1
|
Tanodekaew S, Channasanon S, Kaewkong P. Physico-chemical properties and biocompatibility of in situ-hardening polylactide/nano hydroxyapatite composite for bone substitute. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1990056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siriporn Tanodekaew
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Somruethai Channasanon
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| | - Pakkanun Kaewkong
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center, Pathumthani, Thailand
| |
Collapse
|
2
|
Kupikowska-Stobba B, Kasprzak M. Fabrication of nanoparticles for bone regeneration: new insight into applications of nanoemulsion technology. J Mater Chem B 2021; 9:5221-5244. [PMID: 34142690 DOI: 10.1039/d1tb00559f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introducing synthetic bone substitutes into the clinic was a major breakthrough in the regenerative medicine of bone. Despite many advantages of currently available bone implant materials such as biocompatiblity and osteoconductivity, they still suffer from relatively poor bioactivity, osteoinductivity and osteointegration. These properties can be effectively enhanced by functionalization of implant materials with nanoparticles such as osteoinductive hydroxyapatite nanocrystals, resembling inorganic part of the bone, or bioactive polymer nanoparticles providing sustained delivery of pro-osteogenic agents directly at implantation site. One of the most widespread techniques for fabrication of nanoparticles for bone regeneration applications is nanoemulsification. It allows manufacturing of nanoscale particles (<100 nm) that are injectable, 3D-printable, offer high surface-area-to-volume-ratio and minimal mass transport limitations. Nanoparticles obtained by this technique are of particular interest for biomedical engineering due to fabrication procedures requiring low surfactant concentrations, which translates into reduced risk of surfactant-related in vivo adverse effects and improved biocompatibility of the product. This review discusses nanoemulsion technology and its current uses in manufacturing of nanoparticles for bone regeneration applications. In the first section, we introduce basic concepts of nanoemulsification including nanoemulsion formation, properties and preparation methods. In the next sections, we focus on applications of nanoemulsions in fabrication of nanoparticles used for delivery of drugs/biomolecules facilitating osteogenesis and functionalization of bone implants with special emphasis on biomimetic hydroxyapatite nanoparticles, synthetic polymer nanoparticles loaded with bioactive compounds and bone-targeting nanoparticles. We also highlight key challenges in formulation of nanoparticles via nanoemulsification and outline potential further improvements in this field.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| | - Mirosław Kasprzak
- ŁUKASIEWICZ Research Network - Institute of Ceramics and Building Materials, Ceramic and Concrete Division in Warsaw, Department of Biomaterials, Postępu 9, 02-677, Warsaw, Poland.
| |
Collapse
|
3
|
Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater 2020; 113:1-22. [PMID: 32622053 DOI: 10.1016/j.actbio.2020.06.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The growing demand for personalized implants and tissue scaffolds requires advanced biomaterials and processing strategies for the fabrication of three-dimensional (3D) structures mimicking the complexity of the extracellular matrix. During the last years, biofabrication approaches like 3D printing of cell-laden (soft) hydrogels have been gaining increasing attention to design such 3D functional environments which resemble natural tissues (and organs). However, often these polymeric hydrogels show poor stability and low printing fidelity and hence various approaches in terms of multi-material mixtures are being developed to enhance pre- and post-printing features as well as cytocompatibility and post-printing cellular development. Additionally, bioactive properties improve the binding to the surrounding (host) tissue at the implantation site. In this review we focus on the state-of-the-art of a particular type of heterogeneous bioinks, which are composed of polymeric hydrogels incorporating inorganic bioactive fillers. Such systems include isotropic and anisotropic silicates like bioactive glasses and nanoclays or calcium-phosphates like hydroxyapatite (HAp), which provide in-situ crosslinking effects and add extra functionality to the matrix, for example mineralization capability. The present review paper discusses in detail such bioactive composite bioink systems based on the available literature, revealing that a great variety has been developed with substantially improved bioprinting characteristics, in comparison to the pure hydrogel counterparts, and enabling high viability of printed cells. The analysis of the results of the published studies demonstrates that bioactive fillers are a promising addition to hydrogels to print stable 3D constructs for regeneration of tissues. Progress and challenges of the development and applications of such composite bioink approaches are discussed and avenues for future research in the field are presented. STATEMENT OF SIGNIFICANCE: Biofabrication, involving the processing of biocompatible hydrogels including cells (bioinks), is being increasingly applied for developing complex tissue and organ mimicking structures. A variety of multi-material bioinks is being investigated to bioprint 3D constructs showing shape stability and long-term biological performance. Composite hydrogel bioinks incorporating inorganic bioreactive fillers for 3D bioprinting are the subject of this review paper. Results reported in the literature highlight the effect of bioactive fillers on bioink properties, printability and on cell behavior during and after printing and provide important information for optimizing the design of future bioinks for biofabrication, exploiting the extra functionalities provided by inorganic fillers. Further functionalization with drugs/growth factors can target enhanced printability and local drug release for more specialized biomedical therapies.
Collapse
|
4
|
Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G. Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Zain Pardawala
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
5
|
Brown JL, Laurencin CT. Bone Tissue Engineering. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Synthesis and characterization of a novel freeze‐dried silanated chitosan bone tissue engineering scaffold reinforced with electrospun hydroxyapatite nanofiber. POLYM INT 2019. [DOI: 10.1002/pi.5833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Nelson C, Khan Y, Laurencin CT. Nanofiber/Microsphere Hybrid Matrices In Vivo for Bone Regenerative Engineering: A Preliminary Report. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:133-141. [PMID: 30687776 DOI: 10.1007/s40883-018-0055-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The demand for bone grafts has led to advances in regenerative engineering, a field at the intersection of advanced biomaterials, stem cell science, physics, developmental biology, and clinical translation. In this work, the authors evaluated a hybrid nanofiber/microsphere matrices both in vitro and in vivo for its ability to promote bone regeneration. Quantitative measures of cellular characteristics in vitro showed a higher fraction of marrow stromal cells with collagen promoter activity on hybrid matrices compared to control matrices (41% vs. 24%, p = 0.02). Control and hybrid matrices were then implanted for 6 weeks in calvarial defects of mice, and the animals received a single injection of calcein 1 day prior to sacrifice to visualize bone formation. Cryohistology of the undecalfied implants were evaluated for markers of bone mineralization, which revealed evidence of higher levels of bone tissue formation in hybrid matrices compared to controls. These data provide support that nanofiber-permeated, sintered, composite microsphere matrices may be a particularly useful matrix for the regenerative engineering of bone.
