applications with focus on those technologies which have been commercialized. Because of its extensive publication history, there is emphasis on the CARMEDA® BioActive Surface (CBAS® Heparin Surface), a widely used commercialized technology for the covalent bonding of heparin.
Collapse
|
6
|
Bozzini B, Barca A, Bogani F, Boniardi M, Carlino P, Mele C, Verri T, Romano A. Electrodeposition of nanostructured bioactive hydroxyapatite-heparin composite coatings on titanium for dental implant applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1425-1434. [PMID: 24619574 DOI: 10.1007/s10856-014-5186-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
In this paper we describe the one-pot fabrication of hydroxyapatite (HA)-heparin composites by electrodeposition onto Ti substrates and their characterisation in terms of structure, morphology, heparin content and bioactivity. HA coatings are well known and widely applied osteointegration enhancers, but post-implant healing rate in dental applications is still suboptimal: e.g. coagulation control plays a key role and the incorporation of an anticoagulant is considered a highly desirable option. In this study, we have developed an improved, simple and robust growth procedure for single-phase, pure HA-heparin films of thickness 1/3 μm. HA-heparin, forming nanowires, has the ideal morphology for bone mineralisation. Staining assays revealed homogeneous incorporation of sizable amounts of heparin in the composite films. The bioactivities of the HA and HA-heparin coatings on Ti were compared by HeLa cell proliferation/viability tests and found to be enhanced by the presence of the anticoagulant.
Collapse
Affiliation(s)
- Benedetto Bozzini
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, 73100, Lecce, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gore S, Andersson J, Biran R, Underwood C, Riesenfeld J. Heparin surfaces: Impact of immobilization chemistry on hemocompatibility and protein adsorption. J Biomed Mater Res B Appl Biomater 2014; 102:1817-24. [DOI: 10.1002/jbm.b.33154] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Savannah Gore
- W.L. Gore & Associates; 4100 W Kiltie Lane Flagstaff Arizona 86005
| | | | - Roy Biran
- W.L. Gore & Associates; 4100 W Kiltie Lane Flagstaff Arizona 86005
| | | | | |
Collapse
|
8
|
Abstract
The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.
Collapse
Affiliation(s)
- Maria Cristina Tanzi
- Politecnico di Milano, Bioengineering Department, P.zza L. da Vinci, Milano, Italy.
| |
Collapse
|
9
|
Haddad S, Derkaoui SM, Avramoglou T, Ait E, Othmane A, Mora L. Electrochemical impedance spectroscopy as a highly sensitive tool for a dynamic interaction study between heparin and antithrombin: a novel antithrombin sensor. Talanta 2011; 85:927-35. [PMID: 21726720 DOI: 10.1016/j.talanta.2011.04.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 11/18/2022]
Abstract
Specific recognition between two biological partners is widely exploited in biosensors nowadays. To explore this avenue, a novel biosensor for antithrombin (AT) detection was constructed. Heparin was used as the affinity ligand. A well-known acrylic monomer (butyl methacrylate) was polymerized and grafted onto the heparin polysaccharide by the use of ceric ammonium nitrate as a redox initiator in aqueous nitric acid medium. Polymers were deposited as a thin layer onto surface of stainless steel electrode (SS316L). The obtained polymers were studied by Fourier transform infrared spectroscopy (FTIR) and analyzed by differential scanning calorimetry (DSC). Moreover, the films were characterized by electrochemical impedance spectroscopy (EIS), contact-angle measurements and AFM. EIS was used to study the biosensor affinity to AT and the relationship between functionalization growth of modified electrode and the response of the sensor. The proposed approach appears to be simple, sensitive and correlated with methods that analyse the detection of antithrombin.
Collapse
Affiliation(s)
- S Haddad
- Biophysics Laboratory, Faculty of Medicine of Monastir, 5019 Monastir, Tunisia
| | | | | | | | | | | |
Collapse
|
10
|
Ombelli M, Costello L, Postle C, Anantharaman V, Meng QC, Composto RJ, Eckmann DM. Competitive protein adsorption on polysaccharide and hyaluronate modified surfaces. BIOFOULING 2011; 27:505-518. [PMID: 21623481 PMCID: PMC3105331 DOI: 10.1080/08927014.2011.585711] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml(-1) for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.
