1
|
Abstract
Conditions, accidents, and aging processes have brought with them the need to develop implants with higher technology that allow not only the replacement of missing tissue but also the formation of tissue and the recovery of its function. The development of implants is due to advances in different areas such as molecular-biochemistry (which allows the understanding of the molecular/cellular processes during tissue repair), materials engineering, tissue regeneration (which has contributed advances in the knowledge of the properties of the materials used for their manufacture), and the so-called intelligent biomaterials (which promote tissue regeneration through inductive effects of cell signaling in response to stimuli from the microenvironment to generate adhesion, migration, and cell differentiation processes). The implants currently used are combinations of biopolymers with properties that allow the formation of scaffolds with the capacity to mimic the characteristics of the tissue to be repaired. This review describes the advances of intelligent biomaterials in implants applied in different dental and orthopedic problems; by means of these advances, it is expected to overcome limitations such as additional surgeries, rejections and infections in implants, implant duration, pain mitigation, and mainly, tissue regeneration.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| | - Luz E Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico
| |
Collapse
|
2
|
Guo Y, Bian Z, Xu Q, Wen X, Kang J, Lin S, Wang X, Mi Z, Cui J, Zhang Z, Chen Z, Chen F. Novel tissue-engineered skin equivalent from recombinant human collagen hydrogel and fibroblasts facilitated full-thickness skin defect repair in a mouse model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112469. [PMID: 34702544 DOI: 10.1016/j.msec.2021.112469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Tissue-engineered skin equivalent (TESE) is an optimized alternative for the treatment of skin defects. Designing and fabricating biomaterials with desired properties to load cells is critical for the approach. In this study, we aim to develop a novel TESE with recombinant human collagen (rHC) hydrogel and fibroblasts to improve full-thickness skin defect repair. First, the bioactive effect of rHC on fibroblast proliferation, migration and phenotype was assayed. The results showed that rHC had good biocompatibility and could stimulate fibroblasts migration and secrete various growth factors. Then, rHC was cross-linked with transglutaminase (TG) to prepare rHC hydrogel. Rheometer tests indicated that 10% rHC/TG hydrogel could reach a oscillate stress of 251 Pa and remained stable. Fibroblasts were seeded into rHC/TG hydrogel to prepare TESE. Confocal microscope and scanning electronic microscope observation showed that seeded fibroblasts survived well in the hydrogel. Finally, the therapeutic effect of the newly prepared TESE was tested in a mouse full-thickness skin defect model. The results demonstrated that TESE could significantly improve skin defect repair in vivo. Conclusively, TESE prepared from rHC and fibroblasts in this study exhibits great potential for clinical application in the future.
Collapse
Affiliation(s)
- Yayuan Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhengyue Bian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Qian Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xiaomin Wen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juan Kang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shuai Lin
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xue Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhaoxiang Mi
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jihong Cui
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhen Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
3
|
He Y, Wang J, Si Y, Wang X, Deng H, Sheng Z, Li Y, Liu J, Zhao J. A novel gene recombinant collagen hemostatic sponge with excellent biocompatibility and hemostatic effect. Int J Biol Macromol 2021; 178:296-305. [PMID: 33636269 DOI: 10.1016/j.ijbiomac.2021.02.162] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
Effect and biosafety are the most noteworthy aspect of the hemostatic materials for trauma treatment. In this work, we evaluated the biocompatibility and hemostatic effect of a novel recombinant collagen hemostatic sponge according to ISO 10993. In addition, the interaction between the recombinant collagen hemostatic sponge and blood cells was observed by scanning electron microscopy, moreover, the hemostatic effect was evaluated by blood clotting assay in vitro and liver hemorrhage models in vivo. As the results, the novel recombinant collagen hemostatic sponge enables to be biodegradable completely in vivo, without stimulation, sensitization, acute toxicity, hematolysis or obvious immune rejection. The procoagulant effect of recombinant hemostatic sponge in vitro is significantly more excellent than that of natural collagen sponge due to the more promotive capacity of blood cell adhesion. Meanwhile, the liver hemorrhage models showed that the hemostatic time of recombinant collagen sponge was 19.33 ± 4.64 s, which was significantly better than that of natural collagen sponge (hemostatic time 31.62 ± 5.63 s). Therefore, the novel recombinant collagen hemostatic sponge with satisfactory biocompatibility and significant hemostatic effect can be performed as a potential novel type of clinical hemostatic products for research and development.