Collapse
Affiliation(s)
- Clarke Nelson
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030
| | - Yusuf Khan
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Materials Science and Engineering, University of Connecticut, School of Engineering, Storrs, Connecticut 06268
| | - Cato T Laurencin
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, Connecticut 06030.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA Connecticut 06030
| |
Collapse
|
8
|
Zhang YT, Niu J, Wang Z, Liu S, Wu J, Yu B. Repair of Osteochondral Defects in a Rabbit Model Using Bilayer Poly(Lactide-co-Glycolide) Scaffolds Loaded with Autologous Platelet-Rich Plasma. Med Sci Monit 2017; 23:5189-5201. [PMID: 29088126 PMCID: PMC5676501 DOI: 10.12659/msm.904082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To examine the effects of the addition of autologous platelet-rich plasma (PRP) into bilayer poly(lactide-co-glycolide) (PLGA) scaffolds on the reconstruction of osteochondral defects in a rabbit model. MATERIAL AND METHODS Porous PLGA scaffolds were prepared in a bilayered manner to reflect the structure of chondral and subchondral bone. Bone defects, measuring 4 mm in diameter and 4 mm in thickness, were created in both knee joints in 18 healthy New Zealand white rabbits, aged between 120-180 days old. Rabbits were randomly divided into three groups: rabbits with bone defects implanted with bilayer PLGA scaffolds (PLGA group) (N=6); or with bilayer PLGA and autologous PRP (PLGA/PRP group) (N=6); and the untreated group (control group) (N=6). The gross morphology, histology, and immunohistochemistry for the expression of collagen type II and aggrecan were observed at 12 weeks after surgery and compared using a scoring system. Micro-computed tomography (CT) imaging and relative expression of specific genes were also assessed. RESULTS The platelet concentrations in the PRP samples were found to be 4.9 times greater than that of whole blood samples. The total score on gross appearance and histology was greatest in the PLGA/PRP group, as was the expression of collagen II and aggrecan of the neo-tissue. Micro-CT imaging showed that more subchondral bone was formed in the PLGA/PRP group. CONCLUSIONS Bilayer PLGA scaffolds loaded with autologous PRP improve the reconstruction of osteochondral defects in the rabbit model.
Collapse
Affiliation(s)
- Yong-tao Zhang
- Department of Trauma and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, P.R. China
| | - Jing Niu
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, P.R. China
| | - Zhao Wang
- Institute of Orthopedics and Traumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Song Liu
- Institute of Orthopedics and Traumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianqun Wu
- Department of Trauma and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bin Yu
- Department of Trauma and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
9
|
Tahriri M, Moztarzadeh F, Tahriri A, Eslami H, Khoshroo K, Jazayeri HE, Tayebi L. Evaluation of the in vitro biodegradation and biological behavior of poly(lactic-co-glycolic acid)/nano-fluorhydroxyapatite composite microsphere-sintered scaffold for bone tissue engineering. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517720814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The objective of this research was to study the degradation and biological characteristics of the three-dimensional porous composite scaffold made of poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite microsphere using sintering method for potential bone tissue engineering. Our previous experimental results demonstrated that poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite composite scaffold with a ratio of 4:1 sintered at 90ºC for 2 h has the greatest mechanical properties and a proper pore structure for bone repair applications. The weight loss percentage of both poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite and poly(lactic- co-glycolic acid) scaffolds demonstrated a monotonic trend with increasing degradation time, that is, the incorporation of nano-fluorhydroxyapatite into polymeric scaffold could lead to weight loss in comparison with that of pure poly(lactic- co-glycolic acid). The pH change for composite scaffolds showed that there was a slight decrease until 2 weeks after immersion in simulated body fluid, followed by a significant increase in the pH of simulated body fluid without a scaffold at the end of immersion time. The mechanical properties of composite scaffold were higher than that of poly(lactic- co-glycolic acid) scaffold at total time of incubation in simulated body fluid; however, it should be noted that the incorporation of nano-fluorhydroxyapatite into composite scaffold leads to decline in the relatively significant mechanical strength and modulus during hydrolytic degradation. In addition, MTT assay and alkaline phosphatase activity results defined that a general trend of increasing cell viability was seen for poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite scaffold sintered by time when compared to control group. Eventually, experimental results exhibited poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite microsphere-sintered scaffold is a promising scaffold for bone repair.
Collapse
Affiliation(s)
- Mohammadreza Tahriri
- School of Dentistry, Marquette University, Milwaukee, WI, USA
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Dental Biomaterials Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Arash Tahriri
- Faculty of Management, University of Tehran, Tehran, Iran
| | - Hossein Eslami
- Department of Biomedical Engineering, Haeri University of Meybod, Yazd, Iran
| | - Kimia Khoshroo
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Hossein E Jazayeri
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Macuvele DLP, Nones J, Matsinhe JV, Lima MM, Soares C, Fiori MA, Riella HG. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1248-1262. [DOI: 10.1016/j.msec.2017.02.070] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/30/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
11
|
Assanah F, McDermott C, Malinowski S, Sharmin F, Kumbar S, Adams DJ, Khan Y. Enhancing the Functionality of Trabecular Allografts Through Polymeric Coating for Factor Loading. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Gómez-Lizárraga KK, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629025 DOI: 10.1016/j.msec.2017.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such as porosity, mechanical strength, pore size and pore interconnectivity, and biocompatibility. In this study, we employed 3D bioplotting, a RP technology, to fabricate scaffolds made from (i) pure polycaprolactone (PCL) and (ii) a composite based on PCL and ceramic micro-powder. The ceramics used for the composite were bovine bone filling Nukbone® (NKB), and hydroxyapatite (HA) with 5%, 10% or 20% wt. CONTENT The scaffolds were fabricated in a cellular lattice structure (i.e. meshing mode) using a 0/90° lay down pattern with a continuous contour filament in order to achieve interconnected porous reticular structures. We varied the temperature, as well as injection speed and pressure during the bioplotting process to achieve scaffolds with pore size ranging between 200 and 400μm and adequate mechanical stability. The resulting scaffolds had an average pore size of 323μm and an average porosity of 32%. Characterization through ATR-FTIR revealed the presence of the characteristic bands of hydroxyapatite in the PCL matrix, and presented an increase of the intensity of the phosphate and carbonyl bands as the ceramic content increased. The bioplotted 3D scaffolds have a Young's modulus (E) in the range between 0.121 and 0.171GPa, which is compatible with the modulus of natural bone. PCL/NKB scaffolds, particularly 10NKBP (10% NKB wt.) exhibited the highest proliferation optical density, demonstrating an evident osteoconductive effect when cultured in Dulbecco's Modified Eagle Medium (DMEM). Scanning electron microscopy (SEM) confirmed osteoblast anchorage to all composite scaffolds, but a low adhesion to the all-PCL scaffold, as well as cell proliferation. The results from this study demonstrate the potential of PCL/NKB 3D bioplotted scaffolds as viable platforms to enable osseous tissue formation, which can be used in several tissue engineering applications, including improvement of bone tissue regeneration.