Collapse
Affiliation(s)
- Michela Ombelli
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren Costello
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Corinne Postle
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
| | - Vinod Anantharaman
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
| | - Qing Cheng Meng
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
| | - Russell J. Composto
- Department of Material Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
11
|
Kasongo KW, Jansch M, Müller RH, Walker RB. Evaluation of thein vitrodifferential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain. J Liposome Res 2010; 21:245-54. [DOI: 10.3109/08982104.2010.539186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Bäck J, Sanchez J, Elgue G, Ekdahl KN, Nilsson B. Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 2010; 391:11-7. [DOI: 10.1016/j.bbrc.2009.10.123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 01/09/2023]
|
13
|
Bäck J, Lang MH, Elgue G, Kalbitz M, Sanchez J, Ekdahl KN, Nilsson B. Distinctive regulation of contact activation by antithrombin and C1-inhibitor on activated platelets and material surfaces. Biomaterials 2009; 30:6573-80. [PMID: 19783299 DOI: 10.1016/j.biomaterials.2009.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/24/2009] [Indexed: 12/13/2022]
Abstract
Activated human plate lets trigger FXII-mediated contact activation, which leads to the generation of FXIIa-antithrombin (AT) and FXIa-AT complexes. This suggests that contact activation takes place at different sites, on activated platelets and material surfaces, during therapeutic procedures involving biomaterials in contact with blood and is differentially regulated. Here we show that activation in platelet-poor plasma, platelet-rich plasma (PRP), and whole blood induced by glass, kaolin, and polyphosphate elicited high levels of FXIIa-C1-inhibitor (C1INH), low levels of FXIa-C1INH and KK-C1INH, and almost no AT complexes. Platelet activation, in both PRP and blood, led to the formation of FXIIa-AT, FXIa-AT, and kallikrein (KK)-AT but almost no C1INH complexes. In severe trauma patients, FXIIa-AT and FXIa-AT were correlated with the release of thrombospondin-1 (TSP-1) from activated platelets. In contrast, FXIIa-C1INH complexes were detected when the FXIIa-AT levels were low. No correlations were found between FXIIa-C1INH and FXIIa-AT or TSP-1. Inhibition of FXIIa on material surfaces was also shown to affect the function of aggregating platelets. In conclusion, formation of FXIIa-AT and FXIIa-C1INH complexes can help to distinguish between contact activation triggered by biomaterial surfaces and by activated platelets. Platelet aggregation studies also demonstrated that platelet function is influenced by material surface-mediated contact activation and that generation of FXIIa-AT complexes may serve as a new biomarker for thrombotic reactions during therapeutic procedures employing biomaterial devices.
Collapse
Affiliation(s)
- Jennie Bäck
- Department of Oncology, Radiology, and Clinical Immunology, Division of Clinical Immunology, Rudbeck Laboratory C5, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen H, Yuan L, Song W, Wu Z, Li D. Biocompatible polymer materials: Role of protein–surface interactions. Prog Polym Sci 2008. [DOI: 10.1016/j.progpolymsci.2008.07.006] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Sun F, Sask K, Brash J, Zhitomirsky I. Surface modifications of Nitinol for biomedical applications. Colloids Surf B Biointerfaces 2008; 67:132-9. [DOI: 10.1016/j.colsurfb.2008.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/14/2008] [Indexed: 12/01/2022]
|
16
|
Sanchez J, Elgue G, Larsson R, Nilsson B, Olsson P. Surface-adsorbed fibrinogen and fibrin may activate the contact activation system. Thromb Res 2008; 122:257-63. [PMID: 18177925 DOI: 10.1016/j.thromres.2007.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 10/19/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION This study was designed to investigate whether fibrinogen, soluble desAA-fibrin, and insoluble desAABB-fibrin are able to induce clotting by triggering the plasma contact activation system when adsorbed to polystyrene. MATERIALS AND METHODS The above-mentioned substances were individually prepared on polystyrene meshwork squares, and then exposed to a purified FXII solution or non-calcium containing plasma (citrated and dialyzed normal pooled plasma) in polystyrene cuvettes coated with surface-immobilized heparin, to completely block contact activation and the coagulation mechanism that might be induced by the cuvette surfaces. Sodium glass beads were used as the reference material. RESULTS On exposure to purified FXII solution and plasma, all the tested materials adsorbed and activated FXII to varying degrees. This activation led to the formation of FXIa in the exposed plasma, with the highest activation occurring upon exposure to glass, desAA-fibrin and desAABB-fibrin and the lowest upon exposure to fibrinogen-adsorbed or unmodified polystyrene meshwork squares. Following recalcification, in cuvettes with surface-immobilized heparin, a spectrophotometric assay showed that the surface-exposed plasma aliquots clotted within 5 min after contact with glass, within 10 to 15 min after contact with the two forms of fibrin, and somewhat longer after contact with adsorbed fibrinogen. The longest lag phase, close to 20 min, occurred in plasma exposed to unmodified polystyrene meshwork. Whole blood deposited in surface heparinized cuvettes directly from the cubital vein did not clot during the observation time (2 h). CONCLUSIONS These results indicate that domains induced by conformational changes in adsorbed fibrinogen and fibrin are capable of activating adsorbed proenzymes and that various forms of fibrin are considerably stronger activators of the contact activation system than are adsorbed fibrinogen or a polystyrene meshwork. The delayed coagulation in plasma exposed to the unmodified polystyrene meshwork can be explained by a two-step process: first, adsorption of fibrinogen, and second, activation of FXII. Under our experimental conditions, the adsorption and activation of FXII on fibrinogen and fibrin seems to be an important mechanism for triggering coagulation.