Collapse
Affiliation(s)
- Yue He
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China
| | - Jiuna Wang
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China
| | - Yuan Si
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China
| | - Xin Wang
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China
| | - Han Deng
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China
| | - ZhiGang Sheng
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China
| | - Yuan Li
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China; Medical College of Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - JianLi Liu
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China; College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jinli Zhao
- Medical Research and Development Center, Shaanxi Huikang Bio-Tech Co., Ltd., Xi'an 710054, China.
| |
Collapse
|
4
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Strawn R, Chen F, Jeet Haven P, Wong S, Park-Arias A, De Leeuw M, Xu Y. To achieve self-assembled collagen mimetic fibrils using designed peptides. Biopolymers 2018; 109:e23226. [PMID: 30133697 DOI: 10.1002/bip.23226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 11/07/2022]
Abstract
It has proven challenging to obtain collagen-mimetic fibrils by protein design. We recently reported the self-assembly of a mini-fibril showing a 35 nm, D-period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo-identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d-period of Col108 mini-fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter-helical interactions and produce the observed 35 nm d-period. Based on this unit-staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d-periodic mini-fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self-assemble into mini-fibrils having the same d-period of 35 nm. In contrast, no d-periodic mini-fibrils were observed for peptide 1U108, which does not have long-range repeating sequences in its primary structure. The findings of the periodic mini-fibrils of Col108 and 2U108 suggest a way forward to create collagen-mimetic fibrils for biomedical and industrial applications.
Collapse
Affiliation(s)
- Rebecca Strawn
- SGS, 606 Brandywine Pkwy, West Chester, Pennsylvania 19380, U.S.A
| | - FangFang Chen
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| | - Parminder Jeet Haven
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| | - Sam Wong
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| | - Anne Park-Arias
- Radium2 Capital Inc., 300 RXR Plaza, Uniondale, New York 11556, U.S.A
| | - Monique De Leeuw
- Delft University of Technology, Mekelweg 2, 2628 CD Delft, 347-205-0465, Netherlands
| | - Yujia Xu
- Department of Chemistry, Hunter College, Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10065, U.S.A
| |
Collapse
|
6
|
Khan F, Tanaka M. Designing Smart Biomaterials for Tissue Engineering. Int J Mol Sci 2017; 19:E17. [PMID: 29267207 PMCID: PMC5795968 DOI: 10.3390/ijms19010017] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023] Open
Abstract
The engineering of human tissues to cure diseases is an interdisciplinary and a very attractive field of research both in academia and the biotechnology industrial sector. Three-dimensional (3D) biomaterial scaffolds can play a critical role in the development of new tissue morphogenesis via interacting with human cells. Although simple polymeric biomaterials can provide mechanical and physical properties required for tissue development, insufficient biomimetic property and lack of interactions with human progenitor cells remain problematic for the promotion of functional tissue formation. Therefore, the developments of advanced functional biomaterials that respond to stimulus could be the next choice to generate smart 3D biomimetic scaffolds, actively interacting with human stem cells and progenitors along with structural integrity to form functional tissue within a short period. To date, smart biomaterials are designed to interact with biological systems for a wide range of biomedical applications, from the delivery of bioactive molecules and cell adhesion mediators to cellular functioning for the engineering of functional tissues to treat diseases.