Collapse
Affiliation(s)
- K K Gómez-Lizárraga
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - C Flores-Morales
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - M L Del Prado-Audelo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - M A Álvarez-Pérez
- Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - M C Piña-Barba
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| | - C Escobedo
- Department of Chemical Engineering, Queen's University, 19 Division St., Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
13
|
Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Pharm Res 2017; 34:1152-1170. [PMID: 28342056 PMCID: PMC5418324 DOI: 10.1007/s11095-017-2147-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are responsible for bone formation during embryogenesis and bone regeneration and remodeling. The osteoinductive action of BMPs, especially BMP-2 and BMP-7, has led to their use in a range of insurmountable treatments where intervention is required for effective bone regeneration. Introduction of BMP products to the market, however, was not without reports of multiple complications and side effects. Aiming for optimization of the therapeutic efficacy and safety, efforts have been focused on improving the delivery of BMPs to lower the administered dose, localize the protein, and prolong its retention time at the site of action. A major challenge with these efforts is that the protein stability should be maintained. With this review we attempt to shed light on how the stability of BMPs can be affected in the formulation and delivery processes. We first provide a short overview of the current standing of the complications experienced with BMP products. We then discuss the different delivery parameters studied in association with BMPs, and their influence on the efficacy and safety of BMP treatments. In particular, the literature addressing the stability of BMPs and their possible interactions with components of the delivery system as well as their sensitivity to conditions of the formulation process is reviewed. In summary, recent developments in the fields of bioengineering and biopharmaceuticals suggest that a good understanding of the relationship between the formulation/delivery conditions and the stability of growth factors such as BMPs is a prerequisite for a safe and effective treatment.
Collapse
|
14
|
Veronick J, Assanah F, Nair LS, Vyas V, Huey B, Khan Y. The effect of acoustic radiation force on osteoblasts in cell/hydrogel constructs for bone repair. Exp Biol Med (Maywood) 2016; 241:1149-56. [PMID: 27229906 PMCID: PMC4950365 DOI: 10.1177/1535370216649061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ultrasound, or the application of acoustic energy, is a minimally invasive technique that has been used in diagnostic, surgical, imaging, and therapeutic applications. Low-intensity pulsed ultrasound (LIPUS) has been used to accelerate bone fracture repair and to heal non-union defects. While shown to be effective the precise mechanism behind its utility is still poorly understood. In this study, we considered the possibility that LIPUS may be providing a physical stimulus to cells within bony defects. We have also evaluated ultrasound as a means of producing a transdermal physical force that could stimulate osteoblasts that had been encapsulated within collagen hydrogels and delivered to bony defects. Here we show that ultrasound does indeed produce a measurable physical force and when applied to hydrogels causes their deformation, more so as ultrasound intensity was increased or hydrogel stiffness decreased. MC3T3 mouse osteoblast cells were then encapsulated within hydrogels to measure the response to this force. Statistically significant elevated gene expression for alkaline phosphatase and osteocalcin, both well-established markers of osteoblast differentiation, was noted in encapsulated osteoblasts (p < 0.05), suggesting that the physical force provided by ultrasound may induce bone formation in part through physically stimulating cells. We have also shown that this osteoblastic response is dependent in part on the stiffness of the encapsulating hydrogel, as stiffer hydrogels resulted in reducing or reversing this response. Taken together this approach, encapsulating cells for implantation into a bony defect that can potentially be transdermally loaded using ultrasound presents a novel regenerative engineering approach to enhanced fracture repair.
Collapse
Affiliation(s)
- James Veronick
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-3247, USA
| | - Fayekah Assanah
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-3247, USA
| | - Lakshmi S Nair
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-3247, USA Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269-3136, USA Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Varun Vyas
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269-3136, USA
| | - Bryan Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269-3136, USA
| | - Yusuf Khan
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269-3247, USA Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269-3136, USA Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
15
|
Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Healthc Mater 2015; 4:1268-85. [PMID: 25846250 PMCID: PMC4507442 DOI: 10.1002/adhm.201400760] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/21/2015] [Indexed: 01/08/2023]
Abstract
Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts.
Collapse
Affiliation(s)
- Xiaohua Yu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Xiaoyan Tang
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268
| | - Shalini V. Gohil
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06268, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268
| |
Collapse
|
16
|
Sharmin F, Adams D, Pensak M, Dukas A, Lieberman J, Khan Y. Biofunctionalizing devitalized bone allografts through polymer-mediated short and long term growth factor delivery. J Biomed Mater Res A 2015; 103:2847-54. [DOI: 10.1002/jbm.a.35435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Farzana Sharmin
- Department of Materials Science and Engineering; University of Connecticut; Storrs Connecticut
| | - Douglas Adams
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| | - Michael Pensak
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| | - Alexander Dukas
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| | - Jay Lieberman
- Department of Orthopaedic Surgery; Keck School of Medicine of the University of Southern California; Los Angeles CA
| | - Yusuf Khan
- Department of Materials Science and Engineering; University of Connecticut; Storrs Connecticut
- Department of Orthopaedic Surgery; University of Connecticut Health Center; Farmington Connecticut
- Institute for Regenerative Engineering; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
17
|
Yamanaka K, Yamamoto K, Sakai Y, Suda Y, Shigemitsu Y, Kaneko T, Kato K, Kumagai T, Kato Y. Seeding of mesenchymal stem cells into inner part of interconnected porous biodegradable scaffold by a new method with a filter paper. Dent Mater J 2015; 34:78-85. [PMID: 25748462 DOI: 10.4012/dmj.2013-330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An appropriate physical support provided by scaffolds creates a supportive environment that directs proliferation and differentiation of stem cells. However, it is difficult to homogenously inoculate stem cells into the inner part of scaffolds at high cell densities. In this study, mesenchymal stem cells were seeded into a hydroxyapatite/poly (D, L-lactic-co-glycolic acid) (HAP/PLGA) scaffold that had enough mechanical strength and porous 3-D structure. With an aid of a filter paper placed under the bottom of a HAP/PLGA block, the cells suspended in a culture medium flowed from the top to the bottom through interconnected pores in the scaffold, and distributed almost homogenously, as compared to cell distribution near the surface of the block by the conventional method using centrifugation or reduced pressure. This simple method with a filter paper may be useful in preparation of cell-scaffold complexes for tissue engineering.