Collapse
Affiliation(s)
- J Sanchez
- Department of Radiology, Oncology and Clinical Immunology, Division of Clinical Immunology, The Rudbeck Laboratory, University Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Stief TW. The anticoagulant capacity of plasmatic unfractionated heparin decreases at 23°C. Blood Coagul Fibrinolysis 2007; 18:209-12. [PMID: 17287642 DOI: 10.1097/mbc.0b013e3280121c5e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) are important clinical anticoagulants. As polynegative molecules they are potential triggers of the contact phase of coagulation. An incubation temperature lower than the physiological 37 degrees C favours intrinsic haemostasis activation by the polynegative molecule SiO2. The efficiency of UFH and LMWH after a plasmatic preincubation at 37 or at 23 degrees C is therefore studied. Samples (150 mul) of unfrozen pooled normal plasma supplemented with 0, 0.01, 0.1, or 1 IU/ml heparin or dalteparin in 5-ml polystyrole tubes were incubated for 10-70 min at 37 or at 23 degrees C. The extrinsic coagulation activity assay (EXCA) was then performed. Preincubation at 37 degrees C of 0.1 IU/ml plasmatic UFH does not result in any thrombin generation in EXCA-1, whereas preincubation at 23 degrees C results in a thrombin generation of about 0.1 IU/ml thrombin. Plasmatic UFH (0.01 IU/ml) at 23 degrees C acts nearly half as efficiently as 0.01 IU/ml plasmatic LMWH. Polynegatively charged niches particularly in the larger UFH molecule might trigger the contact system of haemostasis, especially at 23 degrees C. In contrast, the anticoagulant capacity of LMWH does not change significantly with temperature.
Collapse
Affiliation(s)
- Thomas W Stief
- Department of Clinical Chemistry, University Hospital, Marburg, Germany.
| |
Collapse
|
18
|
Benzamidine-based coatings: Implication of inhibitor structure on the inhibition of coagulation enzymes in solution andin vitrohemocompatibility assessment. Biointerphases 2006; 1:146-55. [DOI: 10.1116/1.2431753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Klinth JE, Larsson R, Andersson PO, Ekdahl KN. A novel application of multi-wavelength TIRF spectroscopy for real time monitoring of antithrombin interactions with immobilized heparin. Biosens Bioelectron 2006; 21:1973-80. [PMID: 16289605 DOI: 10.1016/j.bios.2005.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/29/2005] [Accepted: 10/03/2005] [Indexed: 11/22/2022]
Abstract
Real time interactions of antithrombin (AT) with Corline Heparin Surfaces (CHS) with one and two layers of heparin conjugate have been examined using a multi-wavelength TIRF spectroscopy technique with continuous flow. Fluorescently labeled AT, adsorbed from citrated human blood plasma, showed significantly higher signals on CHS compared to the cationic surface used to attach the heparin conjugate. The AT binding to CHS was very stable, also after exposure to soluble heparin at a concentration of 1.5 IU/mL. Only a few percent of the bound AT were displaced from the surfaces by AT present in plasma after long-term exposure to plasma. In contrast, larger amounts of the freshly added AT had adsorbed to the surfaces, especially to the surface with two layers of heparin conjugate, indicating the presence of unsaturated AT binding sites. The amount of AT bound to the different surfaces was quantified after elution using an enzyme immunoassay (EIA). Characteristic emission spectra of proteins and fluorophores of labeled proteins, obtained at the surfaces after a long-term exposure to plasma, confirmed their presence at the surfaces. The multi-wavelength TIRF technique proved to be a useful tool when combined with other techniques to study the time course of interactions of fluorescently labeled proteins with biomaterials, even in a complex environment such as plasma.