Collapse
Affiliation(s)
- Ferdous Khan
- Soft-Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masaru Tanaka
- Soft-Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
7
|
Stynes GD, Kiroff GK, Page RS, Morrison WA, Kirkland MA. Surface-bound collagen 4 is significantly more stable than collagen 1. J Biomed Mater Res A 2017; 105:1364-1373. [PMID: 28130865 DOI: 10.1002/jbm.a.36019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 02/04/2023]
Abstract
Collagen 1 (C1) is commonly used to improve biological responses to implant surfaces. Here, the stability of C1 was compared with collagen 4 (C4) on a mixed macrodiol polyurethane, both adsorbed and covalently bound via acetaldehyde glow discharge polymerization and reductive amination. Substrate specimens were incubated in solutions of C1 and C4. The strength of conjugation was tested by incubation in 8 M urea followed by enzyme linked immunosorbent assays to measure residual C1 and C4. The basal lamina protein, laminin-332 (L332) was superimposed via adsorption on C4-treated specimens. Keratinocytes were grown on untreated, C1-treated, C4-treated, and C4 + L332-treated specimens, followed by measurement of cell area, proliferation, and focal adhesion density. Adsorbed C4 was shown to be significantly more stable than C1 and covalent conjugation conferred even greater stability, with no degradation of C4 over twenty days in 8 M urea. Cell growth was similar for C1 and C4, with no additional benefit conferred by superimposition of L332. The greater resistance of C4 to degradation may be consequent to cysteine residues and disulphide bonds in its non-collagenous domains. The use of C4 on implants, rather than C1, may improve their long-term stability in tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1364-1373, 2017.
Collapse
Affiliation(s)
- Gil D Stynes
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Flagship, Melbourne, Victoria, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - George K Kiroff
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- Department of Surgery, Queen Elizabeth Hospital, The University of Adelaide, Adelaide, South Australia, Australia
| | - Richard S Page
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Wayne A Morrison
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Mark A Kirkland
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
8
|
Abstract
There is a great deal of interest in obtaining recombinant collagen as an alternative source of material for biomedical applications and as an approach for obtaining basic structural and biological information. However, application of recombinant technology to collagen presents challenges, most notably the need for post-translational hydroxylation of prolines for triple-helix stability. Full length recombinant human collagens have been successfully expressed in cell lines, yeast, and several plant systems, while collagen fragments have been expressed in E. coli. In addition, bacterial collagen-like proteins can be expressed in high yields in E. coli and easily manipulated to incorporate biologically active sequences from human collagens. These expression systems allow manipulation of biologically active sequences within collagen, which has furthered our understanding of the relationships between collagen sequences, structure and function. Here, recombinant studies on collagen interactions with cell receptors, extracellular matrix proteins, and matrix metalloproteinases are reviewed, and discussed in terms of their potential biomaterial and biomedical applications.
Collapse
Affiliation(s)
- Barbara Brodsky
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3169, Australia
| |
Collapse
|
9
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
10
|
Yigit S, Dinjaski N, Kaplan DL. Fibrous proteins: At the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 2015; 113:913-29. [PMID: 26332660 DOI: 10.1002/bit.25820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Fibrous proteins, such as silk, elastin and collagen are finding broad impact in biomaterial systems for a range of biomedical and industrial applications. Some of the key advantages of biosynthetic fibrous proteins compared to synthetic polymers include the tailorability of sequence, protein size, degradation pattern, and mechanical properties. Recombinant DNA production and precise control over genetic sequence of these proteins allows expansion and fine tuning of material properties to meet the needs for specific applications. We review current approaches in the design, cloning, and expression of fibrous proteins, with a focus on strategies utilized to meet the challenges of repetitive fibrous protein production. We discuss recent advances in understanding the fundamental basis of structure-function relationships and the designs that foster fibrous protein self-assembly towards predictable architectures and properties for a range of applications. We highlight the potential of functionalization through genetic engineering to design fibrous protein systems for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Sezin Yigit
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Chemistry, Tufts University, Somerville, Massachusetts, 02145
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155.