Collapse
|
18
|
Sarker A, Linh NTB, Jung HI, Seo HS, Lee BT. Fabrication of recombinant human bone morphogenetic protein-2 coated porous biphasic calcium phosphate-sodium carboxymethylcellulose-gelatin scaffold and its In vitro evaluation. Macromol Res 2014. [DOI: 10.1007/s13233-014-2185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Nelson C, Khan Y, Laurencin CT. Nanofiber-microsphere (nano-micro) matrices for bone regenerative engineering: a convergence approach toward matrix design. Regen Biomater 2014; 1:3-9. [PMID: 26816620 PMCID: PMC4669008 DOI: 10.1093/rb/rbu002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/24/2022] Open
Abstract
Bone is an essential organ for health and quality of life. Due to current shortfalls in therapy for bone tissue engineering, scientists have sought the application of synthetic materials as bone graft substitutes. As a composite organic/inorganic material with significant extra cellular matrix (ECM), one way to improve bone graft substitutes may be to engineer a synthetic matrix that is influenced by the physical appearance of natural ECM networks. In this work, the authors evaluate composite, hybrid scaffolds for bone tissue engineering based on composite ceramic/polymer microsphere scaffolds with synthetic ECM-mimetic networks in their pore spaces. Using thermally induced phase separation, nanoscale fibers were deposited in the pore spaces of structurally sound microsphere-based scaffold with a density proportionate to the initial polymer concentration. Porosimetry and mechanical testing indicated no significant changes in overall pore characteristics or mechanical integrity as a result of the fiber deposition process. These scaffolds displayed adequate mechanical integrity on the scale of human trabecular bone and supported the adhesion and proliferation of cultured mouse calvarial osteoblasts. Drawing from natural cues, these scaffolds may represent a new avenue forward for advanced bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Clarke Nelson
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yusuf Khan
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
20
|
Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, Lo KWH, Khan YM, Laurencin CT. Simple signaling molecules for inductive bone regenerative engineering. PLoS One 2014; 9:e101627. [PMID: 25019622 PMCID: PMC4096515 DOI: 10.1371/journal.pone.0101627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
With greater than 500,000 orthopaedic procedures performed in the United States each year requiring a bone graft, the development of novel graft materials is necessary. We report that some porous polymer/ceramic composite scaffolds possess intrinsic osteoinductivity as shown through their capacity to induce in vivo host osteoid mineralization and in vitro stem cell osteogenesis making them attractive synthetic bone graft substitutes. It was discovered that certain low crystallinity ceramics partially dissociate into simple signaling molecules (i.e., calcium and phosphate ions) that induce stem cells to endogenously produce their own osteoinductive proteins. Review of the literature has uncovered a variety of simple signaling molecules (i.e., gases, ions, and redox reagents) capable of inducing other desirable stem cell differentiation through endogenous growth factor production. Inductive simple signaling molecules, which we have termed inducerons, represent a paradigm shift in the field of regenerative engineering where they can be utilized in place of recombinant protein growth factors.
Collapse
Affiliation(s)
- Emily K. Cushnie
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Bret D. Ulery
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Stephen J. Nelson
- School of Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Meng Deng
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Swaminathan Sethuraman
- Center for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Stephen B. Doty
- Hospital for Special Surgery, New York, New York, United States of America
| | - Kevin W. H. Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Yusuf M. Khan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
21
|
Milovac D, Gamboa-Martínez TC, Ivankovic M, Gallego Ferrer G, Ivankovic H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:264-72. [PMID: 25063118 DOI: 10.1016/j.msec.2014.05.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/14/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
Abstract
In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope.
Collapse
Affiliation(s)
- Dajana Milovac
- Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia.
| | | | - Marica Ivankovic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Valencia, Spain
| | - Hrvoje Ivankovic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia
| |
Collapse
|
22
|
Karadzic I, Vucic V, Jokanovic V, Debeljak-Martacic J, Markovic D, Petrovic S, Glibetic M. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2014; 103:350-7. [PMID: 24665062 DOI: 10.1002/jbm.a.35180] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/10/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
Abstract
The aim of this study was to examine the differential capacity of isolated dental pulp stem cells (SHED) cultured onto four different scaffold materials. The differential potential of isolated SHED was examined on the following scaffolds: porous hydroxyapatite (pHAP) alone or combined with three polymers [polylactic-co-glycolic acid (PLGA), alginate, and ethylene vinylacetate / ethylene vinylversatate (EVA/EVV)]. SHED were isolated by "outgrowth" method and characterized by the flow cytometry. Viability of cells grown with scaffolds was assessed by MTT and LDH assays. No significant cytotoxic effect of any of the tested materials was shown. Staining with alizarin red and estimated alkaline phosphatase activity to identify differentiation, demonstrated osteoblastic phenotype of SHED and newly deposited and mineralized extra cellular matrix (ECM) in presence of all tested scaffolds. The developed ECM seen at scanning electronic micrographs additionally confirmed the osteogenic differentiation and biocompatibility between cells and materials. In summary, all studied biomaterials are suitable carriers for proliferation and osteoblastic differentiation of dental pulp mesenchymal stem cells in vitro.
Collapse
Affiliation(s)
- Ivana Karadzic
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, 11000, Serbia
| | | | | | | | | | | | | |
Collapse
|
23
|
Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 2014; 3:835-51. [PMID: 17280547 DOI: 10.1586/17434440.3.6.835] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymeric scaffolds for tissue engineering can be prepared with a multitude of different techniques. Many diverse approaches have recently been under development. The adaptation of conventional preparation methods, such as electrospinning, induced phase separation of polymer solutions or porogen leaching, which were developed originally for other research areas, are described. In addition, the utilization of novel fabrication techniques, such as rapid prototyping or solid free-form procedures, with their many different methods to generate or to embody scaffold structures or the usage of self-assembly systems that mimic the properties of the extracellular matrix are also described. These methods are reviewed and evaluated with specific regard to their utility in the area of tissue engineering.