Collapse
Affiliation(s)
- J E Klinth
- Department of Chemistry and Biomedical Sciences, University of Kalmar, SE 39182 Kalmar, Sweden
| | | | | | | |
Collapse
|
20
|
Chen H, Chen Y, Sheardown H, Brook MA. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer. Biomaterials 2005; 26:7418-24. [PMID: 16051347 DOI: 10.1016/j.biomaterials.2005.05.053] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel method of immobilizing heparin on a silicone surface through a heterobifunctional PEG spacer was used yield well defined surfaces with highly active surface immobilized heparin and low non-specific protein adsorption. The heparin surface density achieved using this technique was 0.68 microg/cm2. Sessile drop water contact angles showed increased hydrophilicity of the silicone surface after PEG modification and a further decrease in the contact angles following the grafting of heparin. High specificity for ATIII with little fibrinogen adsorption was noted in plasma adsorption studies. This ATIII adsorption was mediated by the heparin layer, since surfaces modified with PEG only did not adsorb significant quantities of AT. The thrombin resistance of the heparin modified surfaces was demonstrably greater as measured by a chromogenic thrombin generation assay. The results suggest that the heterbifunctional PEG linker results in a high density of active heparin on the surfaces.
Collapse
Affiliation(s)
- Hong Chen
- Department of Chemical Engineering, McMaster University, Hamilton Ont., Canada L8S 4L7
| | | | | | | |
Collapse
|
21
|
Renné T, Schuh K, Müller-Esterl W. Local Bradykinin Formation Is Controlled by Glycosaminoglycans. THE JOURNAL OF IMMUNOLOGY 2005; 175:3377-85. [PMID: 16116231 DOI: 10.4049/jimmunol.175.5.3377] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bradykinin is a potent inflammatory mediator that induces vasodilation, vascular leakage, and pain sensations. This short-lived peptide hormone is liberated from its large precursor protein high molecular weight kininogen (HK) through the contact system cascade involving coagulation factor XII and plasma kallikrein. Although bradykinin release is well established in vitro, the factors and mechanisms controlling bradykinin generation in vivo are still incompletely understood. In this study we demonstrate that binding of HK to glycosaminoglycans (GAGs) of the heparan and chondroitin sulfate type efficiently interferes with bradykinin release in plasma and on endothelial surfaces. Proteolytic bradykinin production on endothelial cells is restored following degradation of cell surface GAG through heparinase. Alternatively, application of HK fragments D3 or light chain, which compete with uncleaved HK for cell binding, promote kininogen proteolysis and bradykinin release. Intravital microscopy revealed that HK fragments increase bradykinin-mediated mesentery microvascular leakage. Topical application of D3 or light chain enhanced bradykinin generation and edema formation in the mouse skin. Our results demonstrate that bradykinin formation is controlled by HK binding to and detachment from GAGs. Separation of the precursor from cell surfaces is a prerequisite for its efficient proteolytic processing. By this means, fragments arising from HK processing propagate bradykinin generation, revealing a novel regulatory level for the kallikrein-kinin system.
Collapse
Affiliation(s)
- Thomas Renné
- Institute for Clinical Biochemistry and Pathobiochemistry, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany.
| | | | | |
Collapse
|
22
|
Sokolov AV, Zakharova ET, Shavlovskiĭ MM, Vasil'ev VB. Isolation of Stable Human Ceruloplasmin and Its Interaction with Salmon Protamine. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2005; 31:269-79. [PMID: 16004385 DOI: 10.1007/s11171-005-0033-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An interaction was discovered between ceruloplasmin (CP, a ferro-O2-oxidoreductase, EC 1.16.3.1), a copper-containing protein of human blood plasma, and salmon protamine (PR), a cationic polypeptide of vertebrates that provides a compact structure of spermatozoid DNA. Addition of PR to CP at a molar ratio of 2: 1 decreases the CP electrophoretic mobility. Two types of CP binding centers for PR were determined: two centers with a high (Kd1 of 5.31 x 10(-7) M) and four centers with a low affinity (Kd2 of 1.56 x 10(-5) M). PR was shown to form complexes with CPs of various animal species. The CP-PR complex dissociates at an increased ionic strength (0.3 M NaCl), at pH decreased below 4.7, or in the presence of added polyanions (DNA, lipopolysaccharides, or heparin) and/or polylysine, which indicates the electrostatic nature of the interaction. The CP-PR interaction increased 1.5-fold the rate of CP-catalyzed oxidation of Fe2+. The preliminary treatment of blood plasma with arginine-Sepharose and heparin-Sepharose (to remove the blood coagulation factors) and affinity chromatography on PR-Sepharose helped isolate the practically unproteolyzed monomeric CP in 90% yield; it remained stable for more than two months at 37 degrees C. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.
Collapse
|