| |
Collapse
|
11
|
Steplewski A, Fertala J, Beredjiklian P, Wang ML, Fertala A. Matrix-specific anchors: a new concept for targeted delivery and retention of therapeutic cells. Tissue Eng Part A 2015; 21:1207-16. [PMID: 25435302 DOI: 10.1089/ten.tea.2014.0401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biomedical strategies for tissue engineering and repair utilize specific cells, scaffolds, and growth factors to reconstruct elements of damaged tissue. The cellular element of these strategies is limited, however, by poor efficiency of delivery and retention of therapeutic cells in target sites. We propose that the presence of a cellular anchor that is able to specifically bind a defined element of target tissue will facilitate efficient binding and retention of therapeutic cells, thereby promoting repair of the target site. To do so, we engineered an artificial collagen-specific anchor (ACSA) that is able to specifically bind collagen I. The ACSA was engineered by creating a construct comprising rationally designed consecutive domains. The binding specificity of the ACSA was achieved by employing variable regions of a monoclonal antibody that recognizes a unique epitope present in human collagen I. Meanwhile, cell membrane localization of the ACSA was provided by the presence of a transmembrane domain. We determined that the ACSA was localized within cell membranes and interacted with its intended target, that is, collagen I. We have demonstrated that, in comparison to the control, the cells expressing the ACSA attached better to collagen I and exhibited improved retention in sites of seeding. We have also demonstrated that the presence of the ACSA did not interfere with cell proliferation, the biosynthesis of endogenous collagen I, or the biological functions of native collagen receptors. Since the presented cell delivery system utilizes a common characteristic of major connective tissues, namely the presence of collagen I, the findings described here could have a broad positive impact for improving the repair processes of tendon, ligament, bone, intervertebral disc, skin, and other collagen I-rich connective tissues. If successful, the ACSA approach to deliver cells will serve as an outline for developing cell delivery methods that target other elements of extracellular matrices, including other collagen types, laminins, and fibronectins.
Collapse
Affiliation(s)
- Andrzej Steplewski
- 1 Division of Orthopaedic Research, Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
12
|
Yu Z, An B, Ramshaw JA, Brodsky B. Bacterial collagen-like proteins that form triple-helical structures. J Struct Biol 2014; 186:451-61. [DOI: 10.1016/j.jsb.2014.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
13
|
|
14
|
Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. Natural and Genetically Engineered Proteins for Tissue Engineering. Prog Polym Sci 2012; 37:1-17. [PMID: 22058578 PMCID: PMC3207498 DOI: 10.1016/j.progpolymsci.2011.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification.
Collapse
Affiliation(s)
- Sílvia Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
15
|
Choi JS, Kim BS, Kim JD, Choi YC, Lee HY, Cho YW. In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Tissue Eng Part A 2011; 18:80-92. [PMID: 21905881 DOI: 10.1089/ten.tea.2011.0103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extracellular matrix (ECM) secreted from the resident cell of tissue is an ideal biomaterial evolved by nature. Cartilage is also built from well-organized ECM components in a gel-like structure with a high collagen and proteoglycan content. Here, we explored cartilage tissue engineering using ECM scaffolds seeded with stem cells. Both scaffolds and stem cells were isolated from human adipose tissue, which is abundant and easily harvested in the human body. The human ECM scaffolds contained various endogenous bioactive factors, including transforming growth factor-beta1 (TGF-β1, 8782±4989 pg/g, dry ECM), insulin growth factor-1 (13319±1388 pg/g, dry ECM), basic fibroblast growth factor (82373±9572 pg/g, dry ECM), and vascular endothelial growth factor (25647±2749 pg/g, dry ECM). A composite of ECM and stem cells was prepared and cultured in chondrogenic medium (with 10 ng/mL TGF-β1 or not) for 45 days. The volumes and weights of the composites increased during culture and the surface gradually became smooth. Cell viability remained high throughout the 45 days of in vitro culture. Composites showed the formation of cartilage-like tissue with the synthesis of cartilage-specific proteins such as collagen and glycosaminoglycan. Important chondrogenic markers were expressed including Sox-9, aggrecan, and collagen type II and XI. These results demonstrate that a cell/ECM composite containing endogenous bioactive factors could provide biochemical cues for the promotion of cartilage formation.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
16
|
Jensen DA, Steplewski A, Gawron K, Fertala A. Persistence of intracellular and extracellular changes after incompletely suppressing expression of the R789C (p.R989C) and R992C (p.R1192C) collagen II mutants. Hum Mutat 2011; 32:794-805. [PMID: 21472893 DOI: 10.1002/humu.21506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/23/2011] [Indexed: 11/06/2022]
Abstract
Mutations in COL2A1 produce a spectrum of disorders whose hallmark feature is alterations in skeletal development. Attempts to counteract the effects of collagen mutations at the molecular level have been relatively ineffective due to the inability to selectively suppress a mutant allele, and failure to deliver a sufficient number of cells expressing wild-type collagen. Moreover, these approaches are hampered because the minimal therapeutic conditions that would allow extracellular matrix remodeling and recovery of cells from stress are not known. Here, we employed a tetracycline-inducible system for expressing the R789C or R992C collagen II mutants, allowing us to decrease the production of mutant proteins by 25, 50, 75, or 100% with respect to their initial production. Through analysis of intracellular and extracellular parameters we have shown that affected cell/matrix systems are able to recover from mutation-induced aberrations only when 100% expression of mutant collagens is shut off, but not if the expression of small amounts of mutant molecules persists in the system. Our data suggest that efficient remodeling of tissues affected by the presence of thermolabile collagen mutants may depend on their complete elimination rather than on partial reduction.