Collapse
Affiliation(s)
- Thomas Weigel
- Department of Polymer Technology, Institute of Polymer Research, GKSS Research Center Geesthacht, Kantstr 55, D-14513 Teltow, Germany.
| | | | | |
Collapse
|
24
|
Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:437-45. [PMID: 24268280 DOI: 10.1016/j.msec.2013.09.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 12/22/2022]
Abstract
In the present study, poly(ε-caprolactone)-coated hydroxyapatite scaffold derived from cuttlefish bone was prepared. Hydrothermal transformation of aragonitic cuttlefish bone into hydroxyapatite (HAp) was performed at 200°C retaining the cuttlebone architecture. The HAp scaffold was coated with a poly(ε-caprolactone) (PCL) using vacuum impregnation technique. The compositional and morphological properties of HAp and PCL-coated HAp scaffolds were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. Bioactivity was tested by immersion in Hank's balanced salt solution (HBSS) and mechanical tests were performed at compression. The results showed that PCL-coated HAp (HAp/PCL) scaffold resulted in a material with improved mechanical properties that keep the original interconnected porous structure indispensable for tissue growth and vascularization. The compressive strength (0.88MPa) and the elastic modulus (15.5MPa) are within the lower range of properties reported for human trabecular bones. The in vitro mineralization of calcium phosphate (CP) that produces the bone-like apatite was observed on both the pure HAp scaffold and the HAp/PCL composite scaffold. The prepared bioactive scaffold with enhanced mechanical properties is a good candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Dajana Milovac
- Faculty of Chemical Engineering and Technology, University of Zagreb, Croatia.
| | | | | | | |
Collapse
|
25
|
D'Antò V, Raucci MG, Guarino V, Martina S, Valletta R, Ambrosio L. Behaviour of human mesenchymal stem cells on chemically synthesized HA-PCL scaffolds for hard tissue regeneration. J Tissue Eng Regen Med 2013; 10:E147-54. [PMID: 23723157 DOI: 10.1002/term.1768] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/13/2013] [Accepted: 04/13/2013] [Indexed: 01/09/2023]
Abstract
Our goal was to characterize the response of human mesenchymal stem cells (hMSCs) to a novel composite scaffold for bone tissue engineering. The hydroxyapatite-polycaprolactone (HA-PCL) composite scaffolds were prepared by a sol-gel method at room temperature and the scaffold morphology was investigated by scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) to validate the synthesis process. The response of two different lines of hMSCs, bone-marrow-derived human mesenchymal stem cells (BMSCs) and dental pulp stem cells (DPSCs) in terms of cell proliferation and differentiation into the osteoblastic phenotype, was evaluated using Alamar blue assay, SEM, histology and alkaline phosphatase activity. Our results indicate that tissue engineering by means of composite HA-PCL scaffolds may represent a new therapeutic strategy to repair craniofacial bone defects.
Collapse
Affiliation(s)
- Vincenzo D'Antò
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy.,Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy.,Department of Pediatric Surgery and Transplantation, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Grazia Raucci
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| | - Vincenzo Guarino
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| | - Stefano Martina
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy
| | - Rosa Valletta
- Department of Neurosciences, Reproductive Sciences and Oral Sciences, University of Naples 'Federico II', Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials (IMCB), National Research Council of Italy (CNR), Naples, Italy
| |
Collapse
|
26
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1350] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
27
|
Sahoo NG, Pan YZ, Li L, He CB. Nanocomposites for bone tissue regeneration. Nanomedicine (Lond) 2013; 8:639-53. [DOI: 10.2217/nnm.13.44] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.
Collapse
Affiliation(s)
- Nanda Gopal Sahoo
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
| | - Yong Zheng Pan
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
| | - Lin Li
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Chao Bin He
- Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
| |
Collapse
|
28
|
Cheng Q, Rutledge K, Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng 2013; 41:904-16. [PMID: 23283475 DOI: 10.1007/s10439-012-0728-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/17/2012] [Indexed: 01/29/2023]
Abstract
Despite their indisputable clinical value, current tissue engineering strategies face major challenges in recapitulating the natural nano-structural and morphological features of native bone. The aim of this study is to take a step forward by developing a porous scaffold with appropriate mechanical strength and controllable surface roughness for bone repair. This was accomplished by homogenous dispersion of carbon nanotubes (CNTs) in a poly(lactide-co-glycolide) (PLGA) solution followed by a solvent casting/particulate leaching scaffold fabrication. Our results demonstrated that CNT/PLGA composite scaffolds possessed a significantly higher mechanical strength as compared to PLGA scaffolds. The incorporation of CNTs led to an enhanced surface roughness and resulted in an increase in the attachment and proliferation of MC3T3-E1 osteoblasts. Most interestingly, the in vitro osteogenesis studies demonstrated a significantly higher rate of differentiation on CNT/PLGA scaffolds compared to the control PLGA group. These results all together demonstrate the potential of CNT/PLGA scaffolds for bone tissue engineering as they possess the combined effects of mechanical strength and osteogenicity.
Collapse
Affiliation(s)
- Qingsu Cheng
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
29
|
Brown JL, Kumbar SG, Laurencin CT. Bone Tissue Engineering. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Kim JH, Kim TH, Jin GZ, Park JH, Yun YR, Jang JH, Kim HW. Mineralized poly(lactic acid) scaffolds loading vascular endothelial growth factor and the in vivo performance in rat subcutaneous model. J Biomed Mater Res A 2012; 101:1447-55. [PMID: 23114998 DOI: 10.1002/jbm.a.34446] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/23/2012] [Accepted: 09/05/2012] [Indexed: 01/05/2023]
Abstract
The functionalization of degradable polymeric scaffolds with therapeutic molecules such as vascular endothelial growth factor (VEGF) is a key strategy to gain better regenerative ability of damaged bone tissue by stimulating vascularization and tissue perfusion. Here, we combined VEGF with poly(lactic acid) (PLA) porous scaffold, after modifying the PLA surface with calcium phosphate (CaP) mineral. The mineralized PLA scaffold (mPLA) showed more effective loading capacity of VEGF than the PLA without mineralization as well as profiled sustainable release of VEGF for up to a couple of weeks. The VEGF-loaded mPLA scaffold presented significantly improved proliferation of primary endothelial cells for up to 7 days, with respect to the scaffold without the VEGF loading. The performance of the engineered scaffold was assessed after subcutaneous implantation in rats for 4 weeks. Histological results showed favorable tissue compatibility of both the mPLA scaffolds (with and without VEGF loading), as characterized by infiltration of inflammatory cells, formation of fibrous capsule, and ingrowth of fibroblasts into the matrices. Immunohistochemical staining of the von Willebrand Factor revealed significantly improved formation of neo-capillaries in the VEGF-loaded mPLA. Based on this study, the strategy of VEGF loading onto mineralized PLA scaffold is considered beneficial for gaining improved vascularization of the polymeric scaffolds, suggesting potential applications for bone tissue engineering.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater 2012; 1:2. [PMID: 29470743 PMCID: PMC5120665 DOI: 10.1186/2194-0517-1-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/19/2012] [Indexed: 01/17/2023] Open
Abstract
Driven by the increasing economic burden associated with bone injury and disease, biomaterial development for bone repair represents the most active research area in the field of tissue engineering. This article provides an update on recent advances in the development of bioactive biomaterials for bone regeneration. Special attention is paid to the recent developments of sintered Na-containing bioactive glasses, borate-based bioactive glasses, those doped with trace elements (such as Cu, Zn, and Sr), and novel elastomeric composites. Although bioactive glasses are not new to bone tissue engineering, their tunable mechanical properties, biodegradation rates, and ability to support bone and vascular tissue regeneration, as well as osteoblast differentiation from stem and progenitor cells, are superior to other bioceramics. Recent progresses on the development of borate bioactive glasses and trace element-doped bioactive glasses expand the repertoire of bioactive glasses. Although boride and other trace elements have beneficial effects on bone remodeling and/or associated angiogenesis, the risk of toxicity at high levels must be highly regarded in the design of new composition of bioactive biomaterials so that the release of these elements must be satisfactorily lower than their biologically safe levels. Elastomeric composites are superior to the more commonly used thermoplastic-matrix composites, owing to the well-defined elastic properties of elastomers which are ideal for the replacement of collagen, a key elastic protein within the bone tissue. Artificial bone matrix made from elastomeric composites can, therefore, offer both sound mechanical integrity and flexibility in the dynamic environment of injured bone.
Collapse
Affiliation(s)
- Qizhi Chen
- Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
| | - Chenghao Zhu
- Department of Materials Engineering, Monash University, Clayton, Victoria 3800 Australia
| | - George A Thouas
- Department of Zoology, The University of Melbourne, Parkville, Victoria 3010 Australia
| |
Collapse
|
32
|
Raucci MG, Guarino V, Ambrosio L. Biomimetic strategies for bone repair and regeneration. J Funct Biomater 2012; 3:688-705. [PMID: 24955638 PMCID: PMC4030995 DOI: 10.3390/jfb3030688] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 11/16/2022] Open
Abstract
The osseointegration rate of implants is related to their composition and surface roughness. Implant roughness favors both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate (Ca-P) coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. This review discusses two main routes for the manufacturing of polymer-based osteoconductive scaffolds for tissue engineering, namely the incorporation of bioceramic particles in the scaffold and the coating of a scaffold with a thin layer of apatite through a biomimetic process.
Collapse
Affiliation(s)
- Maria G Raucci
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, Naples 80125, Italy.
| | - Vincenzo Guarino
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, Naples 80125, Italy.
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council of Italy, P.le Tecchio 80, Naples 80125, Italy.
| |
Collapse
|
33
|
Chang NJ, Jhung YR, Issariyakul N, Yao CK, Yeh ML. Synergistic Stimuli by Hydrodynamic Pressure and Hydrophilic Coating on PLGA Scaffolds for Extracellular Matrix Synthesis of Engineered Cartilage. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:2133-51. [DOI: 10.1163/092050611x611648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Nai-Jen Chang
- a Institute of Biomedical Engineering, National Cheng Kung University , 1 University Road, Tainan City , 701 , Taiwan
| | - Yi-Ru Jhung
- b Department of Materials Science and Engineering , National Cheng Kung University , Taiwan
| | - Nontapot Issariyakul
- a Institute of Biomedical Engineering, National Cheng Kung University , 1 University Road, Tainan City , 701 , Taiwan
| | - Chih-Kai Yao
- b Department of Materials Science and Engineering , National Cheng Kung University , Taiwan
| | - Ming-Long Yeh
- a Institute of Biomedical Engineering, National Cheng Kung University , 1 University Road, Tainan City , 701 , Taiwan
- c Medical Device Innovation Center, National Cheng Kung University , Taiwan
| |
Collapse
|
34
|
Deng M, Cushnie EK, Lv Q, Laurencin CT. Poly(lactide-co-glycolide)-Hydroxyapatite Composites: The Development of Osteoinductive Scaffolds for Bone Regenerative Engineering. ACTA ACUST UNITED AC 2012. [DOI: 10.1557/opl.2012.737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTRegenerative engineering represents a new multidisciplinary paradigm to engineer complex tissues, organs, or organ systems through the integration of tissue engineering with advanced materials science, stem cell science and developmental biology. While possessing elements of tissue engineering, regenerative medicine, and morphogenesis, regenerative engineering is distinct from these individual disciplines since it specifically focuses on the integration and subsequent response of stem cells to biomaterials. One goal of regenerative engineering is the design of materials capable of inducing associated cells toward highly specialized functions. For example, the interaction of cells with calcium phosphate surfaces has proven to be an important signaling modality in promoting osteogenic differentiation. A biodegradable polymer-ceramic composite system has been developed from poly(lactide-co-glycolide) and in situ synthesized hydroxyapatite based on the three-dimensional sintered microsphere matrix platform. We have systematically optimized scaffold physico-chemical, mechanical, and structural properties for bone tissue regeneration applications by varying several parameters such as solution pH, polymer:ceramic ratio, sintering time and sintering temperature. The bioactivity of composite scaffolds is attributed to their ability to deliver calcium ions to surrounding medium and allow for reprecipitation of calcium phosphate on the scaffold surface. Furthermore, the composite scaffolds have demonstrated increased loading capacity of osteoinductive growth factor (BMP-2) and a more sustained release profile due to a greater number of adsorption sites provided by the ionic calcium and phosphate groups as well as a larger matrix surface area. In vitro cell studies were performed to investigate the efficacy of this composite system to induce osteogenic differentiation of human adipose-derived stem cells. Cells cultured on the ceramic containing scaffolds exhibited significantly higher expression of osteoblastic markers and greater extracellular matrix mineralization than non-ceramic containing scaffolds, indicating the potential for the ceramic phase to promote osteogenic differentiation. In addition, loaded BMP-2 retained its bioactivity as a mitogen and osteoinductive agent during the differentiation of adipose-derived stem cells into mature osteoblasts. In vivo evaluation using a critical-sized ulnar defect model in New Zealand white rabbits demonstrated the ability of composite scaffolds to support cellular infiltration throughout the scaffold pore structure and vascularization of new tissue, as well as facilitate formation of newly mineralized bone tissue. The work described herein provides strong evidence for the potential of polymer-ceramic composite scaffolds to function as osteoinductive bone graft substitutes, and paves the way for future development of advanced tissue-inducing materials.