Collapse
Affiliation(s)
- Deborah A Jensen
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
17
|
Application of Recombinant Fusion Proteins for Tissue Engineering. Ann Biomed Eng 2010; 38:683-93. [DOI: 10.1007/s10439-010-9935-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
|
18
|
Ramshaw JAM, Peng YY, Glattauer V, Werkmeister JA. Collagens as biomaterials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S3-S8. [PMID: 18379858 DOI: 10.1007/s10856-008-3415-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Accepted: 02/26/2008] [Indexed: 05/26/2023]
Abstract
This paper reviews the structure, function and applications of collagens as biomaterials. The various formats for collagens, either as tissue-based devices or as reconstituted soluble collagens are discussed. The major emphasis is on the new technologies that are emerging that will lead to new and improved collagen-based medical devices. In particular, the development of recombinant collagens, especially using microorganism systems, is allowing the development of safe and reproducible collagen products. These systems also allow for the development of novel, non-natural structures, for example collagen like structures containing repeats of key functional domains or as chimeric structures where a collagen domain is covalently linked to another biologically active component.
Collapse
Affiliation(s)
- John A M Ramshaw
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
19
|
Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 2009; 142:149-59. [PMID: 19850093 DOI: 10.1016/j.jconrel.2009.10.018] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/13/2009] [Indexed: 11/17/2022]
Abstract
The objective of regenerative medicine is to provide cells with a local environment of artificial extracellular matrix where they can proliferate and differentiate efficiently and therefore, induce the repair of defective tissues according to the natural healing potential of patients. For this purpose, naturally derived materials are being widely used because of their similarities to the extracellular matrix, typically good biocharacteristics and inherent cellular interaction. Also, natural polymers can be engineered to release growth factors and related agents in response to physiologic signals to imitate the natural healing process and to promote fast tissue regeneration and reduce scarring in wounds. Although synthetic materials have been used extensively in tissue engineering fields, this review illustrates the contribution of natural materials and natural materials-based protein delivery systems to regenerative medicine research, with emphasis on the application of multifunctional vehicles for cell and growth factor delivery in skin regeneration research.
Collapse
Affiliation(s)
- Sha Huang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853, PR China
| | | |
Collapse
|
20
|
Yoshizumi A, Yu Z, Silva T, Thiagarajan G, Ramshaw JAM, Inouye M, Brodsky B. Self-association of streptococcus pyogenes collagen-like constructs into higher order structures. Protein Sci 2009; 18:1241-51. [PMID: 19472339 DOI: 10.1002/pro.134] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of bacterial collagen-like proteins with Gly as every third residue and a high Pro content have been observed to form stable triple-helical structures despite the absence of hydroxyproline (Hyp). Here, the high yield cold-shock expression system is used to obtain purified recombinant collagen-like protein (V-CL) from Streptococcus pyogenes containing an N-terminal globular domain V followed by the collagen triple-helix domain CL and the modified construct with two tandem collagen domains V-CL-CL. Both constructs and their isolated collagenous domains form stable triple-helices characterized by very sharp thermal transitions at 35-37 degrees C and by high values of calorimetric enthalpy. Procedures for the formation of collagen SLS crystallites lead to parallel arrays of in register V-CL-CL molecules, as well as centrosymmetric arrays of dimers joined at their globular domains. At neutral pH and high concentrations, the bacterial constructs all show a tendency towards aggregation. The isolated collagen domains, CL and CL-CL, form units of diameter 4-5 nm which bundle together and twist to make larger fibrillar structures. Thus, although this S. pyogenes collagen-like protein is a cell surface protein with no indication of participation in higher order structure, the triple-helix domain has the potential of forming fibrillar structures even in the absence of hydroxyproline. The formation of fibrils suggests bacterial collagen proteins may be useful for biomaterials and tissue engineering applications.