Collapse
|
35
|
He H, Yu J, Cao J, E L, Wang D, Zhang H, Liu H. Biocompatibility and Osteogenic Capacity of Periodontal Ligament Stem Cells on nHAC/PLA and HA/TCP Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:179-94. [PMID: 20557694 DOI: 10.1163/092050609x12587018007767] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Huixia He
- a Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Jinhua Yu
- b Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Junkai Cao
- c Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Lingling E
- d Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Dongsheng Wang
- e Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Haizhong Zhang
- f Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Hongchen Liu
- g Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| |
Collapse
|
36
|
The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 2012; 33:3153-63. [PMID: 22264523 DOI: 10.1016/j.biomaterials.2011.12.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/31/2011] [Indexed: 11/21/2022]
Abstract
We investigated the active role of clinical rehabilitation in osteochondral regeneration using continuous passive motion (CPM) treatment together with acellular PLGA implants. CPM treatment was performed and compared with immobilization (Imm) treatment and intermittent active motion (IAM) treatment upon full-thickness osteochondral defects either with or without an PLGA implant in the PI (PLGA-implanted) and ED (empty defect) models. The PI and ED tests were performed in 38 rabbits for 4 and 12 weeks. At the end of testing, the PI-CPM group had the best regeneration with nearly normal articular surfaces and no joint contracture or inflammatory reaction. In contrast, degenerated joints, abrasion cartilage surfaces and synovitis were observed in the Imm and IAM groups. The achieved bone volume/tissue volume (BV/TV) ratio, which was measured using micro-CT, was significantly higher in the CPM group compared with the Imm and IAM groups; in particular, the performance of the PI-CPM group exceeds that of the ED-CPM group. The thickness of the trabecular (subchondral) bone was visibly increased in all of the groups from 4 through 12 weeks of testing. However, a histological analysis revealed differences in cartilage regeneration. At week 4, compared with the ED samples, all of the PI groups exhibited better collagen alignment and higher GAG content in the core of their repaired tissues, particularly in the PI-CPM group. At week 12, sound osteochondral repair and hyaline cartilaginous regeneration was observed in the PI-CPM group, and this was marked by type II collagen expression, osteocyte maturation, and trabecular boney deposition. In contrast, the PI-Imm and PI-IAM groups exhibited fibrocartilaginous tissues that had modest GAG content. In summary, this study demonstrates that early CPM treatment together with acellular PLGA implantation has significant positive effects on osteochondral regeneration in rabbit knee joint models.
Collapse
|
37
|
Yang HS, Park J, La WG, Jang HK, Lee M, Kim BS. 3,4-dihydroxyphenylalanine-assisted hydroxyapatite nanoparticle coating on polymer scaffolds for efficient osteoconduction. Tissue Eng Part C Methods 2011; 18:245-51. [PMID: 22047103 DOI: 10.1089/ten.tec.2011.0373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For bone regeneration applications, scaffolds made from a composite of a biodegradable polymer and ceramic have advantages over scaffolds made from only one component (biodegradable polymer or ceramic alone). In this study, a simple and rapid method was developed to induce hydroxyapatite (HA) nanoparticle adsorption on polyglycolic acid (PGA) scaffold surfaces. PGA meshes were coated with HA nanoparticles by immersing the scaffolds in a buffer solution containing 3,4-dihydroxyphenylalanine (DOPA), a critical, functional element in mussel adhesive protein known to strongly bind to various materials. Substantial HA coating on PGA scaffolds was achieved within 24 hours of immersion, as determined according to selective staining of ceramic particles, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive spectroscopy. To evaluate the osteoconduction efficacy of the scaffolds in vivo, PGA scaffolds, DOPA-coated PGA scaffolds, PGA scaffolds immersed in HA solution, and HA- and DOPA-coated PGA (HA-DOPA-PGA) scaffolds were implanted in critical-sized defects in mouse skulls for 8 weeks. Micro-computed tomography and histological analyses showed that bone regeneration in vivo was far more extensive on HA-DOPA-PGA scaffolds than on the other scaffolds. DOPA offers an efficient and simple method of HA coating on polymer scaffolds. HA-polymer composite scaffolds fabricated using this method could be useful as bone graft.
Collapse
Affiliation(s)
- Hee Seok Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
38
|
Synthesis and in vitro behavior of β-TCP zirconia/polymeric biocomposites for bio-applications. J Genet Eng Biotechnol 2011. [DOI: 10.1016/j.jgeb.2011.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. J Biomed Mater Res A 2011; 97:514-35. [DOI: 10.1002/jbm.a.33072] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/23/2010] [Accepted: 01/24/2011] [Indexed: 11/09/2022]
|
40
|
|
41
|
Rockwood DN, Gil ES, Park SH, Kluge JA, Grayson W, Bhumiratana S, Rajkhowa R, Wang X, Kim SJ, Vunjak-Novakovic G, Kaplan DL. Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. Acta Biomater 2011; 7:144-51. [PMID: 20656075 DOI: 10.1016/j.actbio.2010.07.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.
Collapse
|
42
|
Ranganathan SI, Yoon DM, Henslee AM, Nair MB, Smid C, Kasper FK, Tasciotti E, Mikos AG, Decuzzi P, Ferrari M. Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomater 2010; 6:3448-56. [PMID: 20346422 DOI: 10.1016/j.actbio.2010.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/26/2010] [Accepted: 03/19/2010] [Indexed: 01/22/2023]
Abstract
Mechanical stiffness is a fundamental parameter in the rational design of composites for bone tissue engineering in that it affects both the mechanical stability and the osteo-regeneration process at the fracture site. A mathematical model is presented for predicting the effective Young's modulus (E) and shear modulus (G) of a multi-phase biocomposite as a function of the geometry, material properties and volume concentration of each individual phase. It is demonstrated that the shape of the reinforcing particles may dramatically affect the mechanical stiffness: E and G can be maximized by employing particles with large geometrical anisotropy, such as thin platelet-like or long fibrillar-like particles. For a porous poly(propylene fumarate) (60% porosity) scaffold reinforced with silicon particles (10% volume concentration) the Young's (shear) modulus could be increased by more than 10 times by just using thin platelet-like as opposed to classical spherical particles, achieving an effective modulus E approximately 8 GPa (G approximately 3.5 GPa). The mathematical model proposed provides results in good agreement with several experimental test cases and could help in identifying the proper formulation of bone scaffolds, reducing the development time and guiding the experimental testing.
Collapse
|
43
|
Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI, Laurencin CT. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater 2010; 6:3457-70. [PMID: 20307694 DOI: 10.1016/j.actbio.2010.03.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/19/2010] [Accepted: 03/17/2010] [Indexed: 01/08/2023]
Abstract
Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation.
Collapse
|
44
|
Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res A 2010; 93:1193-208. [PMID: 19777575 DOI: 10.1002/jbm.a.32615] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | |
Collapse
|
45
|
Liu H, Webster TJ. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int J Nanomedicine 2010; 5:299-313. [PMID: 20463945 PMCID: PMC2865024 DOI: 10.2147/ijn.s9882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Indexed: 11/23/2022] Open
Abstract
Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical) of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale) ceramics to polymers enhances bone cell functions. However, in order to fully take advantage of the promising nanometer size effects that nanoceramics can provide when added to polymers, it is critical to uniformly disperse them in a polymer matrix. This is critical since ceramic nanoparticles inherently have a strong tendency to form larger agglomerates in a polymer matrix which may compromise their properties. Therefore, in this study, model ceramic nanoparticles, specifically titania and hydroxyapatite (HA), were dispersed in a model polymer (PLGA, poly-lactic-co-glycolic acid) using high-power ultrasonic energy. The mechanical properties of the resulting PLGA composites with well-dispersed ceramic (either titania or HA) nanoparticles were investigated and compared with composites with agglomerated ceramic nanoparticles. Results demonstrated that well-dispersed ceramic nanoparticles (titania or HA) in PLGA improved mechanical properties compared with agglomerated ceramic nanoparticles even though the weight percentage of the ceramics was the same. Specifically, well-dispersed nanoceramics in PLGA enhanced the tensile modulus, tensile strength at yield, ultimate tensile strength, and compressive modulus compared with the more agglomerated nanoceramics in PLGA. In summary, supplemented by previous studies that demonstrated greater osteoblast (bone-forming cell) functions on well-dispersed nanophase ceramics in polymers, the present study demonstrated that the combination of PLGA with well-dispersed nanoceramics enhanced mechanical properties necessary for load-bearing orthopedic/dental applications.
Collapse
Affiliation(s)
- Huinan Liu
- Division of Engineering, Brown University, Providence, RI, USA
| | | |
Collapse
|
46
|
Lv Q, Nair L, Laurencin CT. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J Biomed Mater Res A 2010; 91:679-91. [PMID: 19030184 DOI: 10.1002/jbm.a.32302] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications.
Collapse
Affiliation(s)
- Qing Lv
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
47
|
Cushnie EK, Khan YM, Laurencin CT. Tissue-engineered matrices as functional delivery systems: Adsorption and release of bioactive proteins from degradable composite scaffolds. J Biomed Mater Res A 2010; 94:568-75. [DOI: 10.1002/jbm.a.32722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Baino F, Verné E, Vitale-Brovarone C. Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2189-2195. [PMID: 19488679 DOI: 10.1007/s10856-009-3787-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/19/2009] [Indexed: 05/27/2023]
Abstract
This research work aims to propose highly porous polymer/bioactive glass composites as potential scaffolds for hard-tissue and soft-tissue engineering. The scaffolds were prepared by impregnating an open-cells polyurethane sponge with melt-derived particles of a bioactive glass belonging to the SiO(2)-P(2)O(5)-CaO-MgO-Na(2)O-K(2)O system (CEL2). Both the starting materials and the composite scaffolds were investigated from a morphological and structural viewpoint by X-ray diffraction analysis and scanning electron microscopy. Tensile mechanical tests, carried out according to international ISO and ASTM standards, were performed by using properly tailored specimens. In vitro tests by soaking the scaffolds in simulated body fluid (SBF) were also carried out to assess the bioactivity of the porous composites. It was found that the composite scaffolds were highly bioactive as after 7 days of soaking in SBF a HA layer grew on their surface. The obtained polyurethane/CEL2 composite scaffolds are promising candidates for tissue engineering applications.
Collapse
Affiliation(s)
- Francesco Baino
- Materials Science and Chemical Engineering Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | | | | |
Collapse
|
49
|
Guarino V, Taddei P, Foggia MD, Fagnano C, Ciapetti G, Ambrosio L. The Influence of Hydroxyapatite Particles on In Vitro Degradation Behavior of Poly ɛ-Caprolactone–Based Composite Scaffolds. Tissue Eng Part A 2009; 15:3655-68. [DOI: 10.1089/ten.tea.2008.0543] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincenzo Guarino
- Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy
| | - Paola Taddei
- Biochemistry Department “G. Moruzzi,” University of Bologna, Bologna, Italy
| | - Michele Di Foggia
- Biochemistry Department “G. Moruzzi,” University of Bologna, Bologna, Italy
| | - Concezio Fagnano
- Biochemistry Department “G. Moruzzi,” University of Bologna, Bologna, Italy
| | - Gabriela Ciapetti
- Laboratory for Pathophysiology of Orthopaedic Implants, Istituti Ortopedici Rizzoli, Bologna, Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy
| |
Collapse
|
50
|
Chesnutt BM, Yuan Y, Buddington K, Haggard WO, Bumgardner JD. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 2009; 15:2571-9. [PMID: 19309240 DOI: 10.1089/ten.tea.2008.0054] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is a significant clinical need to develop alternatives to autografts and allografts for bone grafting procedures. Porous, biodegradable scaffolds based on the biopolymer chitosan have been investigated as bone graft substitutes, and the addition of calcium phosphate to these scaffolds has been shown to improve the mechanical properties of the scaffold and may increase osteoconductivity. In this study, in vitro mineralization was examined for osteoblasts seeded in a porous scaffold composed of fused chitosan/nano-hydroxyapatite microspheres. Human fetal osteoblasts were cultured on composite and chitosan scaffolds for 21 days. On days 1, 4, 7, 14, and 21, total dsDNA, alkaline phosphatase, type I collagen, and osteocalcin production were measured. Total cellularity (measured by dsDNA), alkaline phosphatase, and type I collagen production were similar between the two scaffold groups. However, osteocalcin production occurred significantly earlier (day 7 vs. day 21) and was more than three times greater (0.0022 vs. 0.0068 ng/mL/ng DNA) on day 21 when osteoblasts were cultured on composite scaffolds. Osteocalcin is a marker of late osteoblastic differentiation and mineralized bone matrix formation. Therefore, the increase in osteocalcin production seen when cells were cultured on composite scaffolds may indicate that these scaffolds were superior to chitosan-only scaffolds in facilitating osteoblast mineralization. Composite scaffolds were also shown to be biocompatible and osteoconductive in a preliminary critical size rat calvarial defect study. These results demonstrate the potential of composite chitosan/nano-hydroxyapatite scaffolds to be used in bone tissue engineering.
Collapse
Affiliation(s)
- Betsy M Chesnutt
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee 38152, USA
| | | | | | | | | |
Collapse
|