Collapse
Affiliation(s)
- Ayumi Yoshizumi
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL. Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. SOFT MATTER 2009; 5:3412-3416. [PMID: 20543970 PMCID: PMC2883189 DOI: 10.1039/b910980c] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The production of complex, yet well defined materials offers many opportunities in regenerative medicine, in which the mechanical and biological properties of the matrix must meet stringent requirements. Here we report the recombinant production of modular polypeptidic materials, based on the highly resilient protein resilin, which are equipped with multiple biologically active domains. The recombinant materials exhibit useful mechanical and cell adhesion behavior.
Collapse
Affiliation(s)
- Manoj B. Charati
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jamie L. Ifkovits
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
22
|
Peng YY, Werkmeister JA, Vaughan PR, Ramshaw JAM. Constructs for the expression of repeating triple-helical protein domains. Biomed Mater 2008. [DOI: 10.1088/1748-6041/4/1/015006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Chan G, Mooney DJ. New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 2008; 26:382-92. [PMID: 18501452 DOI: 10.1016/j.tibtech.2008.03.011] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 12/31/2022]
Abstract
One goal of tissue engineering is to replace lost or compromised tissue function, and an approach to this is to control the interplay between materials (scaffolds), cells and growth factors to create environments that promote the regeneration of functional tissues and organs. An increased understanding of the chemical signals that direct cell differentiation, migration and proliferation, advances in scaffold design and peptide engineering that allow this signaling to be recapitulated and the development of new materials, such as DNA-based and stimuli-sensitive polymers, have recently given engineers enhanced control over the chemical properties of a material and cell fate. Additionally, the immune system, which is often overlooked, has been shown to play a beneficial role in tissue repair, and future endeavors in material design will potentially expand to include immunomodulation.
Collapse
Affiliation(s)
- Gail Chan
- Harvard University, School of Engineering and Applied Sciences, 29 Oxford St., Cambridge, MA 02138, USA
| | | |
Collapse
|
24
|
Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 2007; 28:5068-73. [PMID: 17706763 DOI: 10.1016/j.biomaterials.2007.07.042] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022]
Abstract
As a prominent tool in regenerative medicine, tissue engineering (TE) has been an active field of scientific research for nearly three decades. Clinical application of TE technologies has been relatively restricted, however, owing in part to the limited number of biomaterials that are approved for human use. While many excellent biomaterials have been developed in recent years, their translation into clinical practice has been slow. As a consequence, many investigators still employ biodegradable polymers that were first approved for use in humans over 30 years ago. During normal development tissue morphogenesis is heavily influenced by the interaction of cells with the extracellular matrix (ECM). Yet simple polymers, while providing architectural support for neo-tissue development, do not adequately mimic the complex interactions between adult stem and progenitor cells and the ECM that promote functional tissue regeneration. Future advances in TE and regenerative medicine will depend on the development of "smart" biomaterials that actively participate in the formation of functional tissue. Clinical translation of these new classes of biomaterials will be supported by many of the same evaluation tools as those developed and described by Professor David F. Williams and colleagues over the past 30 years.
Collapse
Affiliation(s)
- Mark E Furth
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | | | | |
Collapse
|
25
|
Huang J, Wong Po Foo C, Kaplan DL. Biosynthesis and Applications of Silk‐like and Collagen‐like Proteins. POLYM REV 2007. [DOI: 10.1080/15583720601109560